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With increasing model complexity, models are typically re-used and evolved

rather than starting from scratch. There is also a growing challenge in ensuring

that these models can seamlessly work across various simulation backends

and hardware platforms. This underscores the need to ensure that models

are easily findable, accessible, interoperable, and reusable—adhering to the

FAIR principles. NESTML addresses these requirements by providing a domain-

specific language for describing neuron and synapse models that covers a

wide range of neuroscientific use cases. The language is supported by a code

generation toolchain that automatically generates low-level simulation code

for a given target platform (for example, C++ code targeting NEST Simulator).

Code generation allows an accessible and easy-to-use language syntax to

be combined with good runtime simulation performance and scalability. With

an intuitive and highly generic language, combined with the generation of

e�cient, optimized simulation code supporting large-scale simulations, it opens

up neuronal network model development and simulation as a research tool to

a much wider community. While originally developed in the context of NEST

Simulator, NESTML has been extended to target other simulation platforms, such

as the SpiNNaker neuromorphic hardware platform. The processing toolchain is

written in Python and is lightweight and easily customizable, making it easy to

add support for new simulation platforms.
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1 Introduction

Numerical simulation is an essential technique for gaining insight into how neural

network dynamics relate to brain function (Einevoll et al., 2019); it can also be deployed in

an application-oriented way, for instance inmachine learning or robotics tasks. To perform

a simulation, an executable dynamical model is required: a representation of a natural

process or phenomenon formulated precisely as an algorithm (Figure 1). Typically, this

executable model is derived from a mathematical model developed to capture the salient

properties of the system of interest, on the basis of empirical data.
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FIGURE 1

The modeling process. Following the black arrows, a biophysical system of interest is identified (top left), and through experiment, empirical data is

generated (top middle). By analyzing and modeling this data, the system of interest is formulated as a mathematical model (top right). The model is

then implemented as an executable computer simulation (bottom right). Simulation produces measurable quantities that are analogous to the

original system (bottommiddle). For example, the system of interest could involve a synapse; produce the data points (indicated as markers); be

mathematically modeled according to Equations 9–11 and expressed as an executable model in NESTML (Listing 3), which when simulated, yields

the data points on the bottommiddle. Following the blue arrows in the diagram, validation is the process of evaluating the fit between simulated and

empirical data, whereas confirmation is the process of checking that the mathematical model adequately captures the empirical data, and

verification is the check that the executable model is an adequate implementation of the mathematical model. Note that these activities may be

denoted di�erently across disciplines or even within computational neuroscience (see, e.g. Uhrmacher et al., 2024). Adapted from Trensch et al.

(2018), their Figure 1B.

In order to progress efficiently in science, all the processes

identified in Figure 1 should be swift, accurate, and reproducible.

As neural network models can be very large (up to hundreds of

millions of neurons and three orders of magnitude more synapses;

Jordan et al., 2018), much effort has been expended in recent

decades in optimizing the simulate process in Figure 1.

Consequently, a wide range of neural network simulation

software and hardware now exists. This benefits the field of

computational neuroscience, as it provides researchers with the

flexibility to choose a simulator that is best for addressing a

particular research question (Crook et al., 2012). Although there

is overlap in the types of models that each can simulate, each

simulator typically provides its own unique user interface and

strikes a different balance between efficiency, flexibility, and

scalability. Many simulators offer the benefits of being well-

characterized, using a diverse array of automated tests and

benchmarks, being updated on a regular release cycle, and

benefiting from the open-source model of iterative refinement

(Zaytsev and Morrison, 2013). This diversity is advantageous, as

any given tool will have flaws, such as software bugs, systematic

biases, or unexamined assumptions, that may only become

apparent in particular circumstances (Brette et al., 2007). Therefore,

to increase the likelihood of long-term reproducible results, it is

desirable that network models can be simulated using more than

one simulator and the results cross-checked.

However, the fact that a wide diversity of simulation

engines exists, complicates the exchange of computational

models, both between labs and between simulators. Lack of

standardized terminology, notation, and graphical representations

for documenting models and networks negatively impacts progress

in research (Nordlie et al., 2009; Pauli et al., 2018; Senk et al., 2022).

Configuration files, scripting languages, or graphical interfaces

used for specifying model structure can be very different for

the different simulators, and this, together with subtle differences

in the implementation of conceptually identical ideas, makes

the conversion of a model from one simulation environment to

another an extremely non-trivial task. Consequently, it is rarely

undertaken, despite its obvious benefits and the sterling efforts

of the ReScience initiative (Rougier et al., 2017). The field of

computational neuroscience has much to gain from the ability to

easily simulate a model with multiple simulators (Einevoll et al.,

2019). For small-scale simulations, sometimes custom simulation

engines are written. Unfortunately, these self-made frameworks,

besides possibly duplicating published and established routines, are

more likely to contain bugs and lack documentation, for instance,

on edge-case behavior. Therefore, even for small networks, it is
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FIGURE 2

A NESTML-enhanced simulation workflow. Through code generation, NESTML augments the simulation engine with new neuron and synapse

models. After writing the models, the end user invokes the PyNESTML toolchain, which generates and compiles code that will be executed by the

target machine, and informs the user about any potential issues with the model via helpful messages. The simulation engine API is used to instantiate

a network of the neurons and synapses defined by NESTML. When the simulation runs, the main integration loop of the simulator invokes the

NESTML-generated code and returns recorded data back to the user via its API.

preferable to use standardized simulators and model description

formats.

In this article, we address the issues of reproducibility and

standardization in spiking neural network simulations by focusing

on improving the speed and accuracy of the implement process

in Figure 1. To this end, we present NESTML, a domain-

specific language (DSL; Uhrmacher et al., 2024) for neurons and

synapses (Plotnikov et al., 2016). It has a precisely defined syntax

and semantics, captured in the formal grammar and extensive

documentation, and further enforced by the toolchain through

automated checks. NESTML encourages generality in the model

descriptions by allowing end users to write models without having

to consider implementation details and the simulation platform

on which the model will ultimately be simulated. Likewise, the

language encourages completeness in model descriptions, because

each model contains all the necessary information needed for

simulation. These properties of generality and completeness of

the language benefit reproducibility. The language is designed

with an emphasis on user-friendliness, being easy to read and

write, while allowing powerful concepts to be expressed directly

in the language syntax, such as ordinary differential equations,

event handlers, and update statements in the style of imperative

programming. It is strongly typed, incorporating physical units.

Furthermore, the language is supported by a code generation

toolchain that parses and verifies the correctness of the model

and automatically generates simulation code for a given target

platform (Figure 2); for example, C++ code targeting NEST

Simulator (Gewaltig and Diesmann, 2007). Code generation

allows an accessible and easy-to-use language syntax to be

combined with good simulation performance; a technique that is

increasingly gaining traction within neuroscience (Blundell et al.,

2018a).

While these features of a DSL are convenient to have for

neuron models, they are particularly useful in the case of complex

synapse models, which are typically more challenging to implement

than neuron models. Even a long-established model such as STDP

(see Section 3.1.2) is tricky to implement correctly, especially

on a distributed system, as it requires meticulous bookkeeping

of spike times and communication latencies (Morrison et al.,

2005). This only becomes more complex as further features

such as additional postsynaptic variables or third-factor signals

are introduced. As new variants of synaptic plasticity models

are frequently introduced in the computational neuroscience

literature, tools that support rapid development by abstracting

away the tortuous algorithmic bookkeeping are highly desirable.

