
OCL Framework to Verify Extra-Functional
Properties in Component and Connector Models

Shahar Maoz1, Ferdinand Mehlan2, Jan Oliver Ringert1, Bernhard Rumpe2, and Michael von Wenckstern2
1 School of Computer Science, Tel Aviv University, Israel http://www.cs.tau.ac.il

2 Software Engineering, RWTH Aachen University, Germany http://www.se-rwth.de

Abstract—We present an OCL framework and tool for the de-
scription and verification of consistency rules of extra-functional
properties (EFPs) in component and connector (C&C) models.
The framework is based on our previously defined structure of
EFP consistency rules using selection, aggregation, and compar-
ison operators, and provides C&C specific OCL functions and
configurations that allow engineers to succinctly express EFP
consistency rules for C&C models. Further, the extension of
OCL is twofold. First, constraints may contain C&C specific ex-
pressions and second, expressions natively support measurement
units as required in specifications of EFPs. We have extended
the OCL verification process to support the novel extensions
and to automatically generate meaningful positive and negative
witnesses for consistency and inconsistency. We implemented
the approach within the MontiCore framework for the C&C
modeling language MontiArc. Initial evaluation shows that it is
expressive and scales to large, industrial sized C&C models.

I. INTRODUCTION

Component and connector (C&C) models are used in many
application domains of software engineering, from cyber-
physical and embedded systems to web services and enterprise
applications. The structure of C&C models consists of com-
ponents at different containment levels, their typed interaction
points, and connectors between them [13]. In addition to
functional properties, extra-functional properties (EFPs) play
an important role in the development of C&C models [6],
[19]–[21]. Important examples of EFPs include worst-case-
execution-time (WCET), memory and power consumption,
security properties, and traceability [1], [16], [18].

Recently, we have presented a non-invasive technique for
adding EFPs to C&C models by means of tagging lan-
guages [12]. Importantly, this technique requires no changes
to the meta-model of the C&C language. In addition, we
have suggested a generic structure for EFP consistency rules
based on selection, aggregation, and comparison operators.
Conceptually, a consistency rule states for a C&C element
and an EFP whether the EFP value is consistent with the EFP
values of other C&C elements. Technically, consistency rules
are constraints that are satisfied iff the EFP value is consistent.
Consistency is determined by comparison to aggregated EFP
values of related C&C elements as defined by the selection,
aggregation, and comparison operators of consistency rules.

In this paper we are interested in the concrete formalization
of EFP consistency rules and in their automated analysis.
We propose to leverage the popular and expressive Object
Constraint Language [25] (OCL) and its analysis capabilities

for the definition and analysis of EFP consistency of C&C
models.

Our first contribution is a C&C-specific extension of
OCL. The extension allows the definition of C&C consistency
constraints based on clean mathematical C&C definitions; all
implementation specific details, such as more complex types
from the meta-model or abstract-syntax representations are
abstracted away by providing C&C specific OCL configura-
tions and powerful type-inference mechanisms when checking
consistency.

Our second contribution extends OCL with support
for measurement units and an automatic mechanism to
produce witnesses for EFP consistency checking results.
First, many EFPs, describing physical properties of C&C
models, e.g., WCET, power consumption, or memory usage,
contain physical units, e.g., seconds, Watts, or sizes. Thus,
to enable domain experts define EFP consistency rules, a
constraint language for EFPs naturally should support auto-
matic unit comparison and conversion . Second, our previously
defined mathematical framework [12] structures the definition
of consistency rules. This general structure allows to automat-
ically generate positive and negative witnesses for consistency
checking results. These witnesses intuitively demonstrate the
reasons for consistency or inconsistency of a C&C model.

Our third contribution is an initial evaluation of
checking EFP consistency of an industrial sized C&C
model. Specifically, we used our tool to verify four selected
consistency rules on an industrial sized Autonomous Driver
Assistance System (ADAS) model. The ADAS model consists
of about 1,400 components and 4,500 ports, and 2,800 tagged
EFP values. Our examples and evaluation show that (i) our
OCL based approached is expressive enough for defining
complex consistency constraints, and (ii) that the performance
of our implementation for checking these consistency rules
scales to large models.

In the next section we present a running example. Sect. III
gives background on C&C models and consistency rules of
EFPs. Sect. IV and Sect. V present our OCL framework and
example constraints, Sect. VI presents the implementation, and
Sect. VII presents a case study in which the framework is used.
Sect. VIII present related work, and Sect. IX concludes.

