
On the Engineering of AI-Powered Systems

Evgeny Kusmenko, Svetlana Pavlitskaya, Bernhard Rumpe, Sebastian Stüber
Chair of Software Engineering, RWTH Aachen University, Aachen, Germany, kusmenko@se-rwth.de

Abstract—More and more tasks become solvable using deep
learning technology nowadays. Consequently, the amount of
neural network code in software rises continuously. To make
the new paradigm more accessible, frameworks, languages, and
tools keep emerging. Although, the maturity of these tools is
steadily increasing, we still lack appropriate domain specific
languages and a high degree of automation when it comes to
deep learning for productive systems. In this paper we present
a multi-paradigm language family allowing the AI engineer to
model and train deep neural networks as well as to integrate them
into software architectures containing classical code. Using input
and output layers as strictly typed interfaces enables a seamless
embedding of neural networks into component-based models.
The lifecycle of deep learning components can then be governed
by a compiler accordingly, e.g. detecting when (re-)training is
necessary or when network weights can be shared between
different network instances. We provide a compelling case study,
where we train an autonomous vehicle for the TORCS simulator.
Furthermore, we discuss how the methodology automates the AI
development process if neural networks are changed or added to
the system.

Index Terms—MDE, deep learning, neural networks

I. INTRODUCTION

Intelligent systems benefit more and more from the advances

in machine learning. Potential application domains include

autonomous driving, medical diagnostics, social networks, and

speech processing, to name only a few. The rising demand

for machine learning in industry and academia leads to the

question, how next generation software using the new technol-

ogy can be developed efficiently. Deep learning is inherently

different to today’s software development methodologies and

requires a rethinking of paradigms, languages, and processes.

In this paper we are going to tackle this challenge by ana-

lyzing, how the deep neural learning domain can be grasped

by domain specific language concepts, how these concepts

can be integrated with existing methodologies, and how the

usages of domain specific modeling frameworks can affect

the overall system engineering process. As the basis of our

work we will use MontiAnna, a Domain Specific Modeling

Language (DSML) framework for the design and training

of artificial neural networks. In this paper, we are going

to show, how MontiAnna is embedded into the Component

& Connector (C&C)-based architecture modeling language

EmbeddedMontiArc and discuss how the software engineering

process can benefit from this symbioses by demonstrating the

design and evolution of a deep learning based autonomous

driving model tested in a racing simulator. Furthermore, we

This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

show how components can be enriched by additional infor-

mation concerning deep learning aspects using the tagging

approach.

II. BACKGROUND

This work heavily builds on the two Domain Specific Lan-

guage (DSL) families MontiAnna [1] and EmbeddedMontiArc

[2], [3], which we are going to introduce in this section.

EmbeddedMontiArc is a C&C-oriented modeling language

with a particular focus on embedded, automotive, and cyber-

physical systems, It is inspired by Simulink [4] and developed

as a compatible textual alternative to tackle some of its

shortcomings, like the lack of dynamic runtime reconfiguration

and a unit-based type system. In EmbeddedMontiArc com-

ponents are first-level citizens encapsulating functionality and

communicating with other components only via clearly defined

interfaces. A component’s interface is composed of a set of

strictly and statically typed input and output ports, cf. L.3-6 in

Fig. 5. EmbeddedMontiArc provides an abstract mathematical

type system hiding the implementation details and letting

the developer concentrate on the application logics. The type

system comes with the primitive types N, Z, Q, C, B
denoting the non-negative integers, integers, rationals, complex

numbers, and Booleans, respectively. Furthermore, a data type

can be refined with a range to incorporate the limits of the

system to be modeled, e.g. the type in L.3 of Fig. 5 represents

images and therefore only allows values from 0 to 255. The

compiler decides automatically which implementation data

type is most appropriate for each individual case. A data

type can be extended to a vector, a matrix, or a higher order

tensor using a LATEX-inspired circumflex notation followed by

the respective dimensions in curly brackets (ˆ{...}), as is

done in L.3 of Fig. 5 to model an image as a tensor with its

dimensions representing the width, height, and the channels

of the input image. Moreover, a type can be extended by

a physical unit it represents, e.g. the speedIn port in L.4

of Fig. 5 expects meters per second (m/s). This enables the

compiler to identify connections between incompatible ports

(e.g. velocities and masses) as well as to convert compatible

units automatically (e.g. km/h to m/s).

EmbeddedMontiArc components can be hierarchically de-

composed into smaller subcomponents, which can be instan-

tiated using the instance keyword, cf. L.8-15 in Fig. 5.

