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With increasing model complexity, models are typically re-used and evolved
rather than starting from scratch. There is also a growing challenge in ensuring
that these models can seamlessly work across various simulation backends
and hardware platforms. This underscores the need to ensure that models
are easily findable, accessible, interoperable, and reusable—adhering to the
FAIR principles. NESTML addresses these requirements by providing a domain-
specific language for describing neuron and synapse models that covers a
wide range of neuroscientific use cases. The language is supported by a code
generation toolchain that automatically generates low-level simulation code
for a given target platform (for example, C++ code targeting NEST Simulator).
Code generation allows an accessible and easy-to-use language syntax to
be combined with good runtime simulation performance and scalability. With
an intuitive and highly generic language, combined with the generation of
efficient, optimized simulation code supporting large-scale simulations, it opens
up neuronal network model development and simulation as a research tool to
a much wider community. While originally developed in the context of NEST
Simulator, NESTML has been extended to target other simulation platforms, such
as the SpiNNaker neuromorphic hardware platform. The processing toolchain is
written in Python and is lightweight and easily customizable, making it easy to
add support for new simulation platforms.
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1 Introduction

Numerical simulation is an essential technique for gaining insight into how neural
network dynamics relate to brain function (Einevoll et al., 2019); it can also be deployed in
an application-oriented way, for instance in machine learning or robotics tasks. To perform
a simulation, an executable dynamical model is required: a representation of a natural
process or phenomenon formulated precisely as an algorithm (Figure 1). Typically, this
executable model is derived from a mathematical model developed to capture the salient
properties of the system of interest, on the basis of empirical data.
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FIGURE 1

The modeling process. Following the black arrows, a biophysical system of interest is identified (top left), and through experiment, empirical data is
generated (top middle). By analyzing and modeling this data, the system of interest is formulated as a mathematical model (top right). The model is
then implemented as an executable computer simulation (bottom right). Simulation produces measurable quantities that are analogous to the
original system (bottom middle). For example, the system of interest could involve a synapse; produce the data points (indicated as markers); be
mathematically modeled according to Equations 9-11 and expressed as an executable model in NESTML (Listing 3), which when simulated, yields
the data points on the bottom middle. Following the blue arrows in the diagram, validation is the process of evaluating the fit between simulated and
empirical data, whereas confirmation is the process of checking that the mathematical model adequately captures the empirical data, and
verification is the check that the executable model is an adequate implementation of the mathematical model. Note that these activities may be
denoted differently across disciplines or even within computational neuroscience (see, e.g. Unrmacher et al., 2024). Adapted from Trensch et al.

(2018), their Figure 1B.

In order to progress efficiently in science, all the processes
identified in Figure 1 should be swift, accurate, and reproducible.
As neural network models can be very large (up to hundreds of
millions of neurons and three orders of magnitude more synapses;
Jordan et al, 2018), much effort has been expended in recent
decades in optimizing the simulate process in Figure 1.

Consequently, a wide range of neural network simulation
software and hardware now exists. This benefits the field of
computational neuroscience, as it provides researchers with the
flexibility to choose a simulator that is best for addressing a
particular research question (Crook et al., 2012). Although there
is overlap in the types of models that each can simulate, each
simulator typically provides its own unique user interface and
strikes a different balance between efficiency, flexibility, and
scalability. Many simulators offer the benefits of being well-
characterized, using a diverse array of automated tests and
benchmarks, being updated on a regular release cycle, and
benefiting from the open-source model of iterative refinement
(Zaytsev and Morrison, 2013). This diversity is advantageous, as
any given tool will have flaws, such as software bugs, systematic
biases, or unexamined assumptions, that may only become
apparent in particular circumstances (Brette et al., 2007). Therefore,
to increase the likelihood of long-term reproducible results, it is

Frontiers in Neuroinformatics

02

desirable that network models can be simulated using more than
one simulator and the results cross-checked.

However, the fact that a wide diversity of simulation
engines exists, complicates the exchange of computational
models, both between labs and between simulators. Lack of
standardized terminology, notation, and graphical representations
for documenting models and networks negatively impacts progress
in research (Nordlie et al., 2009; Pauli et al., 2018; Senk et al., 2022).
Configuration files, scripting languages, or graphical interfaces
used for specifying model structure can be very different for
the different simulators, and this, together with subtle differences
in the implementation of conceptually identical ideas, makes
the conversion of a model from one simulation environment to
another an extremely non-trivial task. Consequently, it is rarely
undertaken, despite its obvious benefits and the sterling efforts
of the ReScience initiative (Rougier et al., 2017). The field of
computational neuroscience has much to gain from the ability to
easily simulate a model with multiple simulators (Einevoll et al.,
2019). For small-scale simulations, sometimes custom simulation
engines are written. Unfortunately, these self-made frameworks,
besides possibly duplicating published and established routines, are
more likely to contain bugs and lack documentation, for instance,
on edge-case behavior. Therefore, even for small networks, it is
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FIGURE 2

A NESTML-enhanced simulation workflow. Through code generation, NESTML augments the simulation engine with new neuron and synapse
models. After writing the models, the end user invokes the PyNESTML toolchain, which generates and compiles code that will be executed by the
target machine, and informs the user about any potential issues with the model via helpful messages. The simulation engine API is used to instantiate
a network of the neurons and synapses defined by NESTML. When the simulation runs, the main integration loop of the simulator invokes the
NESTML-generated code and returns recorded data back to the user via its API.

preferable to use standardized simulators and model description
formats.

In this article, we address the issues of reproducibility and
standardization in spiking neural network simulations by focusing
on improving the speed and accuracy of the implement process
in Figure I. To this end, we present NESTML, a domain-
specific language (DSL; Uhrmacher et al., 2024) for neurons and
synapses (Plotnikov et al., 2016). It has a precisely defined syntax
and semantics, captured in the formal grammar and extensive
documentation, and further enforced by the toolchain through
automated checks. NESTML encourages generality in the model
descriptions by allowing end users to write models without having
to consider implementation details and the simulation platform
on which the model will ultimately be simulated. Likewise, the
language encourages completeness in model descriptions, because
each model contains all the necessary information needed for
simulation. These properties of generality and completeness of
the language benefit reproducibility. The language is designed
with an emphasis on user-friendliness, being easy to read and
write, while allowing powerful concepts to be expressed directly
in the language syntax, such as ordinary differential equations,
event handlers, and update statements in the style of imperative
programming. It is strongly typed, incorporating physical units.
Furthermore, the language is supported by a code generation
toolchain that parses and verifies the correctness of the model
and automatically generates simulation code for a given target
platform (Figure 2); for example, C++ code targeting NEST
Simulator (Gewaltig and Diesmann, 2007). Code generation
allows an accessible and easy-to-use language syntax to be
combined with good simulation performance; a technique that is
increasingly gaining traction within neuroscience (Blundell et al.,
2018a).

While these features of a DSL are convenient to have for
neuron models, they are particularly useful in the case of complex
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synapse models, which are typically more challenging to implement
than neuron models. Even a long-established model such as STDP
(see Section 3.1.2) is tricky to implement correctly, especially
on a distributed system, as it requires meticulous bookkeeping
of spike times and communication latencies (Morrison et al,
2005). This only becomes more complex as further features
such as additional postsynaptic variables or third-factor signals
are introduced. As new variants of synaptic plasticity models
are frequently introduced in the computational neuroscience
literature, tools that support rapid development by abstracting
away the tortuous algorithmic bookkeeping are highly desirable.
Furthermore, some synaptic plasticity rules require special support
from the neuron(s) that the synapse is connected to, such as
additional buffers storing various trace values. Adding support
to each neuron model for each synapse model is infeasible due
to the number of possible combinations. Code generation allows
the necessary data structures to be flexibly inserted into the
neuron during code generation, allowing each neuron model to
be combined with each synapse model without having to make
changes by hand.

NESTML was first developed as a domain-specific language for
neuron models for NEST simulator (Plotnikov et al., 2016). The
NESTML toolchain itself was originally developed in Java based
on the MontiCore Workbench (Krahn et al., 2010), which uses
an extended version of the Extended Backus-Naur form (EBNF)
to specify the grammar and automatically generates a parser for
the model. The low adoption rate of Java in the neuroscience
community made it difficult for researchers to maintain and
extend the software. As a result, NESTML was re-implemented
in Python (Perun et al., 2018; Blundell et al., 2018b), a widely used
programming language in the neuroscience community. In the new
implementation, the lexer and parser are generated using ANTLR
(Parr, 2013), while still adhering to the software design principles
of MontiCore.
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Since the transition, the toolchain has become more modular
and extensible. One advantage of this is that it has become much
easier to support new simulation platforms, for example, the
SpiNNaker neuromorphic platform (Furber et al.,, 2014; Linssen
et al., 2023). A second advantage is that the scope and feature
set of the toolchain could be rapidly expanded. Most notably,
NESTML now provides the ability to define synapse models. The
code for neuron and synapse models is generated in tandem,
by automatically moving the relevant variables from synapse to
neuron model (see Section 2.3). NESTML supports a number of
synaptic plasticity rules such as spike-timing dependent plasticity
(STDP), and variants thereof, such as STDP modulated by a
third-factor such as a global dopamine concentration. Further
feature enhancements include new language elements for spike
event handling and generation, support for vector operations,
faster code generation and build, and the addition of fundamental
mathematical functions such as ceil and erf. There have been
corresponding expansions and clarifications to the documentation
of the toolchain, user guides, and teaching material in the form of
tutorials (Linssen et al., 2024).

In the rest of this article, we first discuss other related modeling
languages and code generation tools, then provide a detailed
description of NESTML and its processing toolchain PyYNESTML
(Section 2), and then illustrate the usage and performance of
NESTML for a specific, representative use case (Section 3).

1.1 Related work

NESTML fills a niche in the ecosystem of neural network
modeling languages such as NeuroML/LEMS (Gleeson et al,
2010; Cannon et al., 2014), NineML (Raikov et al., 2011), and
NMODL (Hines and Carnevale, 2019), which are predominantly
used within the (computational) neuroscience domain, the Systems
Biology Markup Language (SBML; Hucka et al., 2003), used for
representing models of biochemical reaction networks, CellML
(Miller et al., 2010) for models of cellular and subcellular processes
involving interacting biomolecules, and Modelica (Modelica
Association, 2023) for general modeling of physical systems. In
general terms, DSLs can be declarative, which means they consist
of a list of declarations corresponding to parts of the model, or, in
contrast, they could consist of a list of imperative statements, giving
a list of instructions for building the model in a stepwise manner.

NESTML is similar in conception to NMODL, as both freely
allow the specification of imperative statements, encapsulated
in a declarative model, combining the strengths of both model
description approaches. In contrast to NMODL, NESTML has a
more Python-like, modern and accessible syntax, which does not
mix model definition and implementation details. For example,
in NMODL, numerical solver selection is defined as part of the
model itself, whereas in NESTML, the issues of what the dynamical
equations are and how they are to be integrated are kept separate.
The formulation in the NESTML syntax is a closer mapping
of the formal, mathematical, concepts (see Section 2.4) and the
integration sequence is more clearly defined (see Section 2.2),
whereas the NMODL language is not conducive to formulating a
series of statements that are executed once per timestep; statements
may be executed twice or more under control of the NEURON
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solver. Furthermore, NESTML has additional features, such as
the ability to assign different priorities to event handlers, and
allow conditional statements to be formulated in a timestep-
independent manner (see the onCondition block in Section 2.4).
As NEURON is a compartmental neuron model simulator (that is,
where a neuron is simulated in a morphologically detailed manner),
NMODL contains syntactical features to expose compartment-
related functionality, which is not part of the NESTML vocabulary.
However, components of compartmental models, such as ion
channels, could in principle already be formulated using NESTML.