II. RUNNING EXAMPLE

Consider the sensor block of a weather balloon system as
shown in Fig. 1 (for textual syntax, see Fig. 2). The sensor

[MMR+17] S. Maoz, F. Mehlan, J. O. Ringert, B. Rumpe, and M. von Wenckstern: 
OCL Framework to Verify Extra-Functional Properties in Component and Connector Models. 
In: Proceedings of MODELS 2017 Satellite Event: Workshops (ModComp, ME, EXE, COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa, 
    MDETools, FlexMDE, MDEbug), Posters, Doctoral Symposium, Educator Symposium, ACM Student Research Competition,  
    and Tools and Demonstrations co-located with ACM/IEEE 20th International Conference on Model Driven Engineering 
    Languages and Systems (MODELS 2017), 2017. 
www.se-rwth.de/publications/

http://www.cs.tau.ac.il
http://www.se-rwth.de


WBalloonSens power=5W, wcet=2s

wBalloonSens

GPS power=2500mW, wcet=1s

gps2 power=2500mW, wcet=750ms

Controller
power=10mW, 

wcet=50ms

controller

C&Ccomponent type
extra-functional properties

instance name

GPS power=2500mW, wcet=1s

gps1 power=2W, wcet=950ms

Temp power=400mW, wcet=500ms

temp power=400mW, wcet=500ms

d
a
ta
S
a
v
e

d
a
ta
A
n
te
n
n
a

c
o
n
tr
o
lS
ig

Fig. 1: Excerpt from the C&C model of the Weather Balloon Sensor System

block of component type WBalloonSens consists of various
components: a temperature sensor (component instance temp
of component type Temp), two GPS sensors (component
instances gps1 and gps2 of component type GPS), and a
controller (component instance controller of component
type Controller). The controller periodically pushes sensor
data to another system in order to save it. The position of the
balloon is important for recovery after landing. Position data
from GPS is pushed to an antenna system, which relays the
position to ground control.

One EFP in our running example is power consumption (tag
power). The component types and the component instances
in Fig. 1 are tagged with estimated power consumption, e.g.,
the component type GPS is tagged with power=2500mW
and its component instance gps1 is tagged with power=2W.
The weather balloon will be running on a limited power
supply and power consumption has to be budgeted carefully.
Hence, the sensor block is required to consume at most 5W
(see power property of component type WBalloonSens
in Fig. 1). Based on this extra-functional property of the
parent component requirements for subcomponent types are
added: Temp consumes at most 400mW , the GPS sensors
GPS 2500mW each, and the controller 10mW .

However, the declaration of power consumption EFPs
in this model is inconsistent. The subcomponents require
5410mW when only 5W are defined by component type
WBalloonSens (note that it would be consistent when
taking the component instances and not types into account,
which together consume 4910mW ).

Another EFP in our running example is the worst-case-
execution-time (WCET, tag wcet) of components. As we as-
sume independent execution of all components and the WCET
of each subcomponent is less than the WCET of component
type WBalloonSens, the WCET EFPs are consistent.

Engineers can easily add EFP tags and EFP consistency
rules as OCL constraints, which our tool automatically verifies.

1component WBalloonSens {

2 ports in Byte[] controlSig,

3 out Byte[] dataSave,

4 out Byte[] dataAntenna;

5 component Controller controller;

6 component GPS gps1, gps2;

7 component Temperature temp;

8 ...

9 connect controller.antenna -> dataAntenna;

10 connect gps1.loc -> controller.loc1; }

MA
top component definition

is instantiated once with

instance name wBalloonSens

Fig. 2: Definitions of WBalloonSens from Fig. 1

III. PRELIMINARIES

We provide background on C&C models, extra-functional
properties, and their consistency rules.

A. Component and Connector Models

Component and connector models describe components,
their points of interaction, and their hierarchical composition.
We repeat a definition of C&C models as, e.g., given in [11],
in Def. 1, which represents the essence of component mod-
els [13] as formalized by ADLs ACME [4], AADL [3], and
MontiArc [7], or in tools AutoFOCUS [8] and Simulink [24].

Definition 1 (Component and Connector model [11]): A
C&C model is a structure cncm = 〈Cmps,Ports,Cons,
Types, subs, ports, type〉 where
• Cmps is a set of named components, cmp ∈ Cmps has a

set of ports ports(cmp) ⊆ Ports and a (possibly empty)
set of immediate subcomponents subs(cmp) ⊂ Cmps ,

• Ports = InPorts ]OutPorts is a disjoint union of input
and output ports where each port p ∈ Ports has a name,
a type type(p) ∈ Types , and belongs to exactly one
component p ∈ ports(cmp),

• Cons is a set of directed connectors con ∈ Cons , each
of which connects two ports con.src, con.tgt ∈ Ports of
the same type, which belong to two sibling components
or to a parent component and one of its immediate
subcomponents, and

• Types is a finite set of type names.
C&C models from Def. 1 are well-formed iff no component

is its own (transitive) subcomponent and has at most one direct
parent and subcomponents are connected legally (see [11] and
[17] for complete definitions).