A dataflow from an output port to an input port is estab-

lished explicitly by creating a connector using the connect
keyword, cf. L.17-27. Implicit communication is forbidden to

ensure testability and maintainability. If a component cannot or

126

[KPRS19] E. Kusmenko, S. Pavlitskaya, B. Rumpe, S. Stüber:
On the Engineering of AI-Driven Systems.
In: ASE’19. Software Engineering Intelligence Workshop (SEI’19), pp. 126--133, San Diego, Nov. 2019.
www.se-rwth.de/publications/

should not be decomposed into smaller components any more,

it can be implemented using MontiMath, the matrix-oriented

behavior language of EmbeddedMontiArc incorporating the

strict type system and designed for the implementation of

math-heavy algorithms. The EmbeddedMontiArc code gener-

ator creates pure C++ code as well as a corresponding CMake

build infrastructure from EmbeddedMontiArc and MontiMath

models, which can then be used to create executables using

off-the-shelf software.

MontiAnna is a textual modeling framework for the design

and training of Artificial Neural Networks (ANNs). It consists

of two main languages: the neural architecture language, used

to describe the structure of the neural network being modeled,

and the training language, specifying how this architecture has

to be trained. A basic architecture example is given in Fig. 1.

The header is defined using the keyword architecture,

followed by the network name and an optional set of pa-

rameters which can be used to adapt the network to specific

applications. In MontiAnna, a neural network is built from

neuron layers. A neuron layer is an array of unconnected

neurons of the same type. MontiAnna supports many types

of neuron layers used in practical deep learning engineering,

such as fully connected (with respect to the previous layer),

convolutional, ReLU, and LSTM layers.

The neural network is assembled by instantiating different

types of neuron layers and by creating directed connections

between them using the “->” operator, cf. L.5-9 in Fig. 1.

Thereby, the output of the operand to the left of the “->”

operator is used as input to the operand on the right. For

the design of more complex architectures, MontiAnna offers

the parallelization operator “|”, which can be used to create

parallel propagation paths. If a neuron layer is regarded as

a node in a graph, by using these two operators, we can

model any possible directed acyclic graph (DAG). However,

this is not always sufficient, in particular, if we need to model

recurrent network architectures. In MontiAnna we can instan-

tiate anonymous layer instances, e.g. the FullyConnected
layers in Fig. 1. This is convenient, since most of the time

we never refer to an instantiated layer again. However, we

can instantiate a named layer instance before adding it to the

neural network, e.g. if we need to create cycles. Special named

layer instances are the input and the output layers, defined in

L.2-3 of Fig. 1. These layers define the entry and exit points

of the network, thereby constituting its interface.

For the description of the training procedure, MontiAnna of-

fers a dedicated training DSL, cf. Fig. 7. The training language

allows the definition of primitive and nested hyperparameters

such as the number of epochs to train, the batch size to

use, and the optimization algorithm to apply including its

own hyperparameters like learning rate. The training model

is a recipe for the MontiAnna code generator to generate the

training code which, in turn, is used to create the final neural

network.

For more details on MontiAnna language elements, the code

generation framework, and the variability concepts we refer to

the basic MontiAnna paper [1].

architecture Example(N in_size=24, N out_size=14, hidden_size){
input Z(0:255)^{in_size} Data;
output Q(0:1)^{out_size} Result;

Data ->
FullyConnected(units=hidden_size) ->
Convolutional(kernel=(5,5), channels=5, stride = (4,4)) ->
…
Result;

}

1
2
3
4
5
6
7
8
9
10

Fig. 1. MontiAnna architecture model with a parameterizable interface and
two hidden layers.

III. RELATED WORK

The rise of machine learning leads to a demand for frame-

works, which simplify the development of programs using

machine learning. In this section we discuss Model Driven

Engineering (MDE) solutions for the deep learning domain

used in practice and compare them to MontiAnna.

Traditionally, machine learning methods are offered by

libraries such as TensorFlow [5], Torch [6] or Keras [7]. They

provide methods to build, train and evaluate neural networks

in general programming languages like C++ or Python. This

allows the direct use of machine learning alongside existing

code. The high-level framework Keras is especially popular

since it greatly abstracts from the details of the neural network.

A detailed overview of these frameworks based on general

purpose languages (GPLs) is given in [1].

Solutions with a stronger focus on the domain allowing the

developer to concentrate on the “what” instead of the “how”

are required. MDE frameworks and graphical modeling tools

enable even untrained users to create solutions interactively.

Sensible default values, automatic hyperparameter tuning [8]

and complex out-of-the-box components reduce the burden on

the AI developer.

IBM SPSS Neural Networks adds neural networks to IBM
SPSS, a software for statistical analytics. Instead of defining

the neural network manually, an algorithm can create the

network architecture automatically. Hence the neural network

can be used as a black-box without configuration, while still

being specific to the users problem. IBM SPSS focuses on

traditional statistical tasks using neural networks, for example

as an alternative to linear regression. Hence, image processing

and similar problems are out of scope. A detailed description

of the capabilities and multiple demonstrations are given in

[9].