NeuroML (Sinha et al., 2024) is a model description language
used to describe models of neurons, synapses, and networks.
NeuroML provides a high-level, nested (hierarchical) structure
to models in a machine-readable (XML) format. NeuroML uses
a purely declarative approach to specify models in different
levels of detail: Level 1 focuses on the anatomical structure
of neurons (MorphML), Level 2 builds upon Level 1 and
specifies the electrophysiological properties of neurons such as
ion channels and synaptic conductances (ChannelML), and Level
3 describes the network structure (NetworkML). The underlying
dynamical behavior of the NeuroML components is defined using
LEMS (Cannon et al, 2014), a general-purpose language for
describing models and their simulations. In contrast, NESTML
combines the declarative and imperative approaches, allowing
imperative statements to be specified within the declarative
model.

Both NeuroML and NESTML support the specification of
a hybrid dynamical system. For NeuroML, this is achieved by
LEMS language elements such as Dynamics, OnEvent and
OnCondition;cognates of these elements are found in NESTML,
namely the equations and the update block for continuous
dynamics and onReceilve and onCondition for discrete
events (see Section 2.1). Additionally, NESTML also provides the
modeler with the advantage of being able to define imperative
statements in a Python-like programming language within the
update, onCondition, and onReceive blocks. NeuroML
is designed to be extensible using LEMS, which enables the
definition of new model elements based on existing elements
such as cells, networks, synapses, inputs, and channels. Models
defined in NeuroML can be simulated using a LEMS simulation file
executed through Python (pyLEMS) and Java (JLEMS) interfaces.
Additionally, the LEMS simulation files can be translated to
other simulation platforms including Brian2 (Stimberg et al., 2019),
NEURON (Gleeson et al, 2010; Cannon et al., 2014) and
EDEN (Panagiotou et al., 2022). Unlike NeuroML, NESTML has
no language elements to support the specification of networks: it
generates low-level code for individual neuron and synapse models.
These individual components can then be further instantiated to
build a network and simulate on the target simulator with the help
of a corresponding simulation script of the appropriate sort for the
targeted platform (e.g PyNEST; Eppler et al., 2009).

As with Brian2, NMODL, and LEMS, all definitions and
expressions are strongly typed in NESTML. The toolchain checks
the consistency of physical units during model parsing and
validation, which prevents the use of inconsistent expressions.
NESTML automatically adds scaling factors during code
generation when the definitions have consistent units (see
Section 2.4.1).
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NESTML consists of a combination of modeling language and
code generation toolchain, providing the advantage of developing
both in parallel. The category of code generation tools in
neuroscience also includes Brian2 (Stimberg et al., 2019), GeNN
(Yavuz et al., 2016), NeuroML (Sinha et al., 2024), and NMODL
(Kumbhar et al., 2020; Abi Akar et al., 2019). Each of these has its
own separate toolchain and APIs and targets different simulation
platforms. All the mentioned code generation tools primarily
focus on code generation for their respective simulation platforms.
Notably, Brian2GeNN (Stimberg et al., 2020), an interface that
combines the code generation capabilities of Brian2 and GeNN,
bridges the capabilities of the two simulators, enabling Brian2
models to be executed on GPUs. NESTML takes a more simulator-
agnostic approach, generating code that can be run on multiple
backends such as NEST (Gewaltig and Diesmann, 2007) for CPU-
based simulations, and the SpiNNaker neuromorphic platform
(Furber et al., 2014). Furthermore, the NESTML toolchain is
modular and can be easily extended to add support for other
simulation platforms (see Section 2.5.4). Currently, support for
a GPU backend, NEST GPU (Golosio etal., 2021), is under
development. This extensibility is made possible by NESTMLs
clear separation between model specification and its subsequent
instantiation and simulation in a network.

Note that in the terminology of object-oriented programming,
NESTML formalizes the classes, but not the instances of each
class, which can vary in their state, parameter values, and
connectivity, but not (beyond changing parameter values) their
behavioral repertoire. Instantiating the actual populations and
connecting the elements together in a network at runtime remains
the responsibility of the simulation engine for which NESTML
generates code. For this, an imperative specification approach such
as PyNN (Davison et al., 2009) or PyNEST (Eppler et al., 2009) can
be used.

Furthermore, NESTML can be used in a complementary
fashion to other standards, such as the Simulation Experiment
Description Markup Language (Kohn and Le Novere, 2008), a DSL
that formalizes the simulation runs (duration, iterations, parameter
sweeps, etc.) and standards for uniquely identifying components
and processes, such as the Systems Biology Ontology and the
Computational Neuroscience Ontology (Whetzel et al., 2011).

2 Methods

2.1 Mathematical models of hybrid systems

Essentially, NESTML is a modeling language for hybrid
dynamical systems. Hybrid systems may contain a set of discrete
variables that take on a number of discrete states, and continuous-
valued variables (typically, real-valued numbers) that are allowed
to “jump” (change) instantaneously as the result of an event
(Shampine and Thompson, 2000). An event has a precise
timestamp of occurrence, but no duration or dynamics in time.
This approximation allows the efficient communication of event
occurrences rather than the more computationally expensive
alternative of communicating real-valued data at each simulation
timestep. In the specific case of spiking neural networks, neuronal
action potentials are often approximated as events and can be
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conveniently expressed mathematically by the use of a Dirac delta
function §(¢), so that the spike train of a neuron can be written as:

sty =) 8(t—1t) (1)
k

where #; is the k-th spike of a given neuron. When spikes are
treated as events, neuron and synapse models are therefore in the
class of hybrid dynamical systems defined above. The continuous-
time dynamics are expressed as a system of ODEs, that govern the
dynamics of a vector of state variables x, while receiving an arbitrary
external input g(t):

& f0 +50) @)
Handling and generating the discrete-time events can be
expressed either as a convolution of the events with a kernel inside
the ODEs, or as a set of conditions and actions. Often these two
approaches are equivalent and the choice of how to express them is
largely a matter of personal preference. For example, an exponential
postsynaptic current can be calculated using two approaches: either
by convolving a decaying exponential kernel (given as a function of
time) with the incoming spike train, or by modeling the current as
an ODE that undergoes exponential decay, with the corresponding
state variable incremented upon the arrival of a spike by an event
handler. In the latter case, a condition/action block can be used:

if condition then
statements
endif (3)

Besides receiving a spike, conditions can include propositional
logic on the values of state variables, and can also be triggered by
an advancing of the simulation by a fixed timestep. Statements
typically modify state variables, using standard mathematical
operators and functions, and can also involve loops and recursion
(a list of the types of statements that can be used is given in
Supplementary Table 1).

2.2 Numerical integration of models in
time

The general strategy for integrating a hybrid system
numerically is to first integrate the ODE until the time of the
next event, and then incorporate new events (Morrison and
Diesmann, 2008). In between, conditions are evaluated, such as
whether the membrane potential has exceeded the spike threshold,
and the corresponding statements are executed. These steps are
carried out in a loop by the simulation platform. Depending on
the specifics of the platform, there are several possible approaches.
In particular, the presence or absence of transmission delays in
the system affects the order of processing steps (Figure 3A vs.
Figure 3B). In addition, the loop can proceed in timesteps of
constant duration (time-driven simulation, in which case Af is
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The main integration loop in a spiking neural network simulator. The
precise sequence of operations carried out depends on whether the
simulation is considered to have propagation delays (A) or not (B)
(Morrison and Diesmann, 2008).
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Numerical integration of an integrate-and-fire neuron. (left)
Time-based simulation with resolution At = 1 ms; spikes are
processed at the next simulation timestep. The membrane potential
threshold (dashed horizontal line) is crossed and a spike is emitted.
(right) Event-based simulation of the same neuron; spikes are
processed immediately as they arrive. No spike is emitted. Open and
filled circles indicate open and closed intervals.

a constant value), or it can jump directly from event to event
(event-driven simulation, in which case At is the time between two
successive events).

For time-driven algorithms, the choice of timestep is a trade-off
between the numerical precision achieved (and possibly, numerical
stability), and the time and computational effort required for the
simulation. In spiking neural network simulations, forcing spikes
to a fixed grid can result in discrepancies in the number of spikes
a neuron produces. As an example, consider the integration of a
dynamical system representing a simple integrate-and-fire neuron,
where incoming spikes directly increase the membrane potential
Vm (Figure 4). The left panels show a fixed timestep simulation,
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where spikes can only be processed at multiples of the simulation
resolution. A coarse resolution of 1 ms was chosen to illustrate the
effect. If a spike occurs inside the interval between two subsequent
steps, its time of occurrence is effectively rounded up to the start
of the next step. Because this rounding causes the spikes to be
processed simultaneously, the threshold is crossed which causes a
spike to be emitted by the postsynaptic neuron.

An event-driven approach allows spike times to be handled at
machine precision, rather than being constrained to the simulation
resolution, and should therefore be considered as an alternative
simulation strategy for hybrid systems. In the panels on the right,
spikes are processed immediately, and the intermediate exponential
decay in Vi, causes the neuron to not reach the threshold, so
no spike is emitted. The downside of the event-driven approach
is a lack of flexibility in the domain of spiking neural networks,
as the dynamics of most neuron models are not invertible; thus
the time of occurrence of the next spike cannot be analytically
calculated, which may cause some threshold crossings to be not
detected. Moreover, the overhead of maintaining a sorted event
queue becomes substantial as networks increase in size (Lytton and
Hines, 2005; Migliore et al., 2006). Hybrid strategies that are time-
driven in nature, but still allow events to occur between timesteps,
provide a potential solution. For example, to find the “exact” time
of threshold crossing, a linear or higher-order interpolation can
be made of the membrane potential between grid points, search
algorithms such as binary search can be used (Morrison et al., 2007;
Hanuschkin et al., 2010), and for some models, algebraic methods
can be used (Krishnan et al., 2018). All of these approaches aim
to approximate the basic integration scheme outlined before: in
a loop, integrate continuous dynamics between events, and then
handle the events, all while a set of conditions are continuously
checked.

As different simulation environments may employ different
integration strategies (Figure 3), and the choice of strategy is
beyond the control of NESTML (as it depends on the specifics of
the simulation platform), it is crucial for NESTML, as a generic
modeling language, to maintain compatibility with each of these
approaches. Models in NESTML are conceptually equivalent to
“pure” hybrid, event-based systems (Section 2.1), allowing the
most precise simulation strategies while retaining an open-ended
compatibility. However, this implies that the same NESTML model
can yield different simulation outcomes, depending on the choice of
platform and its specific parameters such as the timestep resolution.
Some common numerical issues associated with hybrid systems,
such as numerical divergence, and issues related to zero crossing
detection should be addressed by changing the integrator used and
integration options inside the generated code (at compile time) or
by setting the relevant options inside the simulation platform (at
runtime). Furthermore, the ODE-toolbox can test the stiffness of a
system of ODEs solved by a numerical integrator (see Section 2.5.3).

2.3 Interdependence of models
Synaptic and neuronal models should ideally be formulated

independently of each other, so that each neuron can be combined
with each synapse for maximum flexibility. When a synaptic
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plasticity rule is formulated as a computational model, the plasticity
rule is often expressed as a function of the timing of pre- and
postsynaptic spikes, which are used in the dynamics of the weight
update for that particular rule (see Section 3.1.2 for an example).
Note that as each neuron is typically connected to hundreds or
thousands of other neurons via synapses on its dendritic arbor, each
of those synapses will observe the same postsynaptic spike times,
and store and numerically integrate them in exactly the same way,
causing a very large redundancy in memory and computation.