While some formalisms directly express C&C models, e.g.,
[8], [24], others provide C&C type definitions and their
instantiation to define C&C models, e.g., [3], [7].

Definition 2 (Component Type Definition [12]): A com-
ponent type definition is a structure ct = 〈cType,CPorts,
CSubs,CCons〉 ∈ CTDefs where
• cType uniquely identifies the component type,
• CPorts is a set of input and output port definitions where

each port p ∈ CPorts has a name and a type,
• CSubs ⊂ Name × CTDefs is a set of named subcom-

ponent declarations, and
• CCons is a set of directed connector definitions con ∈
CCons , each of which connects two port definitions
con.src, con.tgt of the same type, which belong to two



sibling subcomponent declarations or to a component
type definition and one of its subcomponent declarations.

A component type t ∈ CTDefs is instantiated to a C&C
model by creating a component for c with subcomponents,
that are instances of t.CSubs with connectors according
to t.CCons . For a more detailed definition including well-
formedness rules and instantiation see [17]. For an instantiated
cmp ∈ Cmps the function CType(cmp) returns the corre-
sponding component type.

B. Consistency of EFPs in C&C Models

It is important to note that the consistency of an EFP value
may depend on multiple other C&C model elements, their
relations, and their EFP values. Some advanced examples of
consistency relate to component instantiation and composition
in C&C models. In addition, consistency may be very specific
to the EFP type, e.g., checking consistency of WCET values
is different from checking memory consumption.

To address the challenge of ensuring consistency of EFP
values, in a previous paper [12] we defined a general structure
of EFP consistency rules shown in Def. 3. First, each rule
defines what EFP value of which kind of C&C model element
it checks. Second, the rule specifies how to select relevant
C&C model elements for the check. Third, the rule defines
how to aggregate tagged values over the selected elements.
Finally, the aggregated value is compared to the value of the
checked element, to determine its consistency.

Definition 3 (EFP Value Consistency Rule [12]): A consis-
tency rule is a structure consisting of:
checks name of tag and element checked by rule;
selection selects relevant C&C elements to check consistency;
aggregation aggregates values of selected elements; and
comparison compares values to decide consistency.

The next two subsections illustrate some examples on con-
sistency definition rules according to Def. 3; more examples
are available in [12]. Sect. III-B1 presents rules for the
consistency of EFP values in the context of component type
instantiation. Sect. III-B2 presents rules in the context of
composition.

1) Instantiation Consistency: Instantiation consistency
checks whether the EFPs of component instances are consis-
tent to the EFPs of their component type definitions.

Rule 1 (InstPower [12]): The power consumption of an
instance is at most the power consumption of its type:
• checks: tag power of cmp ∈ Cmps
• selection: t := CType(cmp) ∈ CTDefs
• aggregation: v := cmp.power
• comparison: v ≤ t.power

Rule 2 (InstCertificates): The certificates of component
instances must be at most the certificates common to all ports
of the component:
• checks: tag cert of cmp ∈ Cmps
• selection: P := cmp.ports
• aggregation: v :=

⋂
p∈P p.cert

• comparison: v ⊇ cmp.cert

2) Composition Consistency: Composition consistency
checks whether the EFPs of C&C model elements are con-
sistent across their composition. The following example rules
address consistency at the type level. Similar rules can be
defined at the instance level.

Rule 3 (CompPower [12]): The combined power consump-
tion of all subcomponents is at most the power consumption
of the composed component:
• checks: tag power of ct ∈ CTDefs
• selection: S := ct.CSubs
• aggregation: v :=

∑
(name,sct)∈S

sct.power

• comparison: v ≤ ct.power

Rule 4 (ASIL): The ASIL (Automotive Safety Integrity
Level) of all subcomponents must be higher or equal than
the ASIL of the composed component:
• checks: tag asil of cmp ∈ Cmps
• selection: S := cmp.subs
• aggregation: v := min

sc∈S
number(sc.asil)1

• comparison: v ≥ number(cmp.asil)

Rule 5 (WCET Single Core): The WCET of a component
instance is at most the WCET of its subcomponent instances.
• checks: tag wcet of cmp ∈ Cmps
• selection: S := cmp.subs
• aggregation: v :=

∑
sc∈S

sc.wcet

• comparison: v ≤ cmp.wcet

Rule 6 (WCET Multi Core): The WCET of a component
instance is at most the maximum of the WCET of parallel
executable direct subcomponent paths.
• checks: tag wcet of cmp ∈ Cmps
• selection: S := directSubCmpPaths(cmp) 2

• aggregation: v := max
path∈S

∑
elem∈path

elem.wcet

• comparison: v ≤ cmp.wcet

Note that our framework does not limit the selection, ag-
gregation, and comparison operators in any way. Our previous
paper [12] contains more examples with different and more
complicated operators.