Furthermore, some synaptic plasticity rules require special support

from the neuron(s) that the synapse is connected to, such as

additional buffers storing various trace values. Adding support

to each neuron model for each synapse model is infeasible due

to the number of possible combinations. Code generation allows

the necessary data structures to be flexibly inserted into the

neuron during code generation, allowing each neuron model to

be combined with each synapse model without having to make

changes by hand.

NESTML was first developed as a domain-specific language for

neuron models for NEST simulator (Plotnikov et al., 2016). The

NESTML toolchain itself was originally developed in Java based

on the MontiCore Workbench (Krahn et al., 2010), which uses

an extended version of the Extended Backus–Naur form (EBNF)

to specify the grammar and automatically generates a parser for

the model. The low adoption rate of Java in the neuroscience

community made it difficult for researchers to maintain and

extend the software. As a result, NESTML was re-implemented

in Python (Perun et al., 2018; Blundell et al., 2018b), a widely used

programming language in the neuroscience community. In the new

implementation, the lexer and parser are generated using ANTLR

(Parr, 2013), while still adhering to the software design principles

of MontiCore.
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Since the transition, the toolchain has become more modular

and extensible. One advantage of this is that it has become much

easier to support new simulation platforms, for example, the

SpiNNaker neuromorphic platform (Furber et al., 2014; Linssen

et al., 2023). A second advantage is that the scope and feature

set of the toolchain could be rapidly expanded. Most notably,

NESTML now provides the ability to define synapse models. The

code for neuron and synapse models is generated in tandem,

by automatically moving the relevant variables from synapse to

neuron model (see Section 2.3). NESTML supports a number of

synaptic plasticity rules such as spike-timing dependent plasticity

(STDP), and variants thereof, such as STDP modulated by a

third-factor such as a global dopamine concentration. Further

feature enhancements include new language elements for spike

event handling and generation, support for vector operations,

faster code generation and build, and the addition of fundamental

mathematical functions such as ceil and erf. There have been

corresponding expansions and clarifications to the documentation

of the toolchain, user guides, and teaching material in the form of

tutorials (Linssen et al., 2024).

In the rest of this article, we first discuss other related modeling

languages and code generation tools, then provide a detailed

description of NESTML and its processing toolchain PyNESTML

(Section 2), and then illustrate the usage and performance of

NESTML for a specific, representative use case (Section 3).

1.1 Related work

NESTML fills a niche in the ecosystem of neural network

modeling languages such as NeuroML/LEMS (Gleeson et al.,

2010; Cannon et al., 2014), NineML (Raikov et al., 2011), and

NMODL (Hines and Carnevale, 2019), which are predominantly

used within the (computational) neuroscience domain, the Systems

Biology Markup Language (SBML; Hucka et al., 2003), used for

representing models of biochemical reaction networks, CellML

(Miller et al., 2010) for models of cellular and subcellular processes

involving interacting biomolecules, and Modelica (Modelica

Association, 2023) for general modeling of physical systems. In

general terms, DSLs can be declarative, which means they consist

of a list of declarations corresponding to parts of the model, or, in

contrast, they could consist of a list of imperative statements, giving

a list of instructions for building the model in a stepwise manner.

NESTML is similar in conception to NMODL, as both freely

allow the specification of imperative statements, encapsulated

in a declarative model, combining the strengths of both model

description approaches. In contrast to NMODL, NESTML has a

more Python-like, modern and accessible syntax, which does not

mix model definition and implementation details. For example,

in NMODL, numerical solver selection is defined as part of the

model itself, whereas in NESTML, the issues of what the dynamical

equations are and how they are to be integrated are kept separate.

The formulation in the NESTML syntax is a closer mapping

of the formal, mathematical, concepts (see Section 2.4) and the

integration sequence is more clearly defined (see Section 2.2),

whereas the NMODL language is not conducive to formulating a

series of statements that are executed once per timestep; statements

may be executed twice or more under control of the NEURON

solver. Furthermore, NESTML has additional features, such as

the ability to assign different priorities to event handlers, and

allow conditional statements to be formulated in a timestep-

independentmanner (see theonCondition block in Section 2.4).

As NEURON is a compartmental neuron model simulator (that is,

where a neuron is simulated in amorphologically detailedmanner),

NMODL contains syntactical features to expose compartment-

related functionality, which is not part of the NESTML vocabulary.

However, components of compartmental models, such as ion

channels, could in principle already be formulated using NESTML.

NeuroML (Sinha et al., 2024) is a model description language

used to describe models of neurons, synapses, and networks.

NeuroML provides a high-level, nested (hierarchical) structure

to models in a machine-readable (XML) format. NeuroML uses

a purely declarative approach to specify models in different

levels of detail: Level 1 focuses on the anatomical structure

of neurons (MorphML), Level 2 builds upon Level 1 and

specifies the electrophysiological properties of neurons such as

ion channels and synaptic conductances (ChannelML), and Level

3 describes the network structure (NetworkML). The underlying

dynamical behavior of the NeuroML components is defined using

LEMS (Cannon et al., 2014), a general-purpose language for

describing models and their simulations. In contrast, NESTML

combines the declarative and imperative approaches, allowing

imperative statements to be specified within the declarative

model.

Both NeuroML and NESTML support the specification of

a hybrid dynamical system. For NeuroML, this is achieved by

LEMS language elements such as Dynamics, OnEvent and

OnCondition; cognates of these elements are found in NESTML,

namely the equations and the update block for continuous

dynamics and onReceive and onCondition for discrete

events (see Section 2.1). Additionally, NESTML also provides the

modeler with the advantage of being able to define imperative

statements in a Python-like programming language within the

update, onCondition, and onReceive blocks. NeuroML

is designed to be extensible using LEMS, which enables the

definition of new model elements based on existing elements

such as cells, networks, synapses, inputs, and channels. Models

defined in NeuroML can be simulated using a LEMS simulation file

executed through Python (pyLEMS) and Java (jLEMS) interfaces.

Additionally, the LEMS simulation files can be translated to

other simulation platforms including Brian2 (Stimberg et al., 2019),

NEURON (Gleeson et al., 2010; Cannon et al., 2014) and

EDEN (Panagiotou et al., 2022). Unlike NeuroML, NESTML has

no language elements to support the specification of networks: it

generates low-level code for individual neuron and synapse models.

These individual components can then be further instantiated to

build a network and simulate on the target simulator with the help

of a corresponding simulation script of the appropriate sort for the

targeted platform (e.g PyNEST; Eppler et al., 2009).

As with Brian2, NMODL, and LEMS, all definitions and

expressions are strongly typed in NESTML. The toolchain checks

the consistency of physical units during model parsing and

validation, which prevents the use of inconsistent expressions.

NESTML automatically adds scaling factors during code

generation when the definitions have consistent units (see

Section 2.4.1).
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NESTML consists of a combination of modeling language and

code generation toolchain, providing the advantage of developing

both in parallel. The category of code generation tools in

neuroscience also includes Brian2 (Stimberg et al., 2019), GeNN

(Yavuz et al., 2016), NeuroML (Sinha et al., 2024), and NMODL

(Kumbhar et al., 2020; Abi Akar et al., 2019). Each of these has its

own separate toolchain and APIs and targets different simulation

platforms. All the mentioned code generation tools primarily

focus on code generation for their respective simulation platforms.