Azure Machine Learning is an environment for machine

learning developed by Microsoft. It is integrated into further

cloud services from Microsoft. Azure is also based on a C&C

architecture, but represented purely visually. The predefined

components focus on forecasting and classification. After an-

swering a few questions concerning the problem, the developer

gets recommendations for components and tutorials how to

use them. Many components have configuration options. If

127

input Data auto;
hidden {
H1 [29,29] from Data all;
Conv1 [5, 13, 13] from H1 convolve {

InputShape = [29, 29];
KernelShape = [5, 5];
Stride = [4, 4];

}
}
output Result [2] from Conv1 all;

1
2
3
4
5
6
7
8
9
10

Fig. 2. Neural network architecture defined in Net#.

the predefined components are not enough, Azure offers the

integration of R or Python code.

Furthermore, Net# was developed by Microsoft as a purely

textual specification description language for neural networks.

It focuses on complex neural networks architectures, for

example deep neural networks. Azure allows the definition

of custom components specified in Net# alongside normal

components. A Net# specification consists of layers and the

connection between these layers. Multiple hidden layers can be

defined, each with a custom number of nodes and an activation

function. The number of nodes in the input and output layers

can be automatically deduced from the context. For hidden

layers there is no smart automatic computation of the number

of nodes. Instead, a constant value is used as default value.

To repeat a layer in the architecture, multiple layers have to

be defined manually.

The resulting graph must be acyclic. This requirement

excludes cyclic network architectures like recurrent neural

networks (RNNs). Apart from that there are no restrictions

on layer connections. A layer can be connected to multiple

layers both for input and output.

There are multiple configuration options, how the nodes of

both layers can be connected. Default is the “full” connection,

which connects every source node with every destination node.

In the “filtered” connection a predicate expression can remove

some connections. The predicate is a Boolean expression

taking the indices of two nodes as input and returning “true”

iff the nodes should be connected.

Many neural networks for image classification [10], [11] use

a convolutional architecture. Net# supports this kind of layer

and allows multiple parameters to customize it.

To compare MontiAnna and Net#, an example is given

in Fig. 2. It describes the same network architecture as the

MontiAnna specification in Fig. 1. The network has one

input layer named “Data”, the two hidden layers “H1” and

“Conv1” and one output layer “Result”. The number of

nodes in the input layer is automatically derived. Layer “H1”

contains 29 × 29 = 841 nodes, logically arranged in a two

dimensional array. The second hidden layer “Conv1” contains

5× 13× 13 = 845 nodes. All layers are connected in series;

the layer “Conv1” is a convolutional layer with configuration

parameters in L.5-7.

Net# can only be configured with the predefined options.

There are ten different activation functions, but a user is unable

to define a custom activation function. Same holds for the type

of nodes and the connection between layers. This restricts the

usability of Net# for many use cases.

IV. MODELING AI-DRIVEN ARCHITECTURES

A. The modeling language family EmbeddedMontiArcDL

Autonomous cyber-physical systems can often be decom-

posed into multiple modules dealing with tasks like percep-

tion, navigation, planning, control, etc, which need to be

developed by experts and then put together. The design and

implementation processes of these modules can be as different

as their purposes and might require the usage of different

and appropriate paradigms and tools. The goal of this paper

is to present a multi-paradigm modeling language family

tackling the design and composition of math-heavy and deep

learning-based systems. Therefore, we are going to discuss

our methodology using an example developing an autonomous

racing car system based on the direct perception principle

[12] and evaluating it in the TORCS simulator [13]. The idea

behind this system is that a vehicle, instead of using a set of

classical sensors, e.g. to measure the distance to the vehicle in

front, receives a picture from a front camera and tries to extract

this information using a neural network. This information can

be thought of as a vector of fourteen so called affordance
indicators including the yaw angle of the vehicle relative to

the road, the distance to the left/right/central lane markings,

distance to the preceding vehicle in the left/right lanes and so

on. As the name suggests, the direct perception network covers

only the perception part of the system. Denoising, decision

making, and control need to be designed separately, in contrast

to end-to-end systems where a neural network receives an

image as input and produces the actuator commands as its

output [14]. The advantage of the direct perception architecture

is that we can benefit from neural image processing without

giving away control over the vehicle’s behavior to a black-box

network we don’t fully understand.

Our aim is to develop the racing car using an MDE

approach so that we can tackle the heterogeneous problems

using appropriate paradigms. In particular, we want to model

the system architecture using the EmbeddedMontiArc C&C

language and benefit of its type system making physical

quantities explicit. Furthermore, we need to model and train

the direct perception neural network using a deep learning

framework, i.e. MontiAnna. Finally, we need to design the

signal processing parts such as filters and controllers using

a language designed to describe mathematical operations, i.e.

MontiMath.

However, working with different languages in a single

project can be cumbersome, require a lot of glue code not

contributing to the application logic, and lead to a complex

build infrastructure. Therefore, we are going to introduce a

composed language and generator family, where the single lan-

guages are adapted and can talk to each other. This facilitates

the multi-paradigm modeling using the incorporated languages

and enables comprehensive inter-language checks and tools.