IV. OCL FRAMEWORK FOR C&C MODELS

This section presents our first contribution: a C&C-specific
extension of OCL.

We start with an example. The top part in Fig. 3 presents
an OCL invariant expressing that the source and target
ports of a connector have the same data type (l. 3). Typi-
cally, OCL constraints are written against a concrete meta-
model; this, however, makes the OCL constraints depen-
dent on a specific language implementation. As an ex-
ample, our C&C language implementation MontiArc pro-
vides references to all connectors in a C&C model by:
List<ConnectorSymbol> connectors = global-
Scope.resolve(ConnectorSymbol.KIND) [14]. A

1QM = 0, ASIL A = 1, ASIL B = 2, ASIL C = 3, ASIL D = 4
2directSubCmpPaths(cmp) computes the set of all paths from a

subcomponent of cmp to an output port of cmp.



1 import CnCExt;

2 ocl ruleConnectorSamePortType {

3 context Con con inv: con.src.type == con.tgt.type }

OCL

5import de.monticore.lang.montiarc._symboltable.*;

6import static de. … .montiarc.helper.GraphFunctions.*;

7rewrite "Con" -> "ConnectorSymbol";

8rewrite "src" -> "getSourcePort()";

9rewrite "tgt" -> "getTargetPort()";

10rewrite "type" -> "getType()";

11…

CnCExt.conf

Fig. 3: Top: OCL Expression for same port type of connected ports. Bottom:
Excerpt of C&C MontiArc specific configuration file.

language-implementation-specific OCL constraint would ref-
erence the type ConnectorSymbol in Fig. 3, l. 3 rather
than the general C&C type Con from Def. 1.

To address this problem, we decided to extend our OCL
implementation to support importing of configuration files. A
configuration file serves as a bridge from the mathematical
definitions to the implementation-specific classes. Configura-
tion files contain rewrite rules that rewrite names of C&C
elements from Def. 1 and Def. 2 to implementation-specific
OCL expressions. This concept is generic and extensible
to multiple target implementations. The C&C model OCL
constraints can be reused with different C&C meta-models
as long all rewrite rules can be expressed using corresponding
meta-model-specific OCL expressions.

The bottom part in Fig. 3 shows an excerpt of our Mon-
tiArc specific configuration file, which provides C&C spe-
cific functions in OCL constraints. It imports all required,
implementation-specific Java classes (Fig. 3, bottom, l. 5)
and contains rewrite rules (ll.7-10), similar to C prepro-
cessor’s #define macros, to map C&C domain names to
implementation-specific names. In addition to rewrite rules, the
configuration file imports and provides graph functions (Fig. 3,
bottom, l. 6) with C&C specific method implementations. For
example, the function paths computes all C&C elements
(components, ports, and connectors) on a path connecting
an input to an output port. As another example, these graph
functions can easily express the OCL invariant that each output
port depends on at least one input port.

The complete configuration file for rewriting C&C concepts
into MontiArc concepts consists of 11 rewrite rules and
imports 12 helper functions for use in C&C model specific
constraints. There are two kinds of helper functions. The first
kind consists of graph-based functions that return a graph or
chains of C&C elements connected (directly or indirectly) by
two given C&C elements; they come in different versions to
return only specific C&C elements (e.g., only components, or
only components and ports), to avoid creating large graphs
with unnecessary elements and accelerate the verification
process. The second kind of helper functions are mathematical
helper functions for EFPs such as min, max, sum, prod,
union, or intersection.

1import CnCExt;

2import EFPExt;

3ocl ruleInstPower {

4 context Cmp cmp inv:

5 let

6 selectedValue = cmp.CType;

7 aggregatedValue = max(cmp.power, 0W);

8 in

9 aggregatedValue <=

10 min(selectedValue.power,+ooW);     }

consider maximum value of the power tags, and “0W” if power tag is missing

OCL

// checks: ��� ∈ ����

// selection: � ≔ �	
��(���) ∈ �	����

// aggregation: � ≔ ���. �����

// comparison: � ≤ �. �����

Fig. 4: OCL constraint for instantiation consistency of EFP power (Rule 1)

1// positive witness for checking: 

2// ocl "ruleInstPower.ocl" on model "WBalloonSens.ma"

3// aggregated value in model: 2 W

4component WBalloonSens {

5 component GPS { /* tags power = 2500 mW] */ }

6 component GPS gps1 /* tags power = 2 W */ ; }

witnessshows if positive or negative

evaluated OCL constraint

and C&C model

aggregated values, 

useful for

complex 

calculations

witness is a valid C&C model, 

printed with all tags used in the aggregation

Fig. 5: Positive witness that component gps1 satisfies OCL constraint from
Fig. 4: its power consumption is below the power consumption of its type

V. DEFINING EFP CONSTRAINTS IN OCL

This section presents our second contribution: extending
OCL with support for measurement units in order to allow
modeling of EFP consistency constraints in OCL and to auto-
matically generate witnesses for OCL constraint consistency
or inconsistency. The OCL constraints follow the selection, ag-
gregation, and comparison structure of EFP value consistency
rules (Def. 3) we introduced in [12].