To prevent this redundancy, these values should only be stored
and computed once; ideally in the instances of the neuron models,
where the spike timings are readily available. To achieve this,
NESTML has the capability to process a synapse model as a pair
together with the (postsynaptic) neuron model that it will connect
to when the network is instantiated in the simulation. A list of
these (neuron, synapse) pairs can be provided as code generator
options (see Section 2.5.4) when invoking the NESTML toolchain
to generate code. During code generation, state variables that
depend only on postsynaptic spike timing are then automatically
identified and moved from the NESTML synapse model into the
neuron model by the toolchain. In the generated code, at the
points where the respective variables are used by the synapse
(for instance, where they are used in calculating the change in
synaptic strength), the variable references are replaced by function
calls into the postsynaptic neuron instance. All parameters that
are only used by these postsynaptic dynamics (for instance, time
constants) are also moved to reduce the memory requirements
for the synapse. Detecting and moving the state, parameters, and
dynamics (ODEs) from synapse to neuron is carried out fully
autonomously. We refer to this feature as the “co-generation”
of neuron and synapse. It enables flexibility and separation of
concerns in the model formalisations without compromising on
performance. Co-generation is further illustrated with a usage
example in Section 3.1.

2.4 The NESTML language

Many of the principles of NESTML can be implemented
irrespective of the precise underlying syntax used, which could have
been based, for instance, on XML* or YAML.2 The chosen NESTML
syntax was inspired by Python and is designed to be minimalistic,
simple and intuitive. For example, by not using XML tags, a large
amount of syntactical overhead is avoided. NESTML is written in
plain text, allowing users to edit models directly in any text editor.
The language elements closely resemble mathematical models of
neurons and synapses, enabling users to input ordinary differential
equations (ODEs) directly as they are defined in the mathematical
model (see Section 3.1 for example models).

The different elements of the language correspond to specific
parts of the integration loop for hybrid dynamical systems
(Figure 3). In general, models are hierarchically structured in
elements or blocks. The top-level block names the model and can

1 https://www.w3.org/XML/
2 https://yaml.org/
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contain any of the following sub-blocks (an example neuron model
with all the sub-blocks can be found in Listing 2).

e state: contains a list of declarations of variables with initial
values that are updated as the simulation evolves. These can
be variables with the dynamical equations in the equations
block or variables with discrete-time dynamics (for example,
finite state machines or Markov chains) that are updated over
time in the update block.

e parameters: contains a list of parameter declarations.
Parameters remain constant during the simulation.

e internals:
declarations. Internals remain constant, just like parameters,

contains a list of internal parameter
but are not directly specified by the user; instead, they are
derived from other parameters in the parameters block.

e equations:

definitions. Equations can be given as functions of time, first-

contains a list of differential equation

order, or higher-order differential equations; the toolchain will
attempt to rewrite the dynamics into a system of first-order
differential equations, suitable for numerical integration.
Additionally, the block may contain inline expressions to
reduce redundancy and improve the legibility of the model
code. Such an expression will be replaced verbatim when
its variable symbol is used in subsequent ODEs. There is
also support for delay differential equations, for which the
necessary buffers are automatically generated.

e input: contains a list of input ports, each receiving either
spike events or values that are continuous in time.

e output: defines the type of output this model generates, if
any; for instance, the model can emit spikes.

e update: contains statements that are executed between
events, corresponding to the “free-flight” integration of the
system of differential equations. Depending on the simulation
strategy, statements in this block are executed once every
timestep, at a fixed, discrete simulation resolution (Figure 4,
left) or once for every event, jumping from event to
event (Figure 4, right). If there are ODEs that need to be
integrated in time, statements in this block are responsible for
performing the integration by calling integrate_odes();
a specific subset of ODEs can be integrated by passing the
variable names as parameters. At the start of the block, the
state corresponds to that at time ¢. At the end of the block, the
state should have been updated (by the statements) to t + At.

e onReceilve: contains statements that are executed whenever
an incoming spike event arrives; can be defined for each
spiking input port. Optional event parameters, such as the
weight, can be accessed by referencing the input port name.
Priorities can optionally be defined for each onReceive
block; these resolve ambiguity in the model specification of
which event handler should be called after which, in case
multiple events occur at the exact same moment in time on
several input ports, triggering multiple event handlers.

e onCondition:
when a particular condition holds. The condition is

contains statements that are executed
expressed as a (boolean-typed) expression. Having an explicit

onCondition block, rather than writing conditions as
part of the update block statements, means that conditions
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can be checked at various points in the integration loop. For
example, referring to Figure 3B, the ODEs can be integrated
for the full timestep length At, after which conditions are
checked; however, many numerical solvers take smaller,
intermediate timesteps, and the conditions could in principle
also be checked after each intermediate step.

e function: defines a helper function that takes arguments
and contains statements, and returns a value through the
return keyword.

The language elements of NESTML that can appear in each
block are summarized in the Supplementary Table 1. Mathematical
and logic operators are available to form complex expressions.
Conditionals, loop statements and function calls can be used in
writing imperative code. Several predefined functions are available,
such as functions for random variables random_normal,
random_uniform, and random_poisson, as
mathematical functions like exp, 1n, sin, cos, etc. Predefined
variables such as ¢, which represents the global simulator time, and

well as

e which represents Euler’s constant are also available.

2.4.1 Physical units

If numerical models are developed in a general-purpose
scientific computation environment such as Python, it is easily
possible to accidentally define a model that does not make physical
sense due to mismatches in the physical units in an expression (one
recent case is described in Oberlinder et al.,, 2022). To address
this issue, all of the definitions and expressions in NESTML are
strongly typed, which means they have the type integer (a
natural number), real (a real number), string, boolean (a
Boolean value), or a physical unit such as mV for millivolt or NS
for nanosiemens. The types of expressions and assignments are
checked for consistency when the toolchain is invoked, preventing
users from writing models that are not internally consistent (see
Listing 1 for an example). NESTML automatically adds a scaling
factor of 107> when generating code for line 4 of Listing 1, because
the units are consistent but the prefixes are different (millivolt and
volt). NESTML also checks for consistency in expressions (lines
10-11) and raises an error when the units are incompatible (line
11). Internally, we use the AstroPy package for units computations
(Astropy Collaboration et al., 2022). These are supplemented with a
set of equivalences, such that any quantity is convertible to real, and
that real numbers are convertible to integers (although a warning
will then be emitted during model validation).

All input spikes are modeled as Dirac delta functions in time,
with an implicit unit of s~!. Physical units such as mV and nS$ can
be directly multiplied by the Dirac delta function to model an input
spike with a physical quantity such as voltage or conductance.

2.4.2 Vectors

NESTML provides support for declaring variables as vectors to
store an array of values. They can be defined in the parameters,
state, and internals blocks. The vectors are declared with
a non-zero size and can be any of the NESTML types or physical
units described in the previous section. The size of a vector can be
a fixed, positive integer value, or a variable previously declared in
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the parameters or internals block. In this case, the vector
will be resized if the value of the size variable changes during the
simulation. The vector variables are particularly beneficial when
the model has to capture and perform computations based on a
sequence of values. For example, Hagen et al. (2022) implemented
a neuron model using NESTML which computes the finite impulse
response (FIR) filter of incoming neuronal spikes. The model
stores FIR filter coefficients and binned input spikes into vector
variables and calculates the filter output at every timestep of
the simulation.

2.4.3 Comments and docstrings

Single or multi-line comments in the model are supported
with the # character. Comments following a declaration on
the same line are considered to document the variable that
was declared. In combination with docstrings, which are
reStructuredText-formatted, human-written, and human-readable
model documentation strings (Goodger and van Rossum, 2001),
these allow us to produce richly formatted model documentation
pages in HTML in a fully automated manner.’

2.5 The toolchain PyNESTML

The PyNESTML toolchain is illustrated in Figure 5 and consists
of several sequential processing steps, as described in detail below,
which result in code being generated and then built. The output
of the toolchain depends on some invocation parameters. These
include, most importantly, which target platform to generate code
for, where the generated code should be stored and (optionally)
installed to, logging and verbosity options, and options specific for
each target platform code generator.

2.5.1 Parsing

The NESTML model is parsed to an internal representation,
called the parse tree, using a lexer and parser. The lexer takes in
the model file and generates a set of tokens including keywords,
operators, and string literals. The parser takes in the tokens and
generates a parse tree based on the grammar rules for all the
constructs used in the NESTML language. The NESTML grammar
is expressed as an Extended Backus-Naur form (EBNF) grammar
(Parr, 2013); we use ANTLR (ibid.) to automatically generate the
Python code for the lexer and parser, which in turn will lex and
parse the NESTML model files.

A parse tree represents an elementary approach for storing
models in a convenient computer-processable structure. However,
often additional information or operations need to be stored
together with the nodes in the tree, making the immutable structure
of the parse tree not useful for further processing. Thus, an
intermediate representation of the model is derived called the
Abstract Syntax Tree (AST; Holldobler et al.,, 2021). While a given
node in the parse tree is represented by a token object as generated
by ANTLR, a node in the AST is a data structure that stores the
information and operations for individual elements of the NESTML

3 https://nestml.readthedocs.io/en/latest/models_library/
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model physical_units_consistency_check:

10.3389/fninf.2025.1544143

state:
I_syn pA = 42 pA # Same unit; no error
Vom mV = -0.07 V # Consistent units; no error
parameters:
g_L nS = 20 nS # Same unit; no error
update:
I_1 pA=1I_syn - V_m * g_L # Consistent units; no error
I.2 pA=1I_syn - V_m / g_L # Inconsistent units; error!
Listing 1 Demonstration of physical units consistency check.
NESTML
grammar Templates
NESTML o Parse and »  Transform .| Generate code R bﬁxecutablg
model(s) validate (and build) (binary) code

FIGURE 5

optionally, building the code.

PyNESTML toolchain internal workflow: parsing, validation, transformation, code generation using templates and code generator options, and

Code generation

options

language. All the nodes in the AST inherit from an abstract base
class called ASTNode. These node classes are hand-written to
enable custom functionality (methods and members) in different
types of nodes, but in general they are lightweight and can be easily
adapted from existing node classes.

NESTML makes use of the visitor design pattern. Each visitor is
a separate class that operates recursively on nodes in an AST. It is
a useful software architecture pattern that separates the concern of
operating on the AST from that of representing it. New operations
can be easily added by defining new visitors without changing
the existing code of the tree nodes. Each visitor class has a single
responsibility and implements a specific operation, making the
code more maintainable and understandable. The visitor pattern is
used for validation (Section 2.5.2), transformation (Section 2.5.3),
and code generation (Section 2.5.4).

Because NESTML supports scoped declarations, where a local
variable is only accessible inside the block it is defined in, each block
is endowed with a unique symbol table, and each node is assigned
a particular symbol table scope. This pattern facilitates easy symbol
lookup (Holldobler et al., 2021).

2.5.2 Validation

Validation consists of several steps that are run in sequence:

1. Parsing (validating the model syntax according to lexer and
grammar). Validation of correctness is carried out by the parser
itself, which is generated based on the NESTML grammar.
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2. Further syntactical, but context-dependent (as opposed to the
grammar’s context-free) checks, for example, that names are
uniquely defined within each scope.

3. Semantic checks, for example, consistency of physical units.

4. Checks during code generation (some target platforms may have
specific requirements, such as a particular variable having been
defined).

The second and third steps involve a set of checks, which
often use the visitor pattern and test a model for correctness in
one specific respect. Each of these checks is, like unit tests, hand-
written by the NESTML developers. They are run immediately
following the parsing of each model into an AST, and cover
issues that might be legal according to the NESTML syntax, but
semantically incorrect. A subset of these checks is run between
model transformation steps, to help validate the correctness of the
transformation (see Section 2.5.3). A list of the defined checks is
given in the Supplementary Table 2.