Notably, Brian2GeNN (Stimberg et al., 2020), an interface that

combines the code generation capabilities of Brian2 and GeNN,

bridges the capabilities of the two simulators, enabling Brian2

models to be executed on GPUs. NESTML takes a more simulator-

agnostic approach, generating code that can be run on multiple

backends such as NEST (Gewaltig and Diesmann, 2007) for CPU-

based simulations, and the SpiNNaker neuromorphic platform

(Furber et al., 2014). Furthermore, the NESTML toolchain is

modular and can be easily extended to add support for other

simulation platforms (see Section 2.5.4). Currently, support for

a GPU backend, NEST GPU (Golosio et al., 2021), is under

development. This extensibility is made possible by NESTML’s

clear separation between model specification and its subsequent

instantiation and simulation in a network.

Note that in the terminology of object-oriented programming,

NESTML formalizes the classes, but not the instances of each

class, which can vary in their state, parameter values, and

connectivity, but not (beyond changing parameter values) their

behavioral repertoire. Instantiating the actual populations and

connecting the elements together in a network at runtime remains

the responsibility of the simulation engine for which NESTML

generates code. For this, an imperative specification approach such

as PyNN (Davison et al., 2009) or PyNEST (Eppler et al., 2009) can

be used.

Furthermore, NESTML can be used in a complementary

fashion to other standards, such as the Simulation Experiment

Description Markup Language (Köhn and Le Novère, 2008), a DSL

that formalizes the simulation runs (duration, iterations, parameter

sweeps, etc.) and standards for uniquely identifying components

and processes, such as the Systems Biology Ontology and the

Computational Neuroscience Ontology (Whetzel et al., 2011).

2 Methods

2.1 Mathematical models of hybrid systems

Essentially, NESTML is a modeling language for hybrid

dynamical systems. Hybrid systems may contain a set of discrete

variables that take on a number of discrete states, and continuous-

valued variables (typically, real-valued numbers) that are allowed

to “jump” (change) instantaneously as the result of an event

(Shampine and Thompson, 2000). An event has a precise

timestamp of occurrence, but no duration or dynamics in time.

This approximation allows the efficient communication of event

occurrences rather than the more computationally expensive

alternative of communicating real-valued data at each simulation

timestep. In the specific case of spiking neural networks, neuronal

action potentials are often approximated as events and can be

conveniently expressed mathematically by the use of a Dirac delta

function δ(t), so that the spike train of a neuron can be written as:

s(t) =
∑

k

δ (t − tk) (1)

where tk is the k-th spike of a given neuron. When spikes are

treated as events, neuron and synapse models are therefore in the

class of hybrid dynamical systems defined above. The continuous-

time dynamics are expressed as a system of ODEs, that govern the

dynamics of a vector of state variables x, while receiving an arbitrary

external input g(t):

dx

dt
= f(t, x)+ g(t) (2)

Handling and generating the discrete-time events can be

expressed either as a convolution of the events with a kernel inside

the ODEs, or as a set of conditions and actions. Often these two

approaches are equivalent and the choice of how to express them is

largely amatter of personal preference. For example, an exponential

postsynaptic current can be calculated using two approaches: either

by convolving a decaying exponential kernel (given as a function of

time) with the incoming spike train, or by modeling the current as

an ODE that undergoes exponential decay, with the corresponding

state variable incremented upon the arrival of a spike by an event

handler. In the latter case, a condition/action block can be used:

if condition then

statements

endif (3)

Besides receiving a spike, conditions can include propositional

logic on the values of state variables, and can also be triggered by

an advancing of the simulation by a fixed timestep. Statements

typically modify state variables, using standard mathematical

operators and functions, and can also involve loops and recursion

(a list of the types of statements that can be used is given in

Supplementary Table 1).

2.2 Numerical integration of models in
time

The general strategy for integrating a hybrid system

numerically is to first integrate the ODE until the time of the

next event, and then incorporate new events (Morrison and

Diesmann, 2008). In between, conditions are evaluated, such as

whether the membrane potential has exceeded the spike threshold,

and the corresponding statements are executed. These steps are

carried out in a loop by the simulation platform. Depending on

the specifics of the platform, there are several possible approaches.

In particular, the presence or absence of transmission delays in

the system affects the order of processing steps (Figure 3A vs.

Figure 3B). In addition, the loop can proceed in timesteps of

constant duration (time-driven simulation, in which case 1t is
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FIGURE 3

The main integration loop in a spiking neural network simulator. The

precise sequence of operations carried out depends on whether the

simulation is considered to have propagation delays (A) or not (B)

(Morrison and Diesmann, 2008).

FIGURE 4

Numerical integration of an integrate-and-fire neuron. (left)

Time-based simulation with resolution 1t = 1 ms; spikes are

processed at the next simulation timestep. The membrane potential

threshold (dashed horizontal line) is crossed and a spike is emitted.

(right) Event-based simulation of the same neuron; spikes are

processed immediately as they arrive. No spike is emitted. Open and

filled circles indicate open and closed intervals.

a constant value), or it can jump directly from event to event

(event-driven simulation, in which case 1t is the time between two

successive events).

For time-driven algorithms, the choice of timestep is a trade-off

between the numerical precision achieved (and possibly, numerical

stability), and the time and computational effort required for the

simulation. In spiking neural network simulations, forcing spikes

to a fixed grid can result in discrepancies in the number of spikes

a neuron produces. As an example, consider the integration of a

dynamical system representing a simple integrate-and-fire neuron,

where incoming spikes directly increase the membrane potential

Vm (Figure 4). The left panels show a fixed timestep simulation,

where spikes can only be processed at multiples of the simulation

resolution. A coarse resolution of 1 ms was chosen to illustrate the

effect. If a spike occurs inside the interval between two subsequent

steps, its time of occurrence is effectively rounded up to the start

of the next step. Because this rounding causes the spikes to be

processed simultaneously, the threshold is crossed which causes a

spike to be emitted by the postsynaptic neuron.

An event-driven approach allows spike times to be handled at

machine precision, rather than being constrained to the simulation

resolution, and should therefore be considered as an alternative

simulation strategy for hybrid systems. In the panels on the right,

spikes are processed immediately, and the intermediate exponential

decay in Vm causes the neuron to not reach the threshold, so

no spike is emitted. The downside of the event-driven approach

is a lack of flexibility in the domain of spiking neural networks,

as the dynamics of most neuron models are not invertible; thus

the time of occurrence of the next spike cannot be analytically

calculated, which may cause some threshold crossings to be not

detected. Moreover, the overhead of maintaining a sorted event

queue becomes substantial as networks increase in size (Lytton and

Hines, 2005; Migliore et al., 2006). Hybrid strategies that are time-

driven in nature, but still allow events to occur between timesteps,

provide a potential solution. For example, to find the “exact” time

of threshold crossing, a linear or higher-order interpolation can

be made of the membrane potential between grid points, search

algorithms such as binary search can be used (Morrison et al., 2007;

Hanuschkin et al., 2010), and for some models, algebraic methods

can be used (Krishnan et al., 2018). All of these approaches aim

to approximate the basic integration scheme outlined before: in

a loop, integrate continuous dynamics between events, and then

handle the events, all while a set of conditions are continuously

checked.