In the following, we will refer to this language family as Em-

beddedMontiArc+DeepLearning (EMADL). EMADL is con-

128

structed using the language composition principles language
extension, language aggregation, and language embedding of

the language workbench MontiCore 5 [15], [16]. The main

languages and generators of EMADL are depicted in purple

and pink, respectively, in Fig. 3.

The C&C language EmbeddedMontiArc serves as a basis

for our language family. However, it can only describe hierar-

chical component-based architectures. We use it to subdivide

our racing car system into smaller components as is shown

in the block diagram in Fig. 4 to tackle the development in

a divide & conquer manner. The input and output ports of

a block are depicted as small rectangles on its left and right

side, respectively. The parent component containing all other

components gets an image and the current velocity as input.

The output consists of the command ports for acceleration,

braking, and steering. Additionally, we output the smoothed

version of the predicted affordance indicators for testing and

validation purposes. The subcomponents of the main compo-

nent are described in the following.

The DPNet is a Convolutional Neural Network (CNN)

predicting affordance indicators for input images according

to the direct perception approach. The architecture of DPNet

follows the one defined in [12] and is derived from AlexNet

[17] with the following changes: the local normalization layers

are removed and two further fully connected layers with 256

and 14 units respectively are added. Moreover, [13] suggests

to add a sigmoid layer between the final fully-connected layer

and Euclidean loss. This change aims at normalizing the loss

to the range [0.1, 0.9]. However, we observed that adding this

layer leads to a considerably slower convergence. This might

be because removing the sigmoid layer allows for outputs with

larger discrepancy to true value to learn faster. On the other

hand, if a sigmoid layer is attached, outputs that are wildly off

might actually learn more slowly because of the saturation of

sigmoid layer. Therefore, we decide to omit the sigmoid layer

in the final architecture.

Since the DPNet returns normalized predictions, we

have to rescale them back to the original ranges in the

Denormalizer component. The denormalized affordance

indicators are then stored in an Affordance structure (sim-

ilar to a C/C++ struct).

The predictions of the DPNet, similar to ordinary sensor

signals, are noisy. Therefore, we apply Kalman filtering to

smoothen the affordance indicators. Kalman filters are com-

monly used for smoothing out noise in signal processing

applications including neural networks. Since we need to fil-

ter multiple values independently, the KalmanFilterBank
contains an individually parameterizable filter for each of the

signals to be filtered.

The Localization component estimates the number

of lanes by analyzing the affordance indicators, namely the

distance between outer left and right lane markings, and

provides this information to the DriverController so that

an appropriate behavior can be selected.

The DriverController is a complex component which

realizes the vehicle control based on the current affordance

indicators and mostly follows the corresponding algorithm in

the DeepDriving project [12].

The main task of the controller is to decide, whether a

car should accelerate or brake and how much to steer in

which direction. These three values are calculated based on the

current speed, distance to the lane markings and presence of

the other cars in the currently occupied and neighboring lanes.

The input values for the DriverController component

are affordance indicators received from the DPNet component

as well as the current vehicle speed. For instance, the maximal

speed is set to 70 km/h. If a car drives slower than that,

the acceleration command is set to a positive (normalized)

value in the range (0, 1]. The same logic applies to the brake

command if the car drives faster than 70 km/h. Another factor

is a distance to the preceding car - if it is less than 20 m,

brake and acceleration commands are calculated to execute

the car following behavior. The third factor is a sum of

the five previous steering commands. If a car was steering

significantly and the current speed is too high, then speed

should be reduced. This way a vehicle is driving slower while

passing through sharp curves.

Finally, the steering command is calculated based on the

distance to the lane markings. The DriverController
makes the car drive in the middle of the current lane until

another car is detected in front. In this case, if another free

lane is present, the DriverController switches to the free

lane.

The SteeringBuffer component is utilized by the

DriverController to buffer the steering command, lane

change state as well as lane change timers between controller

calls. In particular, a history of up to five steering commands

is used in the DriverController to calculate the speed

reduction when the car is performing a long turn. When a lane

change maneuver is performed, a special flag is set to notify

the controller that the car is in the process of lane changing

and not simply turning. For convenience we introduce the

LaneChange enumeration for lane changing maneuvers with

the values NO_CHANGE, TO_LEFT, TO_RIGHT, IN_RIGHT,

and IN_LEFT. We use lane changing timers for both changing

to the left and to the right in the same way - these values are

needed for a smooth lane change maneuver implementation.

The graphical architecture of Fig. 4 can be written

in EmbeddedMontiArc according to the syntax introduced

in section II. The code of the main component, named

DeepDriving, is depicted in Fig. 5. Similar to the main

component, the subcomponents instantiated in L.8-15 are

defined in separate files and can contain subcomponents

themselves. The EmbeddedMontiArc model can be generated

by its corresponding generator EmbeddedMontiArc to C++

(EMA2CPP), cf. Fig. 3. The output is a C++ implementation

of the component stubs, their interfaces, as well as the dataflow

infrastructure, i.e. connectors between ports. Furthermore,

the generator decides which types to use and creates unit

conversion code, e.g. to convert a velocity from km/h to m/s.