2.5.3 Transformation

Transformations operate on the AST of each model and can
add, remove, or alter nodes in the tree. Transformers change the
internal structure of the models to improve certain characteristics
(such as runtime performance) without necessarily changing their
observable behavior (input-output function; Mens and Gorp,
2006). Transformations can also refine the model specification
into a more fully-fledged implementation, by means of successive
refinement steps that add more concrete details. After each
transformation stage, the altered ASTs can be printed again as
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FIGURE 6

ODE-toolbox flow diagram. All inputs to and outputs from the package are encoded as strings in JSON files.

NESTML syntax. This enables the model developer to inspect, for
instance, how the solution of the ODEs has been implemented.

Transformers can be specific to model type (for instance,
some optimizations could make sense for synapse models but not
neurons). Analogously, a specific set of transformers (or a set of
transformers parameterized in a certain way) can be required for
specific target platforms. For instance, if the generated code is to
be in C++, a “variable names transformer” converts variable names
that would collide with C++ language keywords (but would be fine
if we were generating code for, say, Python).

The call signature of a transformer is that it accepts a set
of NESTML model ASTs (potentially, a mix of neuron and
synapse models), and again returns a set of models. By allowing
transformers to work on sets of models rather than individual
models, components of each model can be processed together,
enabling optimizations that would not be possible if each model
were processed separately. For example, the neuron/synapse “co-
generation” transformer (see Section 2.3) can move variables from
a synapse to a paired neuron model.

Transformations related to kernels and ODEs are carried
out by the Python package ODE-toolbox (Linssen et al., 2022;
Figure 6). It was spun off from NESTML as an independent
Python package (Blundell et al., 2018b), but remains an essential
dependency of the PyNESTML toolchain. It leverages SymPy
(Meurer et al,, 2017) for the symbolic manipulation of differential
equations. For all dynamics admitting an analytic solution, ODE-
toolbox generates propagator matrices that allow the solution to
be calculated at machine precision (Rotter and Diesmann, 1999).
For all other systems, first-order update expressions are returned
based on the Jacobian matrix. ODE-toolbox can also perform solver
benchmarking based on a set of user-configurable heuristics, to
predict which solver will perform better during simulation.

2.5.4 Code generation

Options specific to the code generator for a specific target
platform are given as code generator options encoded in a JSON
data structure, rather than being part of the model description
itself. In general, we try to separate implementation details from
the pure specification of the model. Implementation details could
include the choices for timestep, numerical solver, random number
generation algorithm, threshold crossing interpolation algorithm
(if applicable), the integration sequence (Figure 3), or many other
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specifics. These details should not be part of the model specification
itself, but are properties of the simulation platform, and should
therefore only be incorporated during code generation (or even
after that; such as a timestep that is set in the simulation script).
Note that in principle one could write, for example, a root-finding
algorithm in NESTML to find the exact time of threshold voltage
crossing; this would then be considered essential for the model
and a part of the specification rather than the implementation.
Another example would be the support for electrical synapses (or
gap junctions). For instance, NEST has a native implementation
for electrical synapses; NESTML supports code generation for
this feature through code generation options. In general, we
recommend taking full advantage of the automated processing
capabilities of the toolchain; specifying these details in the model
description should be considered an action of last resort.

Support for a new target platform is as simple as adding a
new set of templates, if pretty printers (Holldobler et al., 2021) or
unparsers (which convert nodes in the AST into target language
code) for the target language are already available, as is the case
for C, C++, and Python. Otherwise, new printers would have
to be written, however, these can be easily adapted from the
existing printers. NESTML, with the help of the ODE toolbox,
generates the solutions for the ODEs in the model and recommends
the type of solver for the given system of ODEs. The NESTML
model is agnostic of the type of solver to use and relies on the
implementation of a particular solver simulation platform. If the
system of ODE:s is analytically solvable with the help of propagators,
NESTML recommends that solution and generates the relevant
code to compute the state updates. On the other hand, if the system
of ODEs is non-linear, the toolchain recommends a numerical
solution, in which case, the implementation of a particular type of
solver (for instance, forward Euler or Runge-Kutta) must be solely
provided by the hosting simulation platform.

2.5.5 Build

The build stage involves invoking a compiler and linker
on the generated code, optionally incorporating libraries like
the C++ standard library, or platform-specific libraries like
those for numerical ODE solvers. Subsequently, any required
installation steps are performed, such as copying files, running
make 1install, or uploading the generated binary file(s) to a
neuromorphic hardware platform. Logs from the build process can
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optionally be captured to stdout and stderr, but it should
not be necessary to inspect these under normal circumstances;
any potential issues with the model should have been detected
and reported in a user-friendly manner during the parsing and
validation step.

If the target platform has a means for dynamically loading
the generated binaries at runtime, the models can be immediately
loaded and instantiated in a network after code generation is
complete (in NEST, this is realized by the nest . Install() API
call). The NESTML model code can then even be included inside
the simulation script itself. Otherwise, the simulation engine for the
specified target platform will require recompilation as well, with the
generated NESTML code statically linked.

3 Results

3.1 Neuron and synapse co-generation

To illustrate the use of NESTML, we present a use case where a
specific neuron type and a specific synapse type are modeled and
simulated. The neuron is an adaptive exponential integrate-and-
fire type with spike-rate adaptation (Section 3.1.1), and the synapse
is a spike-timing dependent plasticity rule (Section 3.1.2). Code
for these models is generated in combination, demonstrating the
“co-generation” transformer detailed in Section 2.5.3.

3.1.1 Neuron model

The subthreshold dynamics of the neuron model is given by
a set of two coupled differential equations, the first describing the
dynamics of the membrane potential Vi, and the second describing
the dynamics of an adaptation current I gqp:

dv; 1
— = (_gL(Vm —EL) + Ispike — Igyn — adap 1 Istim)
dt Cm
(4a)
dIadap 1
= Vm —EL) — I 4b
dt Tadap (a( m L) adap) ( )

For a complete listing of all parameters and their values, refer
to Supplementary Table 3.
The spike current term I is given by the expression:

Ispike = gLArexp ((Vm - Vth)/AT) (5)
The synaptic input current is given by the convolution:
Isyn = Z wi (Ksyn * Si(t)) (6)
i

with i summing all presynaptic neurons, w; weight of the
connection from presynaptic neuron i, s; the spike train emitted
by neuron i, and the alpha-shaped (rise-and-decay) postsynaptic
current kernel defined as (Rotter and Diesmann, 1999):
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(e/Tsyn)t exp(—t/Tsyn) t = 0
0 otherwise

7)

Ksyn =

and s;(t) is the incoming spike train of presynaptic neuron i, defined
as a sum of Dirac delta functions (see Equation 1), weighted by w;
(in units of Ampere). Alternatively, the spikes can be also directly
integrated into the synaptic current (see the code listing in the
Supplementary material, Listing 1, Line 12).

The differential subthreshold
dynamics of the neuron are complemented by the membrane

equations expressing the

potential threshold condition for spike generation:

a spike is emitted;

if Vin > Vpeak = | Vim 18 set to Viegers (8)

I gap is incremented by b.

Note that we consider the postsynaptic response to be,
conceptually, a part of the neuron model. This is in line with current
approaches in neuroscience simulators. Because the dynamics
of the postsynaptic response is linear, the postsynaptic current
contributions of all the synapses can be added into one single
postsynaptic variable Iy, and integrated as one.

The model can be expressed in NESTML syntax as shown in
Listing 2. Note the direct correspondence between the theoretical
(mathematical) model and the model syntax, in particular between
the ODEs and convolution with a kernel (Equations 4a-7) and the
equations block, lines 6-12, as well as the event conditions
(Equation 8) and the onCondition block on lines 36-39.
Additional support is added for a continuous-time current input
using the continuous input port on line 28.

In this particular model, the dynamics of the postsynaptic
response (Isyn) will be integrated numerically for the sake of
making comparisons in performance to NEST built-in models in
benchmarks (Section 3.2), but an analytic solution for the alpha
kernel dynamics is readily derived by ODE-toolbox; analytic solver
code can, in general, be generated for any subset of ODEs that
admit an analytic solution and is combined seamlessly with the
numerical integration code. The variable that keeps track of the
state of convolutions (here, I _syn) is automatically added to the
set of state variables during code generation. Alternatively, the
convolutions can be written using an onReceive event handler
containing statements to process the spike input. The two methods
of handling spikes are equivalent and the user can choose either
to implement their models. For the sake of demonstrating the
capabilities of NESTML, we show the convolutional approach in
the neuron model (Listing2) and the event handler approach
in the synapse model (Listing 3). The alternative version of the
neuron model using the event handler can be found in the
Supplementary material (Listing 1).

3.1.2 Synapse model

The synapse model that we present here is a variant of a spike-
timing dependent plasticity (STDP) rule (Bi and Poo, 1998) and
defined such that a pair of spikes in the pre- and postsynaptic cells,
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model aeif_psc_alpha_neuron:

state:
V_m mV = E_L # Membrane potential
I_adap pA = 0 pA # Spike-adaptation current
equations:

kernel K = (e / tau_syn) * t * exp(-t / tau_syn)

inline I_leak pA = -g_L * (V_m - E_L)
inline I_syn pA = convolve(K, spikes) * pA

10.3389/fninf.2025.1544143

# "Alpha" postsynaptic current kernel
inline I_exp pA = g_L * Delta_T * exp((V_m - V_th) / Delta_T)
# Membrane leak current

# Total synaptic input current

# Exponential current term

# Spike-adaptation dynamics

V_m' = (I_leak + I_exp + I_syn + I_stim - I_adap) / C_m # Membrane potential dynamics

I_adap’ = (a * (V_m - E_L) - I_adap) / tau_adap
parameters:

C_m pF = 281 pF # Membrane capacitance

g_L nS =30 nS # Leak conductance

E_L mV = -70 mV # Leak reversal potential

anS =4nS # Subthreshold adaptation

b pA = 80.5 pA # Spike-triggered adaptation

Delta_T mV = 2 mV # Slope factor

tau_adap ms = 144 ms # Adaptation time constant

V_th mV = -50.4 mV # Spike initiation threshold

V_peak mV = @ mV # Spike detection threshold

tau_syn ms = 0.2 ms # Synaptic time constant
input:

spikes <- spike # For presyn input spikes

I_stim pA <- continuous # For external stimulus current
output:

spike # Unweighted spikes can be emitted
update:

integrate_odes()

onCondition(V_m >= V_peak):
V_m = E_L
I_adap += b
emit_spike()

# Reset potential

# Each simulation timestep,

integrate ODEs

# Threshold crossing detection

# Increment spike-adaptation current

Listing 2 Adaptive exponential integrate-and-fire neuron model with alpha-shaped postsynaptic currents.

at times fpre and fpost respectively, induces a change Aw in the
weight w of the synapse:

Aw = Jp - Kp (tpost = tpre)

—Ag - Ky (tpre - tpost) )

The weight is increased through the first term when fpost > fpre
and decreased by the second term when fyre > fpost. Coefficients
Ap and Aq (= 0) set the magnitude of the update. The temporal
dependence is defined by the filter kernels Ky and Kp, which are
taken to be decaying exponential functions:

exp(—t/tpq) t >0

K
0 otherwise

pd(t) = (10)

To implement the behavior for the kernel, we use two extra
state variables, which represent a pre- and postsynaptic “trace” that
keeps track of recent spiking activity. These trace variables are
incremented by 1 whenever a spike is generated and decay back to
zero exponentially. Expressed as a differential equation,

dtr, tr,
PR == +5pre(t) (11)
dt T4
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where spre(t) is the presynaptic spike train and trp(0) = 0.
This can equivalently be expressed as a convolution between the
exponentially decaying kernel and the presynaptic spike train

trpre(t) =Ky * Spre(t)~ (12)

Analogous equations hold for the postsynaptic trace variable.