As different simulation environments may employ different

integration strategies (Figure 3), and the choice of strategy is

beyond the control of NESTML (as it depends on the specifics of

the simulation platform), it is crucial for NESTML, as a generic

modeling language, to maintain compatibility with each of these

approaches. Models in NESTML are conceptually equivalent to

“pure” hybrid, event-based systems (Section 2.1), allowing the

most precise simulation strategies while retaining an open-ended

compatibility. However, this implies that the same NESTMLmodel

can yield different simulation outcomes, depending on the choice of

platform and its specific parameters such as the timestep resolution.

Some common numerical issues associated with hybrid systems,

such as numerical divergence, and issues related to zero crossing

detection should be addressed by changing the integrator used and

integration options inside the generated code (at compile time) or

by setting the relevant options inside the simulation platform (at

runtime). Furthermore, the ODE-toolbox can test the stiffness of a

system of ODEs solved by a numerical integrator (see Section 2.5.3).

2.3 Interdependence of models

Synaptic and neuronal models should ideally be formulated

independently of each other, so that each neuron can be combined

with each synapse for maximum flexibility. When a synaptic
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plasticity rule is formulated as a computational model, the plasticity

rule is often expressed as a function of the timing of pre- and

postsynaptic spikes, which are used in the dynamics of the weight

update for that particular rule (see Section 3.1.2 for an example).

Note that as each neuron is typically connected to hundreds or

thousands of other neurons via synapses on its dendritic arbor, each

of those synapses will observe the same postsynaptic spike times,

and store and numerically integrate them in exactly the same way,

causing a very large redundancy in memory and computation.

To prevent this redundancy, these values should only be stored

and computed once; ideally in the instances of the neuron models,

where the spike timings are readily available. To achieve this,

NESTML has the capability to process a synapse model as a pair

together with the (postsynaptic) neuron model that it will connect

to when the network is instantiated in the simulation. A list of

these (neuron, synapse) pairs can be provided as code generator

options (see Section 2.5.4) when invoking the NESTML toolchain

to generate code. During code generation, state variables that

depend only on postsynaptic spike timing are then automatically

identified and moved from the NESTML synapse model into the

neuron model by the toolchain. In the generated code, at the

points where the respective variables are used by the synapse

(for instance, where they are used in calculating the change in

synaptic strength), the variable references are replaced by function

calls into the postsynaptic neuron instance. All parameters that

are only used by these postsynaptic dynamics (for instance, time

constants) are also moved to reduce the memory requirements

for the synapse. Detecting and moving the state, parameters, and

dynamics (ODEs) from synapse to neuron is carried out fully

autonomously. We refer to this feature as the “co-generation”

of neuron and synapse. It enables flexibility and separation of

concerns in the model formalisations without compromising on

performance. Co-generation is further illustrated with a usage

example in Section 3.1.

2.4 The NESTML language

Many of the principles of NESTML can be implemented

irrespective of the precise underlying syntax used, which could have

been based, for instance, on XML1 or YAML.2 The chosenNESTML

syntax was inspired by Python and is designed to be minimalistic,

simple and intuitive. For example, by not using XML tags, a large

amount of syntactical overhead is avoided. NESTML is written in

plain text, allowing users to edit models directly in any text editor.

The language elements closely resemble mathematical models of

neurons and synapses, enabling users to input ordinary differential

equations (ODEs) directly as they are defined in the mathematical

model (see Section 3.1 for example models).

The different elements of the language correspond to specific

parts of the integration loop for hybrid dynamical systems

(Figure 3). In general, models are hierarchically structured in

elements or blocks. The top-level block names the model and can

1 https://www.w3.org/XML/

2 https://yaml.org/

contain any of the following sub-blocks (an example neuron model

with all the sub-blocks can be found in Listing 2).

• state: contains a list of declarations of variables with initial

values that are updated as the simulation evolves. These can

be variables with the dynamical equations in the equations

block or variables with discrete-time dynamics (for example,

finite state machines or Markov chains) that are updated over

time in the update block.

• parameters: contains a list of parameter declarations.

Parameters remain constant during the simulation.

• internals: contains a list of internal parameter

declarations. Internals remain constant, just like parameters,

but are not directly specified by the user; instead, they are

derived from other parameters in the parameters block.

• equations: contains a list of differential equation

definitions. Equations can be given as functions of time, first-

order, or higher-order differential equations; the toolchain will

attempt to rewrite the dynamics into a system of first-order

differential equations, suitable for numerical integration.

Additionally, the block may contain inline expressions to

reduce redundancy and improve the legibility of the model

code. Such an expression will be replaced verbatim when

its variable symbol is used in subsequent ODEs. There is

also support for delay differential equations, for which the

necessary buffers are automatically generated.

• input: contains a list of input ports, each receiving either

spike events or values that are continuous in time.

• output: defines the type of output this model generates, if

any; for instance, the model can emit spikes.

• update: contains statements that are executed between

events, corresponding to the “free-flight” integration of the

system of differential equations. Depending on the simulation

strategy, statements in this block are executed once every

timestep, at a fixed, discrete simulation resolution (Figure 4,

left) or once for every event, jumping from event to

event (Figure 4, right). If there are ODEs that need to be

integrated in time, statements in this block are responsible for

performing the integration by calling integrate_odes();

a specific subset of ODEs can be integrated by passing the

variable names as parameters. At the start of the block, the

state corresponds to that at time t. At the end of the block, the

state should have been updated (by the statements) to t + 1t.

• onReceive: contains statements that are executed whenever

an incoming spike event arrives; can be defined for each

spiking input port. Optional event parameters, such as the

weight, can be accessed by referencing the input port name.

Priorities can optionally be defined for each onReceive

block; these resolve ambiguity in the model specification of

which event handler should be called after which, in case

multiple events occur at the exact same moment in time on

several input ports, triggering multiple event handlers.

• onCondition: contains statements that are executed

when a particular condition holds. The condition is

expressed as a (boolean-typed) expression. Having an explicit

onCondition block, rather than writing conditions as

part of the update block statements, means that conditions
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can be checked at various points in the integration loop. For

example, referring to Figure 3B, the ODEs can be integrated

for the full timestep length 1t, after which conditions are

checked; however, many numerical solvers take smaller,

intermediate timesteps, and the conditions could in principle

also be checked after each intermediate step.

• function: defines a helper function that takes arguments

and contains statements, and returns a value through the

return keyword.

The language elements of NESTML that can appear in each

block are summarized in the Supplementary Table 1. Mathematical

and logic operators are available to form complex expressions.

Conditionals, loop statements and function calls can be used in

writing imperative code. Several predefined functions are available,

such as functions for random variables random_normal,

random_uniform, and random_poisson, as well as

mathematical functions like exp, ln, sin, cos, etc. Predefined

variables such as t, which represents the global simulator time, and

e which represents Euler’s constant are also available.

2.4.1 Physical units
If numerical models are developed in a general-purpose

scientific computation environment such as Python, it is easily

possible to accidentally define a model that does not make physical

sense due to mismatches in the physical units in an expression (one

recent case is described in Oberländer et al., 2022). To address

this issue, all of the definitions and expressions in NESTML are

strongly typed, which means they have the type integer (a

natural number), real (a real number), string, boolean (a

Boolean value), or a physical unit such as mV for millivolt or nS

for nanosiemens. The types of expressions and assignments are

checked for consistency when the toolchain is invoked, preventing

users from writing models that are not internally consistent (see

Listing 1 for an example). NESTML automatically adds a scaling

factor of 10−3 when generating code for line 4 of Listing 1, because

the units are consistent but the prefixes are different (millivolt and

volt). NESTML also checks for consistency in expressions (lines

10–11) and raises an error when the units are incompatible (line

11). Internally, we use the AstroPy package for units computations

(Astropy Collaboration et al., 2022). These are supplemented with a

set of equivalences, such that any quantity is convertible to real, and

that real numbers are convertible to integers (although a warning

will then be emitted during model validation).