We structure this section by examples presenting different
features of our OCL framework. The examples we show are an
OCL constraint for InstPower (Rule 1) with a generated posi-
tive witness, an OCL constraint for CompPower (Rule 3) with
a generated negative witness, and finally an OCL constraint
for WCET Multi Core (Rule 6), which is the most complex
example based on connection properties of C&C models.

A. Example: Power Consumption for Component Instantiation

Fig. 4 shows the complete OCL code for instantiation
consistency of EFP power (Rule 1). Lines 1 and 2 import the
configuration files for C&C specific extensions (see Sect. IV
above) as well as for EFP extensions containing special helper
functions (such as min, max, or sum) with units as parame-
ters. Including the configuration file EFPExt.conf ensures
that all OCL constraints follow the structure of Def. 3 with
a check (Fig. 4, l. 4), selection (selectedValue in Fig. 4,
l. 6), aggregation (aggregatedValue in Fig. 4, l. 7), and
a comparison (Fig. 4, ll. 9-10) element. Component instances
without power tags are assigned the value 0W (Fig. 4, l. 7) and
component type definitions without power tags are assigned
the value +ooW (Fig. 4, l. 10). These interpretations are up to
the engineers defining the consistency rule.

All components in our example C&C model in Fig. 1
satisfy the OCL constraint from Fig. 4. In case of satisfaction
our tool can generate a positive witness. Fig. 5 shows a
(textual) positive witness that component gps1 satisfies the
OCL constraint from Fig. 4: its power consumption is below



1import CnCExt;

2import EFPExt;

3ocl ruleCompPower {

4 context CTDef ct inv:

5 let

6 selectedValues = ct.CSubs;

7

8 aggregatedTags = List{max(s.CType.power, 0 W) |

9 s in selectedValues};

10 aggregatedValue = sum(aggregatedTags, 0 W);

11 in

12 aggregatedValue <=

13 min(ct.power,+ooW);       }

OCL

// checks: �� ∈ �����	

// selection: 
 ≔ ��. �
�	

// aggregation: � ≔ ∑ 				��. ���������,��� ∈�

// comparison: � ≤ ��. �����

needed to have a value if aggregatedTags is empty

Fig. 6: OCL constraint for composition consistency of EFP power (Rule 3)

WBalloonSens power=5W  (aggregated value = 5.41 W)

wBalloonSens

GPS power=2500mW

gps1

C&C

Temp power=400mW

temp

GPS power=2500mW

gps2
only elements in selection of OCL 

consistency rule are displayed

Controller power=10mW

controller

Fig. 7: Negative witness that component type WBalloonSens violates the
OCL constraint from Fig. 6: the combined power consumption of subcompo-
nents exceeds the parent’s power consumption

the power consumption of its type GPS. Note that our OCL
engine automatically uses the correct interpretation of the
different units mW in tag of GPS and W in tag of gps1.

The witness is meant to help the engineer in understanding
the reasons for consistency. It contains the checked C&C
element, i.e., component instance gps1 (Fig. 5, l. 6), the
selected elements to check against, i.e., component type GPS
(l. 5), and all EFP tags used for the computation of the
aggregated value (l. 3) and in the comparison step.

Witness generation is completely automated for the satis-
faction or violation of consistency rules. Our tool relies on the
structure of the OCL constraints following Def. 3 to construct
meaningful witnesses. Concretely, the witnesses contain the
checked element (context of OCL invariant), the elements
selected for comparison (OCL variable selectedValue(s),
or selectedPaths), all EFP tags appearing in the aggrega-
tion (computation of OCL variable aggregatedValue(s)),
and all EFP tags appearing in the final comparison. To further
demonstrate satisfaction or violation, the aggregated value is
shown within the witness.

B. Example: Power Consumption for Component Definitions

Fig. 6 shows the complete OCL code for composition
consistency of EFP value power (Rule 3).