The trace equation (Equationll) and its postsynaptic
counterpart can be expressed practically one-to-one in NESTML
syntax (Listing 3, lines 8 and 9, and 20 and 25), as can the weight
update rule (Equation 9) on lines 19 and 24.

Further modifications and developments of the model have
now become very easy thanks to the use of NESTML. For example,
adding a dependence on the existing weight in the update rule
(Equation 9) is now trivial, by inserting these new terms into the
weight update expression (Listing 3, lines 19 and 24).

3.1.3 Code generation

As discussed in Section 2.3, NESTML transforms the code
for neuron and synapse models in such a way as to prevent
redundancy of state variables that are defined in the synapse
but that depends only on the postsynaptic spiking activity. To
invoke the co-generation transformer in the PyYNESTML toolchain,
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model stdp_synapse:
state:
w real =1
tr_pre real = 0
tr_post real = 0

# Weight of the synapse
# Presynaptic trace
# Postsynaptic trace

equations:
tr_pre’ = -tr_pre / tau_tr_pre # Decay pre trace
tr_post’ = -tr_post / tau_tr_post # Decay post trace
input:

# For presynaptic input spikes
# For postsynaptic input spikes

pre_spikes <- spike
post_spikes <- spike

output:
spike(w real, d ms)

onReceive(pre_spikes):
w -= lambda_d * tr_post #
tr_pre += 1
emit_spike(w, delay) #

Depress synaptic weight
Update presynaptic trace

H*

onReceive(post_spikes):
w += lambda_p * tr_pre #

Potentiate synaptic weight

10.3389/fninf.2025.1544143

# Emits spikes with weight and delay attributes

Send spike to postsynaptic neuron

tr_post += 1 # Update postsynaptic trace
parameters:

delay ms = 1 ms Synaptic delay

tau_tr ms = 50 ms Pre/post trace time constant

lambda_p real = .02
lambda_d real = .01

H oH B R

Depression learning rate

Listing 3 STDP synapse model.

# Define code generation options
codegen_opts =
"synapse" :
"post_ports":

Potentiation learning rate

{"neuron_synapse_pairs": [{"neuron": "aeif_psc_alpha_neuron",
"stdp_synapse",
["post_spikes"]}]}

# Invoke the NESTML toolchain to generate code for the NEST target

generate_target(target_platform="NEST",
input_path=["aeif_psc_alpha_neuron.nestml",
codegen_opts=codegen_opts)

Listing 4 Invoking the NESTML code generator through its Python API.

the synapse and postsynaptic neuron pair are given as code
generator options (Listing 4, lines 2-4). In order to maintain
maximum flexibility during network instantiation, there is no
specific NESTML language syntax keyword to mark a spiking input
port as pre- or postsynaptic. Instead, this information is passed
in via the code generator options; in the example (Listing 4, lines
7-9), the name of the spiking input port in the synapse that will
be connected to the postsynaptic neuron (here, post_spikes)
needs to be explicitly passed to the post_ports code generator
option. As described in Section 2.3, the co-generation transformer
then recursively identifies all state variables (in this case,
tr_post on line 5 of Listing3) and corresponding update
statements (Listing 3, lines 9 and 25) that can be moved into the
neuron model.

3.1.4 Simulation
After the PyNESTML toolchain finishes its processing, the
models are available to be used in a network simulation; for
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"stdp_synapse.nestml"],

example, in NEST, they can be dynamically loaded during runtime
using the nest.Install() API call and can be instantiated
using nest.Create() (for neurons) and nest.Connect()
(for synapses).

As an initial validation step, we make a numerical comparison
between the NESTML-generated code and the NEST built-in
models (Figure 7, left). One neuron of each kind was instantiated,
25 ms. The
membrane potential of each neuron is plotted in the top panel, and

and stimulated by a step current starting at t =

action potentials emitted after threshold crossing are indicated by
diamond markers. The bottom panel shows the absolute difference
between membrane potential traces, revealing differences arising
primarily due to the different ways in which the firing condition
is checked: the numerical solver can internally choose smaller
step sizes, and in NEST, conditions are checked inside of this
“inner loop”.

The NESTML generated synapse code was validated by causing
pre- and postsynaptically connected neurons to fire at specific
intervals (Figure 7, right). The synaptic (dendritic) delay was
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Numerical comparison of the NEST (orange) and NESTML (blue) version of each model. (left) Neuron model; (right) Synapse model.

chosen as 10 ms, causing the horizontal offset from fy05t — tpre =
0 ms. Numerical differences between the NEST and NESTML
synapses were zero down to machine precision and are thus not
shown.

3.2 Performance

3.2.1 Description of the model

To benchmark how well the NESTML-generated code performs
in large-scale simulations, we perform simulation runs of a
balanced excitatory/inhibitory (E/I) network, as illustrated in
Figure 8 (left), composed of the neuron model from Section 3.1.1 in
combination with the synapse model from Section 3.1.2. Networks
of varying sizes are simulated using NEST. Each network contains
a random, sparse connectivity, such that each neuron in the
excitatory population receives connections from 1,000 randomly
picked neurons from the E/I pool, and each neuron in the
inhibitory population receives connections from 250 randomly
picked neurons from the E/I pool. All details and numerical values
of the parameters are described in Supplementary Table 3. This
is a canonical and representative use case in neuroscience, based
on the seminal model proposed by Brunel (2000), and allows
the network size to be varied across several orders of magnitude
(with the number of synapses in the network proportional to the
number of neurons), while the dynamics remain qualitatively and
quantitatively constant (Figure 8, right), with an average firing
rate per neuron of approximately 15 spks/s, and a coefficient of
variation (CV) of approximately 0.25, close to that of a Poisson
process. Although under some conditions, the network dynamics
can remain stable even with plastic synapses, here we set the
learning rates A, = Aq = 0 for simplicity. In this way, the weight
updates are computed, but the actual weight values are not modified
and the resulting network dynamics remain stationary.

The networks are simulated on a high-performance computing
(HPC) cluster. The simulation is distributed over multiple compute
nodes that communicate via MPI. The process running on each
node, in turn, performs parallel (multiprocessing) simulation based
on OpenMP threads. We perform strong scaling and weak scaling
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experiments (Jordan et al., 2018) to assess the performance of
the network with NESTML-generated models, as compared to the
NEST built-in models. In strong scaling experiments, the total
problem size is fixed while the number of compute nodes is varied.
This gradually reduces the load on each compute node, measuring
how effective extra compute hardware is in reducing the simulation
time for the same network. In weak scaling experiments, the
problem size per compute node is fixed. Hence, the total problem
size increases proportionally to the number of compute nodes,
providing a measure of how effective the simulator is in simulating
ever larger networks.

For each network, we compare the following combinations of
neuron and synapse models:

e NEST Simulator built-in neuron model + NEST Simulator
built-in synapse model (NEST)
e NESTML neuron model + NEST Simulator built-in synapse

model (NESTML/NEST)
e NESTML neuron model + NESTML synapse model
(NESTML)

The NEST built-in models are based on manually written and
optimized C++ code and thus serve as our reference point.

3.2.2 Runtime performance

For the strong scaling experiment, we simulate a network size
of 100,000 neurons with a fixed in-degree (Figure 9, left). Since the
problem size is fixed throughout the experiment, we expect the
simulation to speed up when we add more compute nodes. This
can be seen in the top left panel, which illustrates the wall clock
time required for the simulation as a function of the number of
nodes, ranging from 2 to 64. All models exhibit a near-identical
reduction in wall clock time with an increasing number of nodes,
demonstrating effective parallelization. Whereas on this scale, all
combinations of hand-written and generated code seem to have the
same performance, a small difference can be seen when plotting
the ratio of the wall clock time with respect to the NEST baseline
(Figure 9, lower left). Here, we can see that the NESTML/NEST
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FIGURE 8

Dynamics of the neuron and synapse model in a network simulation. Left Architecture of the benchmark E/I network (using the graphical notation
conventions from Senk et al., 2022). Right Interspike interval distributions for networks composed of neurons and synapses from NEST as well as
NESTML validate the dynamics on a functional level (Kolmogorov-Smirnov two-sided test between NEST and the other two curves p < 0.01).
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code is approximately 2% slower than NEST, and the NESTML code
is about 5% slower, independent of the number of nodes.

For the weak scaling experiment, we simulate the network
with the network size of 100,000 neurons on each compute node
with a fixed in-degree (Figure 9, right). Although the network size
per compute node remains constant with the increasing number
of nodes, we expect to see an increase in the total simulation
time of the network due to the increasing communication and
synchronization overheads that become more pronounced at larger
scales. As expected, the top right panel shows the wall clock
time consistently increases with the number of nodes across all
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configurations. Again, for ease of visual comparison, we take the
NEST hand-written code as a reference and plot the same data
as a ratio between the obtained wall clock time and the reference
(Figure 9, bottom right). Also in the weak scaling scenario, the
NEST/NESTML code is consistently around 2% slower and the
NESTML code is approximately 5 to 6% slower than the NEST
baseline.

As the mild performance difference between the baseline NEST
code and the NEST/NESTML and NESTML variants remains
approximately constant over all numbers of nodes and for both
strong and weak scaling, we can conclude that it is most likely
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due to a slightly less efficient calculation of neuronal and synaptic
dynamics rather than less efficient communication. An alternative
cause of performance loss is different memory footprints, which we
examine in the next section.

3.2.3 Memory usage

We measure the memory usage of the network during the
simulation by recording the Resident Set Size (RSS) value of the
simulation process. We calculate the total memory consumed
during the simulation by adding the RSS values of all the processes
on all the compute nodes. Memory consumption for the weak
scaling experiment is shown in Figure 10, left, showing that the total
value of the RSS for the simulation increases due to the increase
in the overall problem size in weak scaling. The curves follow a
straight line, indicating a power-law scaling relationship with a
slope of approximately 1.1. As for the performance benchmarks,
we plot the same data expressed as a ratio with respect to the NEST
built-in models (Figure 10, right). NESTML generated code for the
neurons requires up to about 5% more memory than the built-
in models, while the co-generated code for neurons and synapses
performs up to 30% worse, indicating that especially the synapse
model code generation could benefit from further optimizations.
The size-dependent effect on the memory consumption excludes a
memory effect on the performance loss for NESTML reported in
the previous section, as the performance loss is independent of size.

4 Discussion

We have created a succinct yet powerful modeling language,
NESTML, and combined it with a toolchain (PyNESTML)
that validates the model correctness and generates efficient,
platform-specific simulation code. Separating the concerns of
formulating the model and writing simulation code supports rapid
development of models. The syntax of NESTML is simple and
easy to learn and write, which facilitates the user in writing
model code faster. It eliminates the challenges of implementing
it in a native programming language (for example, in C++
for NEST), which include for instance the introduction of
accidental errors due to the absence of physical units and
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correctness checks. The NESTML toolchain validates models,
such that no physically inconsistent equations can be expressed,
and contains powerful model transformers (such as the co-
generation transformer) that support the generation of highly
performant code. The many tests covering different aspects of the
models and toolchain help correctness and decrease the chance
of errors.

Both the language and the toolchain have proven themselves
through real-world use cases (Schulte to Brinke et al, 2022;
Hagen et al., 2022; Oberldnder et al., 2022; Bouhadjar et al., 2022;
Jaras Castafios, 2023), and have shown to be of practical value
for research in computational neuroscience, achieving performance
that is competitive with hand-written simulation code. Nordlie
et al. (2009) suggest a checklist for model descriptions but do
not define the desired formulation of neuron and synapse models
in detail. NESTML provides exactly such a formulation, as it is
expressive yet concise, easy to write, and understood by humans,
yet is also precise (unambiguous) and suitable for computer
simulation; properties which make it perfect for inclusion in a
paper-based as well as software-based publication, something that
would not be practical for an XML-based format.