Now let’s go back to the DPNet component. Of course,

deep learning functionality can be integrated into a language

129

Fig. 3. The EmbeddedMontiArcDL modeling language family: languages an code generators are depicted as purple and pink boxes, respectively.

like MontiMath. However, this comes with the drawback

that the framework engineers are constraint by the concepts

provided by the host language. Furthermore, deep learning

code can be intertwined with “standard” code hindering the

code generators and compilers to identify neural networks

and their interfaces and apply a machine learning specific

life-cycle to them. Therefore, we integrate the MontiAnna

architecture language with EmbeddedMontiArc by means of

language extension and language embedding separately from

MontiMath.

First, we create the EMADL language as an extension of

EmbeddedMontiArc, which is similar to inheritance in object-

oriented languages. We add a new rule to the grammar of this

language allowing us to insert an implementation block into a

component definition, cf. L.6 in Fig. 6. The block starts with

the keyword implementation followed by the name of the

implementation language (MontiMath or MontiAnna) and the

actual code implementing the component behavior, cf. L.7-33.

Second, we embed MontiAnna and MontiMath, into the

implementation block by using the main production rule

of the respective language grammars. Note however, there

is no MontiAnna header or input/output layer definition in

the MontiAnna implementation block in Fig. 6. Instead, we

map the component parameters to MontiAnna configuration

parameters. The input and output ports of the component

are created as MontiAnna input and output layers with the

corresponding dimensions in the MontiAnna symbol table.

The implementation code of the Dpnet component contains

only the pure neural network architecture code according to the

description given above. The component input port image is

used as the input layer of the network in L.21, while the final

layer predictions is mapped to the component’s output

port with the same name.

The network structure built in L.21-33 is completely linear,

i.e. we only need the “->” operator to model the network.

As is typical for image processing networks, we make strong

usage of convolutional layers. Furthermore, we use fully

connected, ReLU activation, and pooling layers. Dropout

regularization is modeled in MontiAnna as a layer, as well, cf.

L.18 and L.31. In L.8-14 and L.15-19 we define two custom

layers, each composed of three predefined layers, which helps

us keep the architecture modular and concise.

Context conditions of the EMADL language ensure that

layer names and variables used in MontiMath and MontiAnna

implementation blocks have been defined as EmbeddedMon-

tiArc ports in the component header.

MontiAnna comes with the abstract code generator Mon-

tiAnna2X. This code generator provides the basic generation

functionality for neural network, but is backend independent.

Since we might want to use different deep learning frameworks

depending on the application and the required functionality, we

can add concrete MontiAnna code generators by subclassing

MontiAnna2X if needed. Currently, we support generation of

MxNet, Caffe2, and Tensorflow code, cf. Fig. 3.

All the subcomponents of Fig. 4 except the Dpnet are

designed using the MontiMath language, which is particu-

larly convenient for the mathematical algorithms such as the

Kalman filter. Complete and fully functional models including

the subcomponents as well as the tools needed to generate code

and integrate it with TORCS are provided in our repository1.

The MontiMath code of these components is generated using

the MontiMath2CPP generator. Math operations are generated

by the MontiMath2CPP generator using the Armadillo Basic

Linear Algebra Subprograms (BLAS) library2 to speed up

computations at runtime.

However, the user does not need to run the three gener-

ators separately. Instead, we provide an orchestrating super-

generator denoted as EmbeddedMontiArc+DeepLearning to

C++ (EMADL2CPP), cf. Fig. 3. This generator gets EMADL

models as input and delegates the actual generation to the

respective specialized generators based on the modeling lan-

guage being processed. Thereby, code generated from Monti-

Math and MontiAnna models by MontiMath2CPP and Mon-

tiAnna2X, respectively, is included directly into the respec-

1https://git.rwth-aachen.de/autonomousdriving/torcs dl/tree/develop
2http://arma.sourceforge.net/

130

tive component code generated by EMA2CPP. Furthermore,

EmbeddedMontiArc ports are mapped to MontiMath variables

and MontiAnna layers based on their names. This allows the

implementation code to read the component’s actual input and

provide output to the corresponding output ports.

Now, having introduced the main parts of the deep driving

model as well as the languages and generators required to

generate it, we ae going to discuss how the toolchain deals

with training and how this can affect the development process.

To setup the training procedure, the MontiAnna code gen-

erator requires a training model as introduced in section II, cf.

Fig. 7 for our DPNet example. The abstract syntax tree (AST)

and symbol table of the architecture and training models are

adapted internally using MontiCore’s language aggregation
concepts. This enables us to navigate from AST nodes and

symbols of an architecture model to the ones of the training

model and vice versa, e.g. to perform context conditions

related to both models such as checking whether the loss

function specified in the training model fits to the network

architecture. The MontiAnna2X generator then works on this

composed model containing all the necessary information to

generate neural network and training artifacts.