All input spikes are modeled as Dirac delta functions in time,

with an implicit unit of s−1. Physical units such as mV and nS can

be directly multiplied by the Dirac delta function to model an input

spike with a physical quantity such as voltage or conductance.

2.4.2 Vectors
NESTML provides support for declaring variables as vectors to

store an array of values. They can be defined in the parameters,

state, and internals blocks. The vectors are declared with

a non-zero size and can be any of the NESTML types or physical

units described in the previous section. The size of a vector can be

a fixed, positive integer value, or a variable previously declared in

the parameters or internals block. In this case, the vector

will be resized if the value of the size variable changes during the

simulation. The vector variables are particularly beneficial when

the model has to capture and perform computations based on a

sequence of values. For example, Hagen et al. (2022) implemented

a neuron model using NESTML which computes the finite impulse

response (FIR) filter of incoming neuronal spikes. The model

stores FIR filter coefficients and binned input spikes into vector

variables and calculates the filter output at every timestep of

the simulation.

2.4.3 Comments and docstrings
Single or multi-line comments in the model are supported

with the # character. Comments following a declaration on

the same line are considered to document the variable that

was declared. In combination with docstrings, which are

reStructuredText-formatted, human-written, and human-readable

model documentation strings (Goodger and van Rossum, 2001),

these allow us to produce richly formatted model documentation

pages in HTML in a fully automated manner.3

2.5 The toolchain PyNESTML

The PyNESTML toolchain is illustrated in Figure 5 and consists

of several sequential processing steps, as described in detail below,

which result in code being generated and then built. The output

of the toolchain depends on some invocation parameters. These

include, most importantly, which target platform to generate code

for, where the generated code should be stored and (optionally)

installed to, logging and verbosity options, and options specific for

each target platform code generator.

2.5.1 Parsing
The NESTML model is parsed to an internal representation,

called the parse tree, using a lexer and parser. The lexer takes in

the model file and generates a set of tokens including keywords,

operators, and string literals. The parser takes in the tokens and

generates a parse tree based on the grammar rules for all the

constructs used in the NESTML language. The NESTML grammar

is expressed as an Extended Backus-Naur form (EBNF) grammar

(Parr, 2013); we use ANTLR (ibid.) to automatically generate the

Python code for the lexer and parser, which in turn will lex and

parse the NESTML model files.

A parse tree represents an elementary approach for storing

models in a convenient computer-processable structure. However,

often additional information or operations need to be stored

together with the nodes in the tree, making the immutable structure

of the parse tree not useful for further processing. Thus, an

intermediate representation of the model is derived called the

Abstract Syntax Tree (AST; Hölldobler et al., 2021). While a given

node in the parse tree is represented by a token object as generated

by ANTLR, a node in the AST is a data structure that stores the

information and operations for individual elements of theNESTML

3 https://nestml.readthedocs.io/en/latest/models_library/
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1 model physical_units_consistency_check:
2 state:
3 I_syn pA = 42 pA # Same unit; no error
4 V_m mV = -0.07 V # Consistent units; no error
5

6 parameters:
7 g_L nS = 20 nS # Same unit; no error
8

9 update:
10 I_1 pA = I_syn - V_m * g_L # Consistent units; no error
11 I_2 pA = I_syn - V_m / g_L # Inconsistent units; error!

Listing 1 Demonstration of physical units consistency check.

FIGURE 5

PyNESTML toolchain internal workflow: parsing, validation, transformation, code generation using templates and code generator options, and

optionally, building the code.

language. All the nodes in the AST inherit from an abstract base

class called ASTNode. These node classes are hand-written to

enable custom functionality (methods and members) in different

types of nodes, but in general they are lightweight and can be easily

adapted from existing node classes.

NESTMLmakes use of the visitor design pattern. Each visitor is

a separate class that operates recursively on nodes in an AST. It is

a useful software architecture pattern that separates the concern of

operating on the AST from that of representing it. New operations

can be easily added by defining new visitors without changing

the existing code of the tree nodes. Each visitor class has a single

responsibility and implements a specific operation, making the

code more maintainable and understandable. The visitor pattern is

used for validation (Section 2.5.2), transformation (Section 2.5.3),

and code generation (Section 2.5.4).

Because NESTML supports scoped declarations, where a local

variable is only accessible inside the block it is defined in, each block

is endowed with a unique symbol table, and each node is assigned

a particular symbol table scope. This pattern facilitates easy symbol

lookup (Hölldobler et al., 2021).

2.5.2 Validation
Validation consists of several steps that are run in sequence:

1. Parsing (validating the model syntax according to lexer and

grammar). Validation of correctness is carried out by the parser

itself, which is generated based on the NESTML grammar.

2. Further syntactical, but context-dependent (as opposed to the

grammar’s context-free) checks, for example, that names are

uniquely defined within each scope.

3. Semantic checks, for example, consistency of physical units.

4. Checks during code generation (some target platformsmay have

specific requirements, such as a particular variable having been

defined).

The second and third steps involve a set of checks, which

often use the visitor pattern and test a model for correctness in

one specific respect. Each of these checks is, like unit tests, hand-

written by the NESTML developers. They are run immediately

following the parsing of each model into an AST, and cover

issues that might be legal according to the NESTML syntax, but

semantically incorrect. A subset of these checks is run between

model transformation steps, to help validate the correctness of the

transformation (see Section 2.5.3). A list of the defined checks is

given in the Supplementary Table 2.

2.5.3 Transformation
Transformations operate on the AST of each model and can

add, remove, or alter nodes in the tree. Transformers change the

internal structure of the models to improve certain characteristics

(such as runtime performance) without necessarily changing their

observable behavior (input-output function; Mens and Gorp,

2006). Transformations can also refine the model specification

into a more fully-fledged implementation, by means of successive

refinement steps that add more concrete details. After each

transformation stage, the altered ASTs can be printed again as
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FIGURE 6

ODE-toolbox flow diagram. All inputs to and outputs from the package are encoded as strings in JSON files.

NESTML syntax. This enables the model developer to inspect, for

instance, how the solution of the ODEs has been implemented.

Transformers can be specific to model type (for instance,

some optimizations could make sense for synapse models but not

neurons). Analogously, a specific set of transformers (or a set of

transformers parameterized in a certain way) can be required for

specific target platforms. For instance, if the generated code is to

be in C++, a “variable names transformer” converts variable names

that would collide with C++ language keywords (but would be fine

if we were generating code for, say, Python).

The call signature of a transformer is that it accepts a set

of NESTML model ASTs (potentially, a mix of neuron and

synapse models), and again returns a set of models. By allowing

transformers to work on sets of models rather than individual

models, components of each model can be processed together,

enabling optimizations that would not be possible if each model

were processed separately. For example, the neuron/synapse “co-

generation” transformer (see Section 2.3) can move variables from

a synapse to a paired neuron model.

Transformations related to kernels and ODEs are carried

out by the Python package ODE-toolbox (Linssen et al., 2022;

Figure 6). It was spun off from NESTML as an independent

Python package (Blundell et al., 2018b), but remains an essential

dependency of the PyNESTML toolchain. It leverages SymPy

(Meurer et al., 2017) for the symbolic manipulation of differential

equations. For all dynamics admitting an analytic solution, ODE-

toolbox generates propagator matrices that allow the solution to

be calculated at machine precision (Rotter and Diesmann, 1999).