Our results reveal a small performance reduction between the
hand-written code of NEST and the code generated by NESTML.
The hand-written NEST built-in models were developed over
several years and subject to several rounds of optimization to
enhance their performance. It is therefore to be expected that
NESTML code, generated from generic model-agnostic templates,
will miss some model-specific optimizations and therefore
experience some performance loss. We believe that this slight
loss is more than compensated for by the significant time savings
achieved in writing and verifying the numerics of new models,
as the use of NESTML allows the modeling process (Figure 1) to
be carried out using the agile software engineering methodology
(Alliance, 2001), emphasizing incremental development, early and
continuous delivery of results, and flexibility in implementing
changes. Moreover, future improvements in the toolchain could
even lead to performance gains. For example, extending the set
of model transformers to precompute constants needed for ODE
updates could improve the performance of the generated code to
be on par with, or even outperform, the hand-written NEST model
code.
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A standard model interchange format like NESTML helps
in making models more findable, accessible, interoperable, and
reusable (“FAIR” principles; Wilkinson et al., 2016). In the context
of computational models, findable means that in a database of
potentially hundreds of model variants, the appropriate model can
be easily found. Accessible models are those that do not require
extensive toolchain dependencies to work with. Interoperable
models are usable across different computation hardware and
simulation platforms. Reusable models are those that can be easily
extended and iterated upon. These design goals are supported
by the accessible, human-readable syntax of NESTML, as well as
its supporting infrastructure, such as a curated model database,
detailed online documentation, and continuous integration (see
Section 4.1). Writing models in NESTML makes it easy for
newcomers to the field to extend and adapt, rather than having to
write low-level code or start from scratch. Several platforms are
currently under development for the collaborative development,
visualization and sharing of models, as well as a searchable database
of models, for instance, Open Source Brain (OSB; Gleeson et al.,
2019) and EBRAINS (EBRAINS, 2025). The wider use of NESTML
as a modeling standard would facilitate interchange and promote
interoperability between these software services.

Simulation software should be reliable, supporting the
reproducibility of scientific results. An individual simulator should
exhibit replicable behavior: repeated simulations of the same
model should yield bitwise identical results, regardless of the
number of threads or processing nodes used. In contrast, using
a different numerical solver or simulating the same model on
a different computer platform may alter the results, especially
in network models exhibiting chaotic and unstable dynamics.
However, overall, results and conclusions should be reproducible,
obtaining the same overall quantitative and qualitative conclusions
(for a commentary on this terminology, see Plesser, 2018).
Recent work comparing numerical results across simulators
(Gleeson et al, 2010) and examining implementation issues
that are inherent to network modeling (Henker et al, 2012;
Gutzen et al., 2018; Trensch et al., 2018) point to the need for a
thorough suite of benchmarks for simulator testing. NESTML
facilitates replicability and reproducibility studies by having a
common model interchange format and a large number of unit
tests, covering most of the models in the database. When cross-
validating between neuromorphic platforms, the same NESTML
model can be used as a basis; any differences in simulation results
must then be due to differences in the platform code itself rather
than the model.

4.1 Software development methodology

NESTML is research software, that is, software that is used
in research (Hasselbring et al., 2024) (although our software
license, GNU GPL v2.0 Free Software Foundation, 1991 also
allows commercial use). Overall, software can be classified in
various tiers: from analysis code (one-off script; often not revised
after publication), to prototype (best effort maintenance) to
research software infrastructure (professional product). Adhering
to software engineering best practices during development helps to
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achieve an infrastructure level of software quality. Practices that we
have found particularly helpful are:

e The processing toolchain for NESTML is designed using
standard software design patterns, such as the visitor pattern
for iterating over the AST, a symbol table for resolving names
and scopes, and context condition checks for model validation
(Section 2.5.2; Holldobler et al., 2021). The code is well
documented (using in-code comments and docstrings) and a
reference manual is automatically generated in the form of a
webpage.

Our software development process follows the agile approach
(Alliance, 2001). In accordance with this, new toolchain
features are typically based on case studies and requests from
end users. Each feature is documented from an end user
perspective.

Unit and integration tests: A battery of unit tests is run that
tests the toolchain itself. If successful, a second series of tests
is run that generate and build code, and run a simulation
in NEST and other target platforms, allowing numerical
validation of the behavioral output of all models that are
part of the NESTML distribution, such as the response of
neurons to input, checks on the timing of emitted spikes,
and for synapses, how the weight change is dependent on the
timing of pre- and postsynaptic spikes. Many of the models
are tested in ways that are specific to the behavioral repertoire
of that model; developers of a new model should ensure that a
corresponding set of tests is created and added as part of the
toolchain code alongside the model itself. Each new feature of
the toolchain also includes one or more tests for that feature.
Continuous integration (CI): A CI workflow is triggered
whenever code is contributed to the NESTML codebase.
In the CI environment, all unit and integration tests are
automatically run. The test results are shown on the GitHub
web interface; if any of the tests fail, the code is rejected.
Currently, we use GitHub Actions* as our CI provider.

Users of NESTML are invited to contribute to NESTML
itself, adapting or adding language elements, or performing bug
fixes and feature enhancements on the PYNESTML toolchain. All
contributions are reviewed by at least one NESTML developer
before being merged into the git (Torvalds, 2022) development
branch of NESTML®. On a regular cycle, new NESTML software
releases are published, identified by a major, minor and patch-level
semantic version number (Preston-Werner, 2013) and an entry
on Zenodo with DOI ©. Backwards-incompatible changes, such as
changes to the NESTML grammar, are infrequent. In this case, the
NESTML major version number is incremented (Preston-Werner,
2013), and we provide detailed instructions for how models should
be adapted. Typically, a semantically equivalent form can be readily
found in the knowledge graph.
the PyNESTML
documentation, we curate a database of models, the entries of

In addition to toolchain code and

4 GitHub Actions: https://github.com/features/actions.
5 https://github.com/nest/nestml

6 Zenodo: Research Shared; https://www.zenodo.org.
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which can serve as templates or examples for further development
and customization. These are distributed alongside the code in
the NESTML GitHub repository” and are bundled into software
releases (alongside the toolchain itself). Users are invited to
contribute the models they developed in their research into our
central database, complemented by unit tests, documentation and
usage tutorials.

4.2 Limitations

When new use cases are considered for implementation in
NESTML, there are three categories of feasibility. The easiest class
of modeling challenges is where a particular model has not yet
been created in the NESTML model catalog, but implementing the
model is feasible within the span of no more than a few hours.

A second class of challenges is when a model cannot be
implemented in NESTML right now, but that could be made
possible by adjusting or augmenting the templates, and which could
be completed in a time span of weeks or months, possibly involving
discussions with the NESTML development team. These challenges
fit within the scope of NESTML, but the necessary features are
not yet implemented. An example of such a challenge is to add
support for a new simulation engine to the toolchain, or for a new
plasticity rule that requires, for instance, additional buffering of
state variables at previous timepoints.

Then there is a third category of maximally difficult problems,
which could be possible in principle to implement, but which
fall outside the NESTML scope. For example, neuron models that
require an awareness of the totality of connections coming into the
cell are at present difficult to implement because NESTML is not
aware of the instances and connectivity of the models it defines.
This makes mechanisms such as synaptic normalization, in which
the norm of the vector of all synaptic weights of a cell is held
constant, fundamentally unsuitable for expression in NESTML.

4.3 Future work

Developing and adopting standards is hard: even in simple
descriptions, there are many edge cases to consider, while the
standard should be flexible and generic enough to allow widespread
adoption; flexibility may be key to making standards work in
practice (Holmes et al., 2010). NESTML will continue to evolve,
in particular in terms of its language features and support
for simulation engines. Progress is underway to support the
neuromorphic platform SpiNNaker-2 (Mayr et al., 2019) and to
support the ability for NEST to run on GPU accelerators (Golosio
etal., 2021, 2023), as well as other hardware that minimizes energy
use by means of spike-based learning paradigms that are inherently
robust to noise, such as those based on surrogate gradient methods
(Yang and Chen, 2025).

The same mathematical model can be implemented in
a number of ways in NESTML. There should be a set of
design guidelines (see for instance Wimalaratne et al., 2009),

7 NESTML GitHub repository: https://github.com/nest/nestml.
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complementary to our existing curated model database. In the
future, even more rigorous formalization of the denotational and
operational semantics of each language element in a formal calculus
would allow formal, logically sound proofs about the model
properties, further bolstering the FAIR principles. In general, we
strive to continuously improve our documentation in terms of
extent and precision.

In the
ecosystem, we aim to integrate better with other standards,

broader computational neuroscience software
such as NeuroML (Sinha et al., 2024), by providing “source-to-
source” translators or “transpilers”. For the NESTML to NeuroML
translation, this can use the existing code generation facilities in
NESTML.

At present, NESTML tutorials are frequently given using
Jupyter Notebooks running on “the cloud™ high-performing
computing resources, accessible via the internet, meaning no
installation of software is necessary for the students. A full
integration of NESTML into NEST Desktop (Spreizer et al., 2021),
a graphical user interface (GUI) for NEST Simulator aimed at
teaching, is currently underway. Using a GUI in combination with
NESTML would lead to an even lower threshold for use, especially
in the context of students using NESTML in the classroom as an
educational tool.

Data availability statement

Publicly available datasets were analyzed in this study. This data
can be found here: https://github.com/nest/nestml.

Author contributions

CL: Conceptualization, Investigation, Methodology, Project
administration, Software, Supervision, Validation, Visualization,
Writing — original draft, Writing — review & editing, Resources.
PB: Writing - original draft, Writing - review & editing,
Methodology,
administration, Resources, Software, Supervision, Validation,

Conceptualization,  Investigation, Project
Visualization. JE: Writing - original draft, Writing - review &
editing, Conceptualization, Investigation, Methodology, Project
administration, Resources, Software, Supervision, Validation,
Visualization. LK: Writing - original draft, Writing - review
& editing, Investigation, Methodology, Software, Validation,
Visualization. BR: Writing — original draft, Writing - review &
editing, Conceptualization, Investigation, Methodology, Software,
Supervision. AM: Writing - original draft, Writing - review &
editing, Conceptualization, Funding acquisition, Investigation,
Methodology,
Supervision, Validation, Visualization.

Project administration, Resources, Software,

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This research
was supported by the Helmholtz Joint Lab “Supercomputing and
Modeling for the Human Brain”. This research was supported
by funding from the European Union’s Horizon 2020 Framework

frontiersin.org


https://doi.org/10.3389/fninf.2025.1544143
https://github.com/nest/nestml
https://github.com/nest/nestml
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Linssen et al.

Programme for Research and Innovation under Specific Grant
Agreement No. 945539 (Human Brain Project SGA3). Open access
publication funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—491111487. This project
has received funding from the European Union’s Horizon Europe
Programme under the Specific Grant Agreement No. 101147319
(EBRAINS 2.0 Project).

Acknowledgments

The authors would like to thank Markus Diesmann and Tom
Tetzlaff for fruitful discussions, as well as Melissa Lober and Jan
Vogelsang for helpful pointers on performance benchmarking.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

References

Abi Akar, N., Cumming, B., Karakasis, V., Kiisters, A., Klijn, W., Peyser, A., et al.
(2019). “Arbor - a morphologically-detailed neural network simulation library for
contemporary high-performance computing architectures,” in 2019 27th Euromicro
International Conference on Parallel, Distributed and Network-Based Processing (PDP)
(Pavia: IEEE), 274-282. doi: 10.1109/EMPDP.2019.8671560

Alliance, A. (2001). Manifesto for Agile Software Development. Available online at:
http://www.agilealliance.org (accessed March 28, 2025).