Our running example does not satisfy the consistency rule
in Fig. 6, and a negative witness is generated for component
type definition WBalloonSens. The graphical representation
of the generated negative witness in Fig. 7 shows the reason for
inconsistency: the aggregated value of 5.41 W (400mW +

1import CnCExt;

2import EFPExt;

3ocl ruleCompWCETInf {

4 context Cmp cmp inv:

5 let

8 selectedPaths =  directSubCmpPaths(cmp); 

7 aggregatedValues = List{sum(selVals, 0s) |

8 path in selectedPaths, selVals = List{

9 max(elem.wcet, 0 s) | elem in path}};

10 in

11 forall a in aggregatedValues:

12 (a < min(cmp.wcet, +oo s)) }

OCL

// aggregation: � ≔ {∑ 			����.
���	 	��� ∈ �����∈����

// comparison: ∀� ∈ �: � ≤ ��.
���

// checks: �� ∈ ���

// selection: �	 ≔ �� ����!"��#����(��)

Fig. 8: OCL constraint for composition consistency of EFP wcet (Rule 6)

2500mW + 2500mW + 10mW ) is greater than the power
tag value of component type definition WBalloonSens.

C. Example: Worst-Case Execution Time

Fig. 8 shows the complete OCL code for composition
consistency of EFP value wcet (Rule 6, multi core).

The OCL variable selectedPaths in l. 6 stores a list
of paths, which are lists of subcomponents. For each path in
the list, ll. 7-9 calculate the WCET value by summation of the
values on the path, and ll. 11-12 compare each value in the list
against the WCET value of the parent component. Storing the
list instead of the maximal value in the aggregatedValues
variable makes generated witnesses easier to understand: wit-
nesses will contain all paths instead of only one value.

The positive witness that component wBalloonSens sat-
isfies the OCL constraint of Fig. 8 contains the following
selectedPaths with their aggregatedValues:
• wBalloonSens → controller → wBalloonSens with

50ms ≤ 2s

• temp→controller→wBalloonSens with 550ms ≤ 2s

• gps1→controller→wBalloonSens with 1000ms ≤ 2s

• gps2→controller→wBalloonSens with 800ms ≤ 2s

VI. IMPLEMENTATION

Our consistency verification tool takes a textual MontiArc
C&C model, EFP tag files tagging the C&C model, and an
OCL constraint as input. The verification process is fully
automated and consists of the following steps: (1) process the
textual model (parsing text to an AST and creating symbol
table) using the MontiCore framework [9]; (2) process the
textual OCL constraint; (3) execute all rewrite rules of all
imported configuration files; (4) generate Java code from the
OCL constraint based on the AST and symbol table; and (5)
execute the generated Java code to check the C&C model for
consistency and to generate witnesses.

One challenge for implementing the generation of Java code
from OCL was that while OCL is a type-less language, Java
requires types for every declaration. Our generator infers the
variable types from OCL by looking up the return types of
invoked functions and propagating these types through nested
List constructs (e.g., ll. 7-9 in Fig. 8).

Another challenge was adding a unit concept to OCL.
Many EFPs contain values with measurement units. Thus
we developed an additional language SIUnit, which our



TABLE I: Verification time
E

FP

M
od

el

Pa
rs

in
g

C
&

C
M

od
el

Pa
rs

in
g

O
C

L

O
C

L
2J

av
a

G
en

er
at

or

Ja
va

co
m

pi
la

tio
n

Ve
ri

fic
at

io
n/

W
itn

es
s

G
en

er
at

io
n

To
ta

l

InstPower small 1.6s 3.3s 0.2s 0.5s 0.1s 5.7s
complete 3.2s 3.3s 0.2s 0.5s 0.1s 7.3s

CompPower small 1.6s 10.0s 0.2s 0.5s 3.5s 15.7s
complete 3.2s 10.0s 0.2s 0.5s 6.8s 20.7s

WCET-
Single Core

small 1.6s 16.3s 0.2s 0.5s 19.0s 38.0s
complete 3.2s 16.3s 0.2s 0.5s 20.0s 39.0s

WCET-
Multi Core

small 1.6s 34.0s 0.2s 0.5s 11.0s 47.0s
complete 3.2s 34.0s 0.2s 0.5s 183.0s 221.0s

OCL implementation extends. SIUnit is capable of parsing
imperial, SI, and unofficial SI units [26] with metric prefixes
and derived constructs, e.g., 28.2km/h and 9.81m·s−2. It
supports additional symbols for plus and minus infinity. For
unit conversions we use the JScience framework.

VII. CASE STUDY ON ADAS

In our case study we want to evaluate the following two
research questions:
RQ1 Does our framework scale to large industry provided

C&C models?
RQ2 Which steps of automated EFP value consistency check-

ing are most time consuming?

A. Case Study Data:

For our case study we used a C&C model of an Au-
tonomous Driver Assistance System (ADAS) provided by
Daimler AG. The available model did not contain EFP values.
Therefore, we derived values for EFP wcet and power tags
from reference materials and by evaluation as follows. To
approximate realistic EFP values for wcet, we have translated
the Simulink models to C-Code, compile this C-Code to
assembler code for a 16-bit Infineon C166 processor, and
calculated WCETs based on the assembler instructions and
the chip’s official documentation [23]. To approximate realistic
EFP values for power, we followed [15] to estimate power
consumption based on the assembly operations. The complete
ADAS model contains 1,396 components, 4,438 ports, and
2,738 EFP values.