For all other systems, first-order update expressions are returned

based on the Jacobianmatrix. ODE-toolbox can also perform solver

benchmarking based on a set of user-configurable heuristics, to

predict which solver will perform better during simulation.

2.5.4 Code generation
Options specific to the code generator for a specific target

platform are given as code generator options encoded in a JSON

data structure, rather than being part of the model description

itself. In general, we try to separate implementation details from

the pure specification of the model. Implementation details could

include the choices for timestep, numerical solver, random number

generation algorithm, threshold crossing interpolation algorithm

(if applicable), the integration sequence (Figure 3), or many other

specifics. These details should not be part of the model specification

itself, but are properties of the simulation platform, and should

therefore only be incorporated during code generation (or even

after that; such as a timestep that is set in the simulation script).

Note that in principle one could write, for example, a root-finding

algorithm in NESTML to find the exact time of threshold voltage

crossing; this would then be considered essential for the model

and a part of the specification rather than the implementation.

Another example would be the support for electrical synapses (or

gap junctions). For instance, NEST has a native implementation

for electrical synapses; NESTML supports code generation for

this feature through code generation options. In general, we

recommend taking full advantage of the automated processing

capabilities of the toolchain; specifying these details in the model

description should be considered an action of last resort.

Support for a new target platform is as simple as adding a

new set of templates, if pretty printers (Hölldobler et al., 2021) or

unparsers (which convert nodes in the AST into target language

code) for the target language are already available, as is the case

for C, C++, and Python. Otherwise, new printers would have

to be written, however, these can be easily adapted from the

existing printers. NESTML, with the help of the ODE toolbox,

generates the solutions for the ODEs in themodel and recommends

the type of solver for the given system of ODEs. The NESTML

model is agnostic of the type of solver to use and relies on the

implementation of a particular solver simulation platform. If the

system of ODEs is analytically solvable with the help of propagators,

NESTML recommends that solution and generates the relevant

code to compute the state updates. On the other hand, if the system

of ODEs is non-linear, the toolchain recommends a numerical

solution, in which case, the implementation of a particular type of

solver (for instance, forward Euler or Runge-Kutta) must be solely

provided by the hosting simulation platform.

2.5.5 Build
The build stage involves invoking a compiler and linker

on the generated code, optionally incorporating libraries like

the C++ standard library, or platform-specific libraries like

those for numerical ODE solvers. Subsequently, any required

installation steps are performed, such as copying files, running

make install, or uploading the generated binary file(s) to a

neuromorphic hardware platform. Logs from the build process can
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optionally be captured to stdout and stderr, but it should

not be necessary to inspect these under normal circumstances;

any potential issues with the model should have been detected

and reported in a user-friendly manner during the parsing and

validation step.

If the target platform has a means for dynamically loading

the generated binaries at runtime, the models can be immediately

loaded and instantiated in a network after code generation is

complete (in NEST, this is realized by the nest.Install() API

call). The NESTML model code can then even be included inside

the simulation script itself. Otherwise, the simulation engine for the

specified target platformwill require recompilation as well, with the

generated NESTML code statically linked.

3 Results

3.1 Neuron and synapse co-generation

To illustrate the use of NESTML, we present a use case where a

specific neuron type and a specific synapse type are modeled and

simulated. The neuron is an adaptive exponential integrate-and-

fire type with spike-rate adaptation (Section 3.1.1), and the synapse

is a spike-timing dependent plasticity rule (Section 3.1.2). Code

for these models is generated in combination, demonstrating the

“co-generation” transformer detailed in Section 2.5.3.

3.1.1 Neuron model
The subthreshold dynamics of the neuron model is given by

a set of two coupled differential equations, the first describing the

dynamics of themembrane potentialVm, and the second describing

the dynamics of an adaptation current Iadap:

dVm

dt
=

1

Cm

(

−gL(Vm − EL)+ Ispike − Isyn − Iadap + Istim
)

(4a)

dIadap

dt
=

1

τadap

(

a(Vm − EL)− Iadap
)

(4b)

For a complete listing of all parameters and their values, refer

to Supplementary Table 3.

The spike current term Ispike is given by the expression:

Ispike = gL1T exp
(

(Vm − Vth)/1T

)

(5)

The synaptic input current is given by the convolution:

Isyn =

∑

i

wi

(

Ksyn ∗ si(t)
)

(6)

with i summing all presynaptic neurons, wi weight of the

connection from presynaptic neuron i, si the spike train emitted

by neuron i, and the alpha-shaped (rise-and-decay) postsynaptic

current kernel defined as (Rotter and Diesmann, 1999):

Ksyn =

{

(e/τsyn)t exp(−t/τsyn) t ≥ 0

0 otherwise
(7)

and si(t) is the incoming spike train of presynaptic neuron i, defined

as a sum of Dirac delta functions (see Equation 1), weighted by wi

(in units of Ampère). Alternatively, the spikes can be also directly

integrated into the synaptic current (see the code listing in the

Supplementary material, Listing 1, Line 12).

The differential equations expressing the subthreshold

dynamics of the neuron are complemented by the membrane

potential threshold condition for spike generation:

if Vm ≥ Vpeak →











a spike is emitted;

Vm is set to Vreset;

Iadap is incremented by b.

(8)

Note that we consider the postsynaptic response to be,

conceptually, a part of the neuronmodel. This is in line with current

approaches in neuroscience simulators. Because the dynamics

of the postsynaptic response is linear, the postsynaptic current

contributions of all the synapses can be added into one single

postsynaptic variable Isyn and integrated as one.

The model can be expressed in NESTML syntax as shown in

Listing 2. Note the direct correspondence between the theoretical

(mathematical) model and the model syntax, in particular between

the ODEs and convolution with a kernel (Equations 4a–7) and the

equations block, lines 6–12, as well as the event conditions

(Equation 8) and the onCondition block on lines 36–39.

Additional support is added for a continuous-time current input

using the continuous input port on line 28.

In this particular model, the dynamics of the postsynaptic

response (Isyn) will be integrated numerically for the sake of

making comparisons in performance to NEST built-in models in

benchmarks (Section 3.2), but an analytic solution for the alpha

kernel dynamics is readily derived by ODE-toolbox; analytic solver

code can, in general, be generated for any subset of ODEs that

admit an analytic solution and is combined seamlessly with the

numerical integration code. The variable that keeps track of the

state of convolutions (here, I_syn) is automatically added to the

set of state variables during code generation. Alternatively, the

convolutions can be written using an onReceive event handler

containing statements to process the spike input. The two methods

of handling spikes are equivalent and the user can choose either

to implement their models. For the sake of demonstrating the

capabilities of NESTML, we show the convolutional approach in

the neuron model (Listing 2) and the event handler approach

in the synapse model (Listing 3). The alternative version of the

neuron model using the event handler can be found in the

Supplementary material (Listing 1).