Astropy Collaboration, Price-Whelan, A. M., Lim, P. L., Earl, N., Starkman, N.,
Bradley, L., et al. (2022). The Astropy Project: sustaining and growing a community-
oriented open-source project and the latest major release (v5.0) of the core package.
Astrophys. J. 935:167. doi: 10.3847/1538-4357/ac7c74

Bi, G., and Poo, M. (1998). Synaptic modifications in cultured hippocampal
neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type.
J. Neurosci. 18, 10464-10472. doi: 10.1523/J]NEUROSCI.18-24-10464.1998

Blundell, I., Brette, R., Cleland, T. A., Close, T. G., Coca, D., Davison, A. P.,
et al. (2018a). Code generation in computational neuroscience: a review of tools and
techniques. Front. Neuroinform. 12:68. doi: 10.3389/fninf.2018.00068

Blundell, I, Plotnikov, D., Eppler, J. M., and Morrison, A. (2018b). Automatically
selecting a suitable integration scheme for systems of differential equations in neuron
models. Front. Neuroinform. 12:50. doi: 10.3389/fninf.2018.00050

Bouhadjar, Y., Wouters, D., Diesmann, M., and Tetzlaff, T. (2022). Sequence
learning, prediction, and replay in networks of spiking neurons. PLoS Comput. Biol.
18:€1010233. doi: 10.1371/journal.pcbi.1010233

Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al.
(2007). Simulation of networks of spiking neurons: a review of tools and strategies. J.
Comput. Neurosci. 23, 349-398. doi: 10.1007/s10827-007-0038-6

Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons. J. Comput. Neurosci. 8, 183-208.

Cannon, R. C,, Gleeson, P., Crook, S., Ganapathy, G., Marin, B., Piasini, E., et al.
(2014). LEMS: a language for expressing complex biological models in concise and
hierarchical form and its use in underpinning neuroml 2. Front. Neuroinform. 8:79.
doi: 10.3389/fninf.2014.00079

Crook, S. M., Bednar, J. A., Berger, S., Cannon, R,, Davison, A. P, Djurfeldt, M., et al.
(2012). Creating, documenting and sharing network models. Network: Comp. Neural
Syst. 23, 131-149. doi: 10.3109/0954898X.2012.722743

Davison, A. P., Briiderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,
et al. (2009). PyNN: a common interface for neuronal network simulators. Front.
Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

EBRAINS (2025). EBRAINS Knowledge Graph. Available online at: https://search.
kg.ebrains.eu

Frontiers in Neuroinformatics

10.3389/fninf.2025.1544143

Generative Al statement

The author(s) declare that no Gen AI was used in the creation
of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fninf.2025.
1544143/full#supplementary-material

Einevoll, G. T., Destexhe, A., Diesmann, M., Griin, S., Jirsa, V., de Kamps,
M., et al. (2019). The scientific case for brain simulations. Neuron 102, 735-744.
doi: 10.1016/j.neuron.2019.03.027

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).
PyNEST: a convenient interface to the NEST Simulator. Front. Neuroinform. 2:12.
doi: 10.3389/neuro.11.012.2008

Free Software Foundation (1991). GNU General Public License, version 2. Available
online at: https://www.gnu.org/licenses/old- licenses/gpl-2.0.en.html.

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The SpiNNaker
project. Proc. IEEE 102, 652-665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool).
Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Gleeson, P., Cantarelli, M., Marin, B., Quintana, A., Earnshaw, M., Sadeh, S.,
et al. (2019). Open Source Brain: a collaborative resource for visualizing, analyzing,
simulating, and developing standardized models of neurons and circuits. Neuron 103,
395-411.e5. doi: 10.1016/j.neuron.2019.05.019

Gleeson, P., Crook, S., Cannon, R. C,, Hines, M. L., Billings, G. O., Farinella, M.,
et al. (2010). NeuroML: A language for describing data driven models of neurons
and networks with a high degree of biological detail. PLoS Comp. Biol. 6:¢1000815.
doi: 10.1371/journal.pcbi.1000815

Golosio, B., Tiddia, G., De Luca, C., Pastorelli, E., Simula, F., and Paolucci, P. (2021).
Fast simulations of highly-connected spiking cortical models using GPUs. Front. Comp.
Neurosci. 15:627620. doi: 10.3389/fncom.2021.627620

Golosio, B., Villamar, J., Tiddia, G., Pastorelli, E., Stapmanns, J., Fanti, V., et al.
(2023). Runtime construction of large-scale spiking neuronal network models on GPU
devices. Appl. Sci. 13:9598. doi: 10.3390/app13179598

Goodger, D., and van Rossum, G. (2001). “PEP 257 - docstring conventions,” in
Doc-SIG List. Available online at: https://peps.python.org/pep-0257/

Gutzen, R., Von Papen, M., Trensch, G., Quaglio, P., Griin, S., and Denker,
M. (2018). Reproducible neural network simulations: statistical methods for model
validation on the level of network activity data. Front. Neuroinform. 12:90.
doi: 10.3389/fninf.2018.00090

Hagen, E., Magnusson, S. H., Ness, T. V., Halnes, G., Babu, P. N., Linssen,
C., et al. (2022). Brain signal predictions from multi-scale networks using a
linearized framework. PLOS Comp. Biol. 18:¢1010353. doi: 10.1371/journal.pcbi.1010
353

Hanuschkin, A., Kunkel, S., Helias, M., Morrison, A., and Diesmann, M.
(2010). A general and efficient method for incorporating precise spike times in
globally time-driven simulations. Front. Neuroinform. 4:113. doi: 10.3389/fninf.2010.
00113

frontiersin.org


https://doi.org/10.3389/fninf.2025.1544143
https://www.frontiersin.org/articles/10.3389/fninf.2025.1544143/full#supplementary-material
https://doi.org/10.1109/EMPDP.2019.8671560
http://www.agilealliance.org
https://doi.org/10.3847/1538-4357/ac7c74
https://doi.org/10.1523/JNEUROSCI.18-24-10464.1998
https://doi.org/10.3389/fninf.2018.00068
https://doi.org/10.3389/fninf.2018.00050
https://doi.org/10.1371/journal.pcbi.1010233
https://doi.org/10.1007/s10827-007-0038-6
https://doi.org/10.3389/fninf.2014.00079
https://doi.org/10.3109/0954898X.2012.722743
https://doi.org/10.3389/neuro.11.011.2008
https://search.kg.ebrains.eu
https://search.kg.ebrains.eu
https://doi.org/10.1016/j.neuron.2019.03.027
https://doi.org/10.3389/neuro.11.012.2008
https://www.gnu.org/licenses/old-licenses/gpl-2.0.en.html
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.1016/j.neuron.2019.05.019
https://doi.org/10.1371/journal.pcbi.1000815
https://doi.org/10.3389/fncom.2021.627620
https://doi.org/10.3390/app13179598
https://peps.python.org/pep-0257/
https://doi.org/10.3389/fninf.2018.00090
https://doi.org/10.1371/journal.pcbi.1010353
https://doi.org/10.3389/fninf.2010.00113
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

Linssen et al.

Hasselbring, W., Druskat, S., Bernoth, J., Betker, P., Felderer, M., Ferenz, S.,
et al. (2024). Toward research software categories. arXiv [preprint] arXiv:2404.14364.
doi: 10.48550/arXiv.2404.14364

Henker, S., Partzsch, J., and Schiiffny, R. (2012). Accuracy evaluation of numerical
methods used in state-of-the-art simulators for spiking neural networks. J. Comput.
Neurosci. 32, 309-326. doi: 10.1007/s10827-011-0353-9

Hines, M. L., and Carnevale, N. T. (2019).
repertoire of mechanisms with NMODL. Neural
doi: 10.1162/089976600300015475

Holldobler, K., Kautz, O., and Rumpe, B. (2021). “MontiCore Language Workbench
and Library Handbook: Edition 2021, in Aachener Informatik-Berichte, Software
Engineering (Shaker Verlag), 48. doi: 10.2370/9783844080100

Holmes, C., McDonald, F., Jones, M., Ozdemir, V., and Graham, J. (2010).
Standardization and omics science: technical and social dimensions are inseparable and
demand symmetrical study. OMICS 14, 327-332. doi: 10.1089/0mi.2010.0022

Expanding NEURON’s
Comp. 12, 995-1007.

Hucka, M., Finney, A., Sauro, H., Bolouri, H., Kitano, J. D. H., Arkin, A.,
et al. (2003). The systems biology markup language (SBML): a medium for
representation and exchange of biochemical network models. Bioinformatics 19,
524-531. doi: 10.1093/bioinformatics/btg015

Jaras Castafos, I. (2023). Energetics, Dynamics and Structure of Spiking Neural
Networks Under Metabolic Constraints (PhD thesis). University of Chile, Santiago,
Chile.

Jordan, J., Ippen, T., Helias, M., Kitayama, I., Sato, M., Igarashi, J., et al. (2018).
Extremely scalable spiking neuronal network simulation code: from laptops to exascale
computers. Front. Neuroinform. 12:2. doi: 10.3389/fninf.2018.00002

Kéhn, D., and Le Novére, N. (2008). “SED-ML-an XML format for the
implementation of the MIASE guidelines,” in Computational Methods in Systems
Biology, M. Heiner, and A. Uhrmacher (Cham: Springer).

Krahn, H., Rumpe, B., and Vélkel, S. (2010). Monticore: a framework for
compositional development of domain specific languages. Int. J. Softw. Tools Technol.
Transfer 12, 353-372. doi: 10.1007/s10009-010-0142-1

Krishnan, J., Porta Mana, P., Helias, M., Diesmann, M., and Di Napoli, E. (2018).
Perfect detection of spikes in the linear sub-threshold dynamics of point neurons.
Front. Neuroinform. 11:75. doi: 10.3389/fninf.2017.00075

Kumbhar, P., Awile, O., Keegan, L., Alonso, J. B., King, J., Hines, M., et al
(2020). “An optimizing multi-platform source-to-source compiler framework for
the NEURON MODeling Language,” in Computational Science-ICCS 2020, eds. V.
Krzhizhanovskaya, G. Zavodszky, M. H. Lees, J. J. Dongarra, P. M. A. Sloot, S. Brissos
and J. Teixeira (Cham: Springer International Publishing), 45-58.

Linssen, C., Babu, P. N., Bouhadjar, Y., Ewert, L., Wybo, W., Lober, M., et al. (2024).
NESTML 8.0.0. Geneva: Zenodo.

Linssen, C., Jain, S., Babu, P. N., Morrison, A., and Eppler, J. M. (2022). ODE-
toolbox: Automatic selection and generation of integration schemes for systems of
ordinary differential equations. Zenodo. doi: 10.5281/zenodo.7193351

Linssen, C. A., Babu, P. N, Schmidt, L., Tetzlaff, T., Maryada, B.enelhedi, M. A.,
Eppler, J. M., et al. (2023). NESTML 6.0.0. Geneva: Zenodo.