B. Execution:

We executed all tests on an ordinary computer with Win-
dows 7 64-bit OS, an Intel Core i5-4590 CPU with four cores,
no hyperthreading and 3.3 GHz base frequency, and 8 GB
RAM. First, we checked the consistency constraints defined
in Sect. V against a small, stripped down version of the
ADAS model, which consists of 119 components and 366 port
instances, enriched with 238 EFP values. Second, we checked
the consistency constraints against the complete ADAS
model, which consists of 1,396 components and 4,438 port
instances, enriched with 2,738 EFP values. These model sizes
and numbers of EFP values show the necessity for automatic
consistency checks.

C. Results:

Table I shows running times in seconds for each EFP type
checked (Rule 1 to Rule 6) and selected C&C model (small
and complete). A close inspection of running times reveals
that each C&C model is loaded in 1.6-3.2s, depending on
its size; running time for parsing the short OCL constraints
is longer due to parser backtracking for nested mathematical
expressions and varies between 3-34s, transforming them into
executable code (this includes rewriting and type inference)
needs less than 1s. Then, the actual execution of the veri-
fication code, i.e., checking the 119 or 1,396 components,
and witness generation, ranges from 0.1s for single-value
aggregations to 183s for nested lists aggregations.

This leads us to the following answers to our research ques-
tions. (RQ1) We can automatically verify the consistency of
EFP values of an industrial sized model in reasonable running
times. (RQ2) It is interesting to see that OCL processing times
and running times for verification and witness generation are
consuming most of the time. However, the OCL processing
step for code generation has to be executed only once (and
every time a consistency rule changes). Finally, one may
separate verification from witness generation in order to speed
up consistency checking when witnesses are not required.

For inspection and further research we make all mentioned
C&C models and OCL constraints used in our case study
available at:
http://www.se-rwth.de/materials/OCLVerifyTool4CnCEFP.zip

VIII. RELATED WORK

Acme [5] allows one to specify first-order predicates on the
structure of architectures, dealing, e.g., with connectedness of
components. Our extension of OCL for C&C models provides
similar features. However, to the best of our knowledge the
constraint language of Acme does not support EFPs.

Grunske [6] presents an evaluation framework for EFPs,
consisting of four elements. We focus on defining and check-
ing consistency rules rather than on evaluation of EFPs.
Nevertheless, Grunske [6] also observed the need for a general
language to formulate evaluation of different EFP types.

Sentilles et al. [21] present a meta-model for integrating
non-functional properties into C&C models. They focus on
handling multiple EFPs for the same entity and did not
implement rules for EFP consistency.

Cicchetti et al. [2] introduce a framework for evolution
of EFP values and present, as an example, how the change
of the WCET of a component requires updating the WCET
of its parent component. To define validity conditions, they
use the Epsilon Validation Language [27], which is similar to
OCL. It is possible to extend our framework to support similar
evolution scenarios.

Leveque and Sentilles [10] present refinement of EFPs
through instantiation and subtyping of components. Engineers
can use OCL constraints to filter EFP attributes of components.
The OCL constraints are written against the meta-model of the
C&C implementation. We use C&C-specific OCL constraints
to define consistency rules beyond component EFP refinement.

http://www.se-rwth.de/materials/OCLVerifyTool4CnCEFP.zip


Finally, Sapienza et al. [20] present EFP consistency rules
for component composition. The tools used in [20] and a
related case study [22] go beyond information stored with
model elements, e.g., they measure EFP values by simulation.
It is unclear whether their approach can be easily extended to
additional or alternative EFP constraints.

IX. CONCLUSION

We presented an OCL framework and tool for the descrip-
tion and verification of consistency rules of EFPs in C&C
models. The work includes a C&C-specific extension of OCL
with native support for measurement units, and an automatic
mechanism for verifying consistency and producing witnesses
for EFP consistency checking results. We implemented the ap-
proach within the MontiCore framework for the C&C model-
ing language MontiArc. Our initial evaluation on an industrial
sized model shows that it is expressive and scales to large C&C
models. Our framework works for comparable extra-functional
properties, these include quantitative properties (e.g., worst-
case execution time, power, or memory consumption) and
qualitative properties (e.g., traceability, portability flags, ASIL
security, or encryption levels).

Acknowledgements This research was supported by a Grant
from the GIF, the German-Israeli Foundation for Scientific
Research and Development.

REFERENCES

[1] J. P. Cavano and J. A. McCall. A framework for the measurement of
software quality. SIGSOFT Softw. Eng. Notes, 3(5), 1978.