B. Tagging AI Components

If MontiAnna is used to model and generate a stand-

alone architecture as in Fig. 1, we can provide a training

model and the path to the training data as parameters to

MontiAnna2X. If we need to exchange the training model

or the training data, we just need to adapt these parameters,

e.g. through a command line interface. While this works well

for isolated models, it is not a convenient approach for C&C

architectures, possibly accommodating multiple deep learning

components and having an arsenal of training models and

datasets. Instead, we apply the so called tagging mechanism

[18], to enrich the symbol table of the EMADL component

model with additional information concerning the component

training. Thereby, we first need to specify in a tagging schema

which language elements, i.e. which symbol types, we want

to be able to enrich with what kind of information, cf.

listing at the top of Fig. 8. In this tagging schema, named

TrainingToEmadlTagSchema we define the tag type

Training. This tag type contains three entries: datapath,

dataformat, and training specifying the path to the

training data, its format, as well as the fully qualified name of

the MontiAnna training model to be used. In L.6 we declare

that this tag type is meant to tag components and component

instances (the relation between the two is similar to the relation

between classes and objects in object-oriented languages). This

tagging schema is a recipe, we reuse for all EMADL models.

The listing at the bottom of Fig. 8 is a concrete tag definition

file for our direct perception example. In L.1 we define that

the tag model has to conform with the tag schema defined in

the listing above. In this model we provide two tags. While

the first tag, defined in L.4, is meant to tag the component

Dpnet with a Training tag, the second tag is applied to

the concrete component instance dpnet, instantiated as a

subcomponent of the main component DeepDriving. The

EMADL parser reads the tags together with the other model

artifacts and attaches the data contained in the tags to the

referenced symbols of the EMADL model. This is realized by

the name resolving mechanism of the EMADL symbol table.
Tagging a component type, e.g. Dpnet with a tag means

that the tag applies to all component instances of this type.

On the other hand, tagging a component instance does not

have an effect on other instances of this component type.

Furthermore, a component instance tag overrides component

type tag information, which enables us to define exceptions in

large AI systems with many MontiAnna components.
For our example we have been discussing so far, one of the

two tags defined in Fig. 8 would suffice. However, imagine

that, in order to improve the precision of our direct perception

system, we decided to install several cameras on our vehicle.

Assuming that the errors emerging from the different mounting

positions can be canceled by appropriate parameters, we can

instantiate a Dpnet component for each of the cameras in our

system. Of course, we would also like to use the same training

model for each instance, i.e. we should use the component

type tag given in L.4-8 of Fig. 8 (bottom). When processing

the tagged model, the EMADL2CPP generator realizes that

all Dpnet instances need to be trained using the same data

stored in /home/se/torcsdata as an HDF5 database

using the training model Dpnet. Therefore, it executes the

training script only once and reuses the weights for all

Dpnet instances. Furthermore, as the network is stateless,

EMADL2CPP creates only a single flyweight instance which

is reused for all Dpnet prediction tasks. This saves us loading

the network weights for each instance individually (practical

networks can have millions of parameters).
Now imagine, we want to apply the same network ar-

chitecture to detect a set of different features, e.g. weather

parameters like rain intensity or the state of the street we are

driving on while keeping the Dpnet array for the affordance

indicator prediction. We can instantiate a corresponding new

component and tag it with a component instance tag as given

in L.9-13 of the tag model in Fig. 8. Thereby, the data path

is changed and the EMADL2CPP compiler knows that it has

to train this component individually.
Once the training of all MontiAnna components is fin-

ished, the final executable system can be built. Thereby,

the EMADL2CPP generator creates a log containing training

meta-data for each trained component (instance). In particular,

the training model used as well as the creation time of the

training database as stored. Whenever the whole system is re-

built, the EMADL2CPP compiler checks for every MontiAnna

component if the architecture, the training model, and/or the

dataset have changed based on this log. If this is not the case,

training of these components is skipped.

C. Evaluation
For training and testing we used the DeepDriving dataset3.

The training dataset contains 484.814 images, each labeled

3https://deepdriving.cs.princeton.edu

131

Fig. 4. C&C architecture of the direct perception based autonomous vehicle.

component DeepDriving<height=210, N width=280, N channels=3> {
ports

in Z(0:255)ˆ{img_channels, img_height, img_width} imageIn,
in Q(0 m/s:0.1 m/s:100 m/s) speedIn,
out Qˆ{16} predictedAffordanceOut,
out Q(-1:1)ˆ{3} commandsOut;

instance Dpnet<height, width, channels, classes> dpnet;
instance DriverController driverController;
instance Denormalizer denorm;
instance KFMastercomponent kfm;
instance SteeringBuffer steeringBuffer;
instance VectorToAffordance vecToAffordance;
instance LocalizationController locController;
instance AffordanceToVector affToVector;

connect imageIn -> dpnet.data;
connect dpnet.predictions -> denorm.normalizedPredictions;
connect denorm.affordance -> kfm.affordanceIn;
connect kfm.affordanceSmoothed -> locController.affordanceIn,

driverController.affordanceIn, affToVector.affordanceIn;
connect locController.lanesCount ->

driverController.lanesCountIn;
connect affToVector.affordanceOut -> predictedAffordanceOut;
connect steeringBuffer.outputBuffer -> driverController.