Lytton, W. W, and Hines, M. L. (2005). Independent variable time-step integration
of individual neurons for network simulations. Neural Computation 17, 903-921.
doi: 10.1162/0899766053429453

Mayr, C., Hoppner, S., and Furber, S. (2019). SpiNNaker 2: A 10 million
core processor system for brain simulation and machine learning. arXiv preprint
arXiv:1911.02385. doi: 10.48550/arXiv.1911.02385

Mens, T., and Gorp, P. V. (2006). A taxonomy of model transformation. Elect. Notes
Theoret. Comp. Sci. 152, 125-142. doi: 10.1016/j.entcs.2005.10.021

Meurer, A., Smith, C. P., Paprocki, M., Certik, O., Kirpichev, S. B., Rocklin,
M., et al. (2017). SymPy: symbolic computing in Python. Peer] Comp. Sci. 3:e103.
doi: 10.7717/peerj-cs.103

Migliore, M., Cannia, C., Lytton, W. W., Markram, H., and Hines, M. L.
(2006). Parallel network simulations with NEURON. J. Comp. Neurosci. 21, 119-129.
doi: 10.1007/s10827-006-7949-5

Miller, A., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead, M., et al. (2010).
An overview of the CellML API and its implementation. BMC Bioinform. 11:178.
doi: 10.1186/1471-2105-11-178

Modelica Association (2023). Modelica - a Unified Object-Oriented Language for
Systems Modeling (Language Specification; Version 3.6). Available online at: https://
specification.modelica.org/maint/3.6/MLS.html

Morrison, A., and Diesmann, M. (2008). Maintaining Causality in Discrete

Time Neuronal Network Simulations. Berlin, Heidelberg: Springer Berlin Heidelberg,
267-278.

Morrison, A., Mehring, C., Geisel, T., Aertsen, A., and Diesmann, M. (2005).
Advancing the boundaries of high-connectivity network simulation with distributed
computing. Neural Comp. 17, 1776-1801. doi: 10.1162/0899766054026648

Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007). Exact
subthreshold integration with continuous spike times in discrete-time neural

Frontiersin Neuroinformatics

10.3389/fninf.2025.1544143

network simulations. Neural 19, 47-79. doi: 10.1162/neco.2007.19.

1.47

Comp.

Nordlie, E., Gewaltig, M.-O., and Plesser, H. (2009). Towards reproducible
descriptions of neuronal network models. PLoS Comp. Biol. 5:e1000456.
doi: 10.1371/journal.pcbi.1000456

Oberlidnder, J., Bouhadjar, Y., and Morrison A. Learning and replaying
spatiotemporal sequences: A replication study. Front. Integr. Neurosci. 16:974177.
doi: 10.3389/fnint.2022.974177

Panagiotou, S., Sidiropoulos, H., Soudris, D., Negrello, M., and Strydis,

C. (2022). EDEN: a high-performance, general-purpose, NeuroML-based
neural simulator. Front. Neuroinform. 16:724336. doi: 10.3389/fninf.2022.
724336

Parr, T. (2013). The Definitive ANTLR 4 Reference (1st ed.). Raleigh, NC: Pragmatic
Bookshelf.

Pauli, R, Weidel, P., Kunkel, S., and Morrison, A. (2018). Reproducing
polychronization: a guide to maximizing the reproducibility of spiking network
models. Front. Neuroinform. 12:46. doi: 10.3389/fninf.2018.00046

Perun, K., Rumpe, B., Plotnikov, D., Trensch, G., Eppler, J. M., Blundell, I, et al.
(2018). Reengineering NestML with Python and Monticore. Geneva: Zenodo.

Plesser, H. E. (2018). Reproducibility vs. replicability: A brief history of a confused
terminology. Front. Neuroinform. 11:76. doi: 10.3389/fninf.2017.00076

Plotnikov, D., Rumpe, B., Blundell, I, Ippen, T., Eppler, J. M., and Morrison, A.
(2016). NESTML: a Modeling Language for Spiking Neurons. Karlsruhe: Gesellschaft
fiur Informatik, 93-108.

Preston-Werner, T. (2013). Semantic Versioning 2.0.0. Available online at: https://
semver.org

Raikov, I, Cannon, R., Clewley, R., Cornelis, H., Davison, A., Schutter, E. D., et al.
(2011). NineML: the network interchange for neuroscience modeling language (poster
presentation). BMC Neurosci. 12:P330. doi: 10.1186/1471-2202-12-S1-P330

Rotter, S., and Diesmann, M. (1999). Exact digital simulation of time-invariant
linear systems with applications to neuronal modeling. Biol. Cybernet. 35, 169-186.
doi: 10.1007/s004220050570

Rougier, N. P, Hinsen, K., Alexandre, F., Arildsen, T., Barba, L. A., Bayol, B., et al.
(2017). Sustainable computational science: the ReScience initiative. Peer]. Comp. Sci.
3:e142. doi: 10.7717/peerj-cs.142

Schulte to Brinke, T., Duarte, R, and Morrison, A. (2022). Characteristic
columnar connectivity caters to cortical computation: replication, simulation,
and evaluation of a microcircuit model. Front. Integrat. Neurosci. 16:923468.
doi: 10.3389/fnint.2022.923468

Senk, J., Kriener, B., Djurfeldt, M., Voges, N., Jiang, H.-J., Schiittler, L., et al. (2022).
Connectivity concepts in neuronal network modeling. PLOS Computational Biology
18(9):€1010086. doi: 10.1371/journal.pcbi.1010086

Shampine, L., and Thompson, S. (2000). Event location for ordinary differential
equations. Comp. Mathem. Appl. 39, 43-54. doi: 10.1016/S0898-1221(00)00045-6

Sinha, A., Gleeson, P., Marin, B., Dura-Bernal, S., Panagiotou, S., Crook, S.,
et al. (2024). The NeuroML Ecosystem for Standardized Multi-Scale Modeling in
Neuroscience. eLife Sciences Publications, Ltd. doi: 10.7554/elife.95135.2

Spreizer, S., Senk, J., Rotter, S., Diesmann, M., and Weyers, B. (2021). NEST
Desktop, an educational application for neuroscience. eNeuro 8:ENEURO.0274-
21.2021. doi: 10.1523/ENEURO.0274-21.2021

Stimberg, M., Brette, R., and Goodman, D. F. (2019). Brian 2, an intuitive and
efficient neural simulator. eLife 8:e47314. doi: 10.7554/eLife.47314

Stimberg, M., Goodman, D. F. M., and Nowotny, T. (2020). Brian2GeNN:
accelerating spiking neural network simulations with graphics hardware. Scient.
Reports 10:410. doi: 10.1038/s41598-019-54957-7

Torvalds, L. (2022). Git: Fast, Scalable, Distributed Revision Control System.
Available online at: https://git-scm.com/

Trensch, G., Gutzen, R., Blundell, I, Denker, M., and Morrison, A. (2018). Rigorous
neural network simulations: a model substantiation methodology for increasing the
correctness of simulation results in the absence of experimental validation data. Front.
Neuroinform. 12:81. doi: 10.3389/fninf.2018.00081

Uhrmacher, A. M., Frazier, P., Hihnle, R, Kliigl, F., Lorig, F., Luddscher, B.,
et al. (2024). Context, composition, automation, and communication: The C2AC
roadmap for modeling and simulation. ACM Trans. Model. Comp. Simulat. 34, 1-51.
doi: 10.1145/3673226

Whetzel, P. L., Noy, N. F., Shah, N. H,, Alexander, P. R., Nyulas, C., Tudorache, T,
etal. (2011). BioPortal: enhanced functionality via new web services from the National

Center for Biomedical Ontology to access and use ontologies in software applications.
Nucleic Acids Res. 39, W541-W545. doi: 10.1093/nar/gkr469

Wilkinson, M., Dumontier, M., Aalbersberg, I., Appleton, G., Axton, M., Baak,
A, et al. (2016). The FAIR Guiding Principles for scientific data management and
stewardship. Sci Data 3:160018. doi: 10.1038/sdata.2016.18

Wimalaratne, S. M., Halstead, M. D., Lloyd, C. M., Cooling, M. T., Crampin, E. J.,
and Nielsen, P. F. (2009). Facilitating modularity and reuse: guidelines for structuring

frontiersin.org


https://doi.org/10.3389/fninf.2025.1544143
https://doi.org/10.48550/arXiv.2404.14364
https://doi.org/10.1007/s10827-011-0353-9
https://doi.org/10.1162/089976600300015475
https://doi.org/10.2370/9783844080100
https://doi.org/10.1089/omi.2010.0022
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.3389/fninf.2018.00002
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.3389/fninf.2017.00075
https://doi.org/10.5281/zenodo.7193351
https://doi.org/10.1162/0899766053429453
https://doi.org/10.48550/arXiv.1911.02385
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1007/s10827-006-7949-5
https://doi.org/10.1186/1471-2105-11-178
https://specification.modelica.org/maint/3.6/MLS.html
https://specification.modelica.org/maint/3.6/MLS.html
https://doi.org/10.1162/0899766054026648
https://doi.org/10.1162/neco.2007.19.1.47
https://doi.org/10.1371/journal.pcbi.1000456
https://doi.org/10.3389/fnint.2022.974177
https://doi.org/10.3389/fninf.2022.724336
https://doi.org/10.3389/fninf.2018.00046
https://doi.org/10.3389/fninf.2017.00076
https://semver.org
https://semver.org
https://doi.org/10.1186/1471-2202-12-S1-P330
https://doi.org/10.1007/s004220050570
https://doi.org/10.7717/peerj-cs.142
https://doi.org/10.3389/fnint.2022.923468
https://doi.org/10.1371/journal.pcbi.1010086
https://doi.org/10.1016/S0898-1221(00)00045-6
https://doi.org/10.7554/elife.95135.2
https://doi.org/10.1523/ENEURO.0274-21.2021
https://doi.org/10.7554/eLife.47314
https://doi.org/10.1038/s41598-019-54957-7
https://git-scm.com/
https://doi.org/10.3389/fninf.2018.00081
https://doi.org/10.1145/3673226
https://doi.org/10.1093/nar/gkr469
https://doi.org/10.1038/sdata.2016.18
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

10.3389/fninf.2025.1544143

Linssen et al.
CellML 1.1 models by isolating common biophysical concepts. Exp Physiol 94, 472-485. Yavuz, E., Turner, J., and Nowotny, T. (2016). GeNN: a code generation framework
doi: 10.1113/expphysiol.2008.045161 for accelerated brain simulations. Sci. Rep. 6:18854. doi: 10.1038/srep18854

Yang, S., and Chen, B. (2025). Effective surrogate gradient learning with high-order Zaytsev, Y., and Morrison, A. (2013). Increasing quality and managing complexity
information bottleneck for spike-based machine intelligence. IEEE Trans. Neural Netw. in neuroinformatics software development with continuous integration. Front.
Learn. Syst. 36, 1734-1748. doi: 10.1109/TNNLS.2023.3329525 Neuroinform. 6:31. doi: 10.3389/fninf.2012.00031

Frontiersin Neuroinformatics 21 frontiersin.org


https://doi.org/10.3389/fninf.2025.1544143
https://doi.org/10.1113/expphysiol.2008.045161
https://doi.org/10.1109/TNNLS.2023.3329525
https://doi.org/10.1038/srep18854
https://doi.org/10.3389/fninf.2012.00031
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org

	NESTML: a generic modeling language and code generation tool for the simulation of spiking neural networks with advanced plasticity rules
	1 Introduction
	1.1 Related work

	2 Methods
	2.1 Mathematical models of hybrid systems
	2.2 Numerical integration of models in time
	2.3 Interdependence of models
	2.4 The NESTML language
	2.4.1 Physical units
	2.4.2 Vectors
	2.4.3 Comments and docstrings

	2.5 The toolchain PyNESTML
	2.5.1 Parsing
	2.5.2 Validation
	2.5.3 Transformation
	2.5.4 Code generation
	2.5.5 Build


	3 Results
	3.1 Neuron and synapse co-generation
	3.1.1 Neuron model
	3.1.2 Synapse model
	3.1.3 Code generation
	3.1.4 Simulation

	3.2 Performance
	3.2.1 Description of the model
	3.2.2 Runtime performance
	3.2.3 Memory usage


	4 Discussion
	4.1 Software development methodology
	4.2 Limitations
	4.3 Future work

	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher's note
	Supplementary material
	References