3.1.2 Synapse model
The synapse model that we present here is a variant of a spike-

timing dependent plasticity (STDP) rule (Bi and Poo, 1998) and

defined such that a pair of spikes in the pre- and postsynaptic cells,
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1 model aeif_psc_alpha_neuron:
2 state:
3 V_m mV = E_L # Membrane potential
4 I_adap pA = 0 pA # Spike-adaptation current
5

6 equations:
7 kernel K = (e / tau_syn) * t * exp(-t / tau_syn) # "Alpha" postsynaptic current kernel
8 inline I_exp pA = g_L * Delta_T * exp((V_m - V_th) / Delta_T) # Exponential current term
9 inline I_leak pA = -g_L * (V_m - E_L) # Membrane leak current
10 inline I_syn pA = convolve(K, spikes) * pA # Total synaptic input current
11 V_m’ = (I_leak + I_exp + I_syn + I_stim - I_adap) / C_m # Membrane potential dynamics
12 I_adap’ = (a * (V_m - E_L) - I_adap) / tau_adap # Spike-adaptation dynamics
13

14 parameters:
15 C_m pF = 281 pF # Membrane capacitance
16 g_L nS = 30 nS # Leak conductance
17 E_L mV = -70 mV # Leak reversal potential
18 a nS = 4 nS # Subthreshold adaptation
19 b pA = 80.5 pA # Spike-triggered adaptation
20 Delta_T mV = 2 mV # Slope factor
21 tau_adap ms = 144 ms # Adaptation time constant
22 V_th mV = -50.4 mV # Spike initiation threshold
23 V_peak mV = 0 mV # Spike detection threshold
24 tau_syn ms = 0.2 ms # Synaptic time constant
25

26 input:
27 spikes <- spike # For presyn input spikes
28 I_stim pA <- continuous # For external stimulus current
29

30 output:
31 spike # Unweighted spikes can be emitted
32

33 update:
34 integrate_odes() # Each simulation timestep, integrate ODEs
35

36 onCondition(V_m >= V_peak): # Threshold crossing detection
37 V_m = E_L # Reset potential
38 I_adap += b # Increment spike-adaptation current
39 emit_spike()

Listing 2 Adaptive exponential integrate-and-fire neuron model with alpha-shaped postsynaptic currents.

at times tpre and tpost respectively, induces a change 1w in the

weight w of the synapse:

1w = λp · Kp

(

tpost − tpre
)

− λd · Kd

(

tpre − tpost
)

(9)

The weight is increased through the first term when tpost > tpre
and decreased by the second term when tpre > tpost. Coefficients

λp and λd (≥ 0) set the magnitude of the update. The temporal

dependence is defined by the filter kernels Kd and Kp, which are

taken to be decaying exponential functions:

Kp,d(t) =

{

exp(−t/τp,d) t ≥ 0

0 otherwise
(10)

To implement the behavior for the kernel, we use two extra

state variables, which represent a pre- and postsynaptic “trace” that

keeps track of recent spiking activity. These trace variables are

incremented by 1 whenever a spike is generated and decay back to

zero exponentially. Expressed as a differential equation,

dtrpre

dt
= −

trpre

τd
+ spre(t) (11)

where spre(t) is the presynaptic spike train and trpre(0) = 0.

This can equivalently be expressed as a convolution between the

exponentially decaying kernel and the presynaptic spike train

trpre(t) = Kd ∗ spre(t). (12)

Analogous equations hold for the postsynaptic trace variable.

The trace equation (Equation 11) and its postsynaptic

counterpart can be expressed practically one-to-one in NESTML

syntax (Listing 3, lines 8 and 9, and 20 and 25), as can the weight

update rule (Equation 9) on lines 19 and 24.

Further modifications and developments of the model have

now become very easy thanks to the use of NESTML. For example,

adding a dependence on the existing weight in the update rule

(Equation 9) is now trivial, by inserting these new terms into the

weight update expression (Listing 3, lines 19 and 24).

3.1.3 Code generation
As discussed in Section 2.3, NESTML transforms the code

for neuron and synapse models in such a way as to prevent

redundancy of state variables that are defined in the synapse

but that depends only on the postsynaptic spiking activity. To

invoke the co-generation transformer in the PyNESTML toolchain,
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1 model stdp_synapse:
2 state:
3 w real = 1 # Weight of the synapse
4 tr_pre real = 0 # Presynaptic trace
5 tr_post real = 0 # Postsynaptic trace
6

7 equations:
8 tr_pre’ = -tr_pre / tau_tr_pre # Decay pre trace
9 tr_post’ = -tr_post / tau_tr_post # Decay post trace
10

11 input:
12 pre_spikes <- spike # For presynaptic input spikes
13 post_spikes <- spike # For postsynaptic input spikes
14

15 output:
16 spike(w real, d ms) # Emits spikes with weight and delay attributes
17

18 onReceive(pre_spikes):
19 w -= lambda_d * tr_post # Depress synaptic weight
20 tr_pre += 1 # Update presynaptic trace
21 emit_spike(w, delay) # Send spike to postsynaptic neuron
22

23 onReceive(post_spikes):
24 w += lambda_p * tr_pre # Potentiate synaptic weight
25 tr_post += 1 # Update postsynaptic trace
26

27 parameters:
28 delay ms = 1 ms # Synaptic delay
29 tau_tr ms = 50 ms # Pre/post trace time constant
30 lambda_p real = .02 # Potentiation learning rate
31 lambda_d real = .01 # Depression learning rate

Listing 3 STDP synapse model.

1 # Define code generation options
2 codegen_opts = {"neuron_synapse_pairs": [{"neuron": "aeif_psc_alpha_neuron",
3 "synapse": "stdp_synapse",
4 "post_ports": ["post_spikes"]}]}
5

6 # Invoke the NESTML toolchain to generate code for the NEST target
7 generate_target(target_platform="NEST",
8 input_path=["aeif_psc_alpha_neuron.nestml", "stdp_synapse.nestml"],
9 codegen_opts=codegen_opts)

Listing 4 Invoking the NESTML code generator through its Python API.

the synapse and postsynaptic neuron pair are given as code

generator options (Listing 4, lines 2–4). In order to maintain

maximum flexibility during network instantiation, there is no

specific NESTML language syntax keyword to mark a spiking input

port as pre- or postsynaptic. Instead, this information is passed

in via the code generator options; in the example (Listing 4, lines

7–9), the name of the spiking input port in the synapse that will

be connected to the postsynaptic neuron (here, post_spikes)

needs to be explicitly passed to the post_ports code generator

option. As described in Section 2.3, the co-generation transformer

then recursively identifies all state variables (in this case,

tr_post on line 5 of Listing 3) and corresponding update

statements (Listing 3, lines 9 and 25) that can be moved into the

neuron model.

3.1.4 Simulation
After the PyNESTML toolchain finishes its processing, the

models are available to be used in a network simulation; for

example, in NEST, they can be dynamically loaded during runtime

using the nest.Install() API call and can be instantiated

using nest.Create() (for neurons) and nest.Connect()

(for synapses).

As an initial validation step, we make a numerical comparison

between the NESTML-generated code and the NEST built-in

models (Figure 7, left). One neuron of each kind was instantiated,

and stimulated by a step current starting at t = 25 ms. The

membrane potential of each neuron is plotted in the top panel, and

action potentials emitted after threshold crossing are indicated by

diamond markers. The bottom panel shows the absolute difference

between membrane potential traces, revealing differences arising

primarily due to the different ways in which the firing condition

is checked: the numerical solver can internally choose smaller

step sizes, and in NEST, conditions are checked inside of this

“inner loop”.