[2] A. Cicchetti, F. Ciccozzi, T. Leveque, and S. Sentilles. Evolution man-
agement of extra-functional properties in component-based embedded
systems. In CBSE, 2011.

[3] P. H. Feiler and D. P. Gluch. Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012.

[4] D. Garlan, R. T. Monroe, and D. Wile. Acme: An architecture
description interchange language. In CASCON, 1997.

[5] D. Garlan, R. T. Monroe, and D. Wile. Acme: Architectural description
of component-based systems. In Foundations of Component-Based
Systems. Cambridge University Press, 2000.

[6] L. Grunske. Early quality prediction of component-based systems - A
generic framework. Journal of Systems and Software, 80(5), 2007.

[7] A. Haber, J. O. Ringert, and B. Rumpe. MontiArc - Architectural Mod-
eling of Interactive Distributed and Cyber-Physical Systems. Technical
Report AIB-2012-03, RWTH Aachen, february 2012.

[8] F. Huber, B. Schätz, A. Schmidt, and K. Spies. Autofocus: A tool for
distributed systems specification. In FTRTFT, 1996.

[9] H. Krahn, B. Rumpe, and S. Völkel. Monticore: a framework for
compositional development of domain specific languages. In STTT,
volume 12, 2010.

[10] T. Leveque and S. Sentilles. Refining extra-functional property values
in hierarchical component models. In CBSE, 2011.

[11] S. Maoz, J. O. Ringert, and B. Rumpe. Synthesis of component and
connector models from crosscutting structural views. In FSE, 2013.

[12] S. Maoz, J. O. Ringert, B. Rumpe, and M. von Wenckstern. Consistent
extra-functional properties tagging for component and connector models.
In ModComp, 2016.

[13] N. Medvidovic and R. Taylor. A Classification and Comparison
Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 2000.

[14] P. Mir Seyed Nazari. MontiCore: Efficient Development of Composed
Modeling Language Essentials. Shaker, 2017.

[15] S. Nikolaidis, N. Kavvadias, P. Neofotistos, K. Kosmatopoulos,
T. Laopoulos, and L. Bisdounis. Instrumentation set-up for instruction
level power modeling. In PATMOS, 2002.

[16] A. Rawashdeh and B. Matalkah. A new software quality model for
evaluating COTS components. Journal of Computer Science, 2(4), 2006.

[17] J. O. Ringert. Analysis and Synthesis of Interactive Component and
Connector Systems. Aachener Informatik-Berichte, Software Engineer-
ing, Band 19. Shaker Verlag, 2014.

[18] G. C. Roman. A taxonomy of current issues in requirements engineering.
Computer, 18(4), April 1985.

[19] M. Saadatmand, A. Cicchetti, and M. Sjödin. UML-based modeling of
non-functional requirements in telecommunication systems. In ICSEA,
2011.

[20] G. Sapienza, S. Sentilles, I. Crnkovic, and T. Seceleanu. Extra-functional
properties composability for embedded systems partitioning. In CBSE,
2016.

[21] S. Sentilles, P. Stepan, J. Carlson, and I. Crnkovic. Integration of extra-
functional properties in component models. In CBSE, 2009.

[22] J. Suryadevara, G. Sapienza, C. C. Seceleanu, T. Seceleanu, S. E.
Ellevseth, and P. Pettersson. Wind turbine system: An industrial case
study in formal modeling and verification. In FTSCS, 2013.

[23] Infineon website. https://www.infineon.com. Retrieved 10/07/17.
[24] MathWorks Simulink. http://www.mathworks.com/products/simulink/.
[25] OMG Object Constraint Language 2.4. http://www.omg.org/spec/OCL/

2.4/. Retrieved 10/07/17.
[26] SI Units – Wikipedia. https://en.wikipedia.org/wiki/International_

System_of_Units. Retrieved 10/07/17.
[27] The Epsilon Book. http://www.eclipse.org/epsilon/doc/book/. Retrieved
10/07/17.

https://www.infineon.com
http://www.mathworks.com/products/simulink/
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/OCL/2.4/
https://en.wikipedia.org/wiki/International_System_of_Units
https://en.wikipedia.org/wiki/International_System_of_Units
http://www.eclipse.org/epsilon/doc/book/

	Introduction
	Running Example
	Preliminaries
	Component and Connector Models
	Consistency of EFPs in C&C Models
	Instantiation Consistency
	Composition Consistency


	OCL Framework for C&C Models
	Defining EFP Constraints in OCL
	Example: Power Consumption for Component Instantiation
	Example: Power Consumption for Component Definitions
	Example: Worst-Case Execution Time

	Implementation
	Case Study on ADAS
	Case Study Data:
	Execution:
	Results:

	Related Work
	Conclusion
	References