steeringRecordIn;
/*more connections, cf. graphical model*/

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Fig. 5. C&C architecture of the direct perception based autonomous vehicle
formalized as an EmbeddedMontiArc model.

with 14 affordance indicators. Due to problems with the testing

data set provided in [12], we decided to split their training

dataset into training (80% of the original training dataset) and

validation (20%) subsets. This way we train DPNet on 387.851

samples and validate on 96.963 additional samples not seen

during training. The mean squared error of the affordance

indicator prediction is plotted over the number of learning

iterations in Fig. 10.

To finally test the deep driving controller, we need to inte-

grate it with the TORCS simulator. Integration of distributed

systems in the robotics or autonomous vehicles domain is usu-

ally achieved using a middleware such as ROS [19]. We reuse

the tagging mechanism as proposed in [20] to add middleware

specific information to the ports of our DeepDriving com-

ponent to map EmbeddedMontiArc topics to ROS topics, cf.

Fig. 9. The EMADL code generator creates additional ROS

adapters for the tagged ports, which enables us to connect our

component Dpnet <img_height=210, N img_width=280,
N img_channels=3, N classes=14>{

ports in Z(0:255)^{img_channels, img_height, img_width} image,
out Q(0:1)^{classes} predictions;

implementation MontiAnna {

def conv(kernel, channels, hasPool=true, convStride=(1,1)) {
Convolution(kernel=kernel, channels=channels,

stride=convStride) ->
Relu() ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2),

?=hasPool)
}
def fc(){
FullyConnected(units=4096) ->
Relu() ->
Dropout()

}

image ->
conv(kernel=(11,11), channels=96, convStride=(4,4)) ->
conv(kernel=(5,5), channels=256, convStride=(4,4)) ->
conv(kernel=(3,3), channels=384, hasPool=false) ->
conv(kernel=(3,3), channels=384, hasPool=false) ->
conv(kernel=(3,3), channels=256) ->
fc() ->
fc() ->
FullyConnected(units=256) ->
Relu() ->
Dropout() ->
FullyConnected(units=14, no_bias=true) ->
predictions;

} }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 6. Definition of a component with a MontiAnna architecture description
of the DPNet neural network.

training Dpnet(…) {
num_epoch : 100,
batch_size : 64,
eval_metric : mse,
context : gpu,
load_checkpoint : true,
normalize : true,
optimizer : sgd {
learning_rate : 0.01
learning_rate_decay : 0.9
step_size : 8000

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13

Fig. 7. The training model for the DPNet neural network.

autopilot with TORCS without writing any glue code.

The generation and training process as well as the final

result, i.e. the racing car driving in TORCS, can be seen in a

demonstration video4. Further example projects supporting the

latest features can be found in our applications repository5.

V. CONCLUSION

In this paper we presented EmbeddedMontiArcDL, a lan-

guage family combining component-based architecture with

deep learning modeling. The language family was presented

and discussed using the models of an autonomous driving

software for the TORCS simulator. Thereby, we discussed

how automation in the development process of AI systems

emerges from coupling the C&C paradigm with an explicit

modeling of neural networks. For instance, treating weights

as versionable artifacts, smart weight management and reuse

can lead to enhanced efficiency of the overall development

process, if the compiler can manage the life-cycle of deep

learning components.

4https://youtu.be/hfICK4f-hR4
5https://git.rwth-aachen.de/monticore/EmbeddedMontiArc/applications

132

tagschema TrainingToEmadlTagSchema {
tagtype Training {

datapath = ${path:String},
dataformat = ${format:[HDF5 | LMDB]},
training = ${modelName:Name}

} for Component, ComponentInst ;
}

1
2
3
4
5
6
7

conforms to TrainingDataToEmadlTagSchema

tags TrainingTags {
tag Dpnet with Training = {

datapath = „/home/se/torcsdata“,
dataformat = HDF5,
training = Dpnet;

}
tag DeepDriving.dpnet with Training = {

datapath = „/home/se/torcsdata2“,
dataformat = HDF5,
training = Dpnet;

}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14

Fig. 8. The tagging schema for tagging EMADL components with training
data is given in the listing at the top; a tagging example attaching tags to the
Dpnet component instance and the Dpnet component type is depicted below.

tagschema RosToEmamTagSchema {
tagtype RosConnection {

topicName = (${topicName:String},
topicType = ${topicType:String})
(, msgField = ${msgField:String})?)?

} for Port;
}

1
2
3
4
5
67

conforms to de.monticore.lang.monticar.generator.roscpp.
RosToEmamTagSchema;

tags DeepDrivingRosTags {
tag DeepDriving.imageIn with RosConnection =

{topic=(/camera, std_msgs/Float32MultiArray)};
tag DeepDriving.speedIn with RosConnection =

{topic=(/speed,std_msgs/Float32)};
tag DeepDriving.groundTruthAffordance with RosConnection =

{topic=(/affordance,std_msgs/Float32MultiArray)};
tag DeepDriving.commandsOut with RosConnection =

{topic=(/commands,std_msgs/Float32MultiArray)};
tag DeepDriving.predictedAffordanceOut with RosConnection =

{topic=(/predictions,std_msgs/Float32MultiArray)};
}

}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Fig. 9. The tagging schema for tagging EMADL ports with ROS middleware
information is given in the listing at the top; a concrete tagging example
attaching tags to the ports of the DeepDriving component is depicted below.

REFERENCES

[1] Evgeny Kusmenko, Sebastian Nickels, Svetlana Pavlitskaya, Bernhard
Rumpe, and Thomas Timmermanns. Modeling and Training of Neural
Processing Systems. In Conference on Model Driven Engineering
Languages and Systems (MODELS’19). IEEE, September 2019.

[2] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael
von Wenckstern. Modeling Architectures of Cyber-Physical Systems.
In European Conference on Modelling Foundations and Applications
(ECMFA’17), LNCS 10376, pages 34–50. Springer, July 2017.

[3] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael
von Wenckstern. Highly-Optimizing and Multi-Target Compiler for
Embedded System Models: C++ Compiler Toolchain for the Component
and Connector Language EmbeddedMontiArc. In MoDELS’18, 2018.

[4] Mathworks Inc. Simulink User’s Guide. Technical Report R2019a,
MATLAB & SIMULINK, 2019.

[5] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: a system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[6] Ronan Collobert, Koray Kavukcuoglu, and Clément Farabet. Torch7:
A matlab-like environment for machine learning. In BigLearn, NIPS
workshop, number EPFL-CONF-192376, 2011.

Fig. 10. Mean squared error of the affordance indicator prediction measured
on the training and on the validation dataset, respectively.

[7] François Chollet et al. Keras: Deep learning library for theano and
tensorflow. URL: https://keras. io/k, 7:8, 2015.

[8] Rmi Bardenet, Mtys Brendel, Balzs Kgl, and Michle Sebag. Collabora-
tive hyperparameter tuning. In Sanjoy Dasgupta and David McAllester,
editors, Proceedings of the 30th International Conference on Machine
Learning, volume 28 of Proceedings of Machine Learning Research,
pages 199–207, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

[9] Keith McCormick and Jesus Salcedo. Model Complex Interactions with
IBM SPSS Neural Networks, pages 325–353. 04 2017.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In Advances
in neural information processing systems, pages 1097–1105, 2012.

[11] Yann LeCun, Koray Kavukcuoglu, and Clément Farabet. Convolutional
networks and applications in vision. In Circuits and Systems (ISCAS),
Proceedings of 2010 IEEE International Symposium on, 2010.

[12] Chenyi Chen, Ari Seff, Alain Kornhauser, and Jianxiong Xiao. Deepdriv-
ing: Learning affordance for direct perception in autonomous driving. In
Proceedings of the IEEE International Conference on Computer Vision,
pages 2722–2730, 2015.

[13] Bernhard Wymann, Eric Espié, Christophe Guionneau, Christos Dimi-
trakakis, Rémi Coulom, and Andrew Sumner. Torcs, the open racing
car simulator. Software available at http://torcs. sourceforge. net, 4(6),
2000.

[14] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard
Firner, Beat Flepp, Prasoon Goyal, Lawrence D Jackel, Mathew Mon-
fort, Urs Muller, Jiakai Zhang, et al. End to end learning for self-driving
cars. Technical report, NVIDIA, 2016.

[15] Katrin Hölldobler and Bernhard Rumpe. MontiCore 5 Language
Workbench Edition 2017. Aachener Informatik-Berichte, Software
Engineering, Band 32. Shaker Verlag, December 2017.

[16] Pedram Mir Seyed Nazari. MontiCore: Efficient Development of Com-
posed Modeling Language Essentials. Aachener Informatik-Berichte,
Software Engineering, Band 29. Shaker Verlag, June 2017.

[17] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet
Classification with Deep Convolutional Neural Networks. In F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25. 2012.

[18] Timo Greifenberg, Markus Look, Sebastian Roidl, and Bernhard
Rumpe. Engineering Tagging Languages for DSLs. In Conference
on Model Driven Engineering Languages and Systems (MODELS’15).
ACM/IEEE, 2015.

[19] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an Open-Source
Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[20] Alexander Hellwig, Stefan Kriebel, Evgeny Kusmenko, and Bernhard
Rumpe. Component-based Integration of Interconnected Vehicle Archi-
tectures. In 30th Intelligent Vehicles Symposium (IV’19). Workshop on
Cooperative Interactive Vehicles, pages 146–151. IEEE, June 2019.

133