The NESTML generated synapse code was validated by causing

pre- and postsynaptically connected neurons to fire at specific

intervals (Figure 7, right). The synaptic (dendritic) delay was
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FIGURE 7

Numerical comparison of the NEST (orange) and NESTML (blue) version of each model. (left) Neuron model; (right) Synapse model.

chosen as 10 ms, causing the horizontal offset from tpost − tpre =

0 ms. Numerical differences between the NEST and NESTML

synapses were zero down to machine precision and are thus not

shown.

3.2 Performance

3.2.1 Description of the model
To benchmark howwell the NESTML-generated code performs

in large-scale simulations, we perform simulation runs of a

balanced excitatory/inhibitory (E/I) network, as illustrated in

Figure 8 (left), composed of the neuronmodel from Section 3.1.1 in

combination with the synapse model from Section 3.1.2. Networks

of varying sizes are simulated using NEST. Each network contains

a random, sparse connectivity, such that each neuron in the

excitatory population receives connections from 1,000 randomly

picked neurons from the E/I pool, and each neuron in the

inhibitory population receives connections from 250 randomly

picked neurons from the E/I pool. All details and numerical values

of the parameters are described in Supplementary Table 3. This

is a canonical and representative use case in neuroscience, based

on the seminal model proposed by Brunel (2000), and allows

the network size to be varied across several orders of magnitude

(with the number of synapses in the network proportional to the

number of neurons), while the dynamics remain qualitatively and

quantitatively constant (Figure 8, right), with an average firing

rate per neuron of approximately 15 spks/s, and a coefficient of

variation (CV) of approximately 0.25, close to that of a Poisson

process. Although under some conditions, the network dynamics

can remain stable even with plastic synapses, here we set the

learning rates λp = λd = 0 for simplicity. In this way, the weight

updates are computed, but the actual weight values are notmodified

and the resulting network dynamics remain stationary.

The networks are simulated on a high-performance computing

(HPC) cluster. The simulation is distributed over multiple compute

nodes that communicate via MPI. The process running on each

node, in turn, performs parallel (multiprocessing) simulation based

on OpenMP threads. We perform strong scaling and weak scaling

experiments (Jordan et al., 2018) to assess the performance of

the network with NESTML-generated models, as compared to the

NEST built-in models. In strong scaling experiments, the total

problem size is fixed while the number of compute nodes is varied.

This gradually reduces the load on each compute node, measuring

how effective extra compute hardware is in reducing the simulation

time for the same network. In weak scaling experiments, the

problem size per compute node is fixed. Hence, the total problem

size increases proportionally to the number of compute nodes,

providing a measure of how effective the simulator is in simulating

ever larger networks.

For each network, we compare the following combinations of

neuron and synapse models:

• NEST Simulator built-in neuron model + NEST Simulator

built-in synapse model (NEST)

• NESTML neuron model + NEST Simulator built-in synapse

model (NESTML/NEST)

• NESTML neuron model + NESTML synapse model

(NESTML)

The NEST built-in models are based on manually written and

optimized C++ code and thus serve as our reference point.

3.2.2 Runtime performance
For the strong scaling experiment, we simulate a network size

of 100,000 neurons with a fixed in-degree (Figure 9, left). Since the

problem size is fixed throughout the experiment, we expect the

simulation to speed up when we add more compute nodes. This

can be seen in the top left panel, which illustrates the wall clock

time required for the simulation as a function of the number of

nodes, ranging from 2 to 64. All models exhibit a near-identical

reduction in wall clock time with an increasing number of nodes,

demonstrating effective parallelization. Whereas on this scale, all

combinations of hand-written and generated code seem to have the

same performance, a small difference can be seen when plotting

the ratio of the wall clock time with respect to the NEST baseline

(Figure 9, lower left). Here, we can see that the NESTML/NEST
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FIGURE 8

Dynamics of the neuron and synapse model in a network simulation. Left Architecture of the benchmark E/I network (using the graphical notation

conventions from Senk et al., 2022). Right Interspike interval distributions for networks composed of neurons and synapses from NEST as well as

NESTML validate the dynamics on a functional level (Kolmogorov-Smirnov two-sided test between NEST and the other two curves p < 0.01).

FIGURE 9

Runtime performance of the neuron and synapse models in a network simulation; comparison between NESTML-generated and NEST models.

Horizontal axis indicates number of compute nodes used (same for all panels). (Left column) Performance in the strong scaling experiment; (right

column) Weak scaling experiment. (Top row) Shows wall clock time; lower is better. (Bottom row) Same data but expressed as a ratio with respect to

NEST.

code is approximately 2% slower thanNEST, and theNESTML code

is about 5% slower, independent of the number of nodes.

For the weak scaling experiment, we simulate the network

with the network size of 100,000 neurons on each compute node

with a fixed in-degree (Figure 9, right). Although the network size

per compute node remains constant with the increasing number

of nodes, we expect to see an increase in the total simulation

time of the network due to the increasing communication and

synchronization overheads that becomemore pronounced at larger

scales. As expected, the top right panel shows the wall clock

time consistently increases with the number of nodes across all

configurations. Again, for ease of visual comparison, we take the

NEST hand-written code as a reference and plot the same data

as a ratio between the obtained wall clock time and the reference

(Figure 9, bottom right). Also in the weak scaling scenario, the

NEST/NESTML code is consistently around 2% slower and the

NESTML code is approximately 5 to 6% slower than the NEST

baseline.

As the mild performance difference between the baseline NEST

code and the NEST/NESTML and NESTML variants remains

approximately constant over all numbers of nodes and for both

strong and weak scaling, we can conclude that it is most likely
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FIGURE 10

Memory use (RSS) of the network simulation for weak scaling experiment. Horizontal axis and legend are the same as in Figure 9. Vertical axis shows

absolute memory usage (left) and memory usage expressed as a ratio with respect to NEST (right).

due to a slightly less efficient calculation of neuronal and synaptic

dynamics rather than less efficient communication. An alternative

cause of performance loss is different memory footprints, which we

examine in the next section.

3.2.3 Memory usage
We measure the memory usage of the network during the

simulation by recording the Resident Set Size (RSS) value of the

simulation process. We calculate the total memory consumed

during the simulation by adding the RSS values of all the processes

on all the compute nodes. Memory consumption for the weak

scaling experiment is shown in Figure 10, left, showing that the total

value of the RSS for the simulation increases due to the increase

in the overall problem size in weak scaling. The curves follow a

straight line, indicating a power-law scaling relationship with a

slope of approximately 1.1. As for the performance benchmarks,

we plot the same data expressed as a ratio with respect to the NEST

built-in models (Figure 10, right). NESTML generated code for the

neurons requires up to about 5% more memory than the built-

in models, while the co-generated code for neurons and synapses

performs up to 30% worse, indicating that especially the synapse

model code generation could benefit from further optimizations.

The size-dependent effect on the memory consumption excludes a

memory effect on the performance loss for NESTML reported in

the previous section, as the performance loss is independent of size.

4 Discussion

We have created a succinct yet powerful modeling language,

NESTML, and combined it with a toolchain (PyNESTML)

that validates the model correctness and generates efficient,

platform-specific simulation code. Separating the concerns of

formulating the model and writing simulation code supports rapid

development of models. The syntax of NESTML is simple and

easy to learn and write, which facilitates the user in writing

model code faster. It eliminates the challenges of implementing

it in a native programming language (for example, in C++

for NEST), which include for instance the introduction of

accidental errors due to the absence of physical units and

correctness checks. The NESTML toolchain validates models,

such that no physically inconsistent equations can be expressed,

and contains powerful model transformers (such as the co-

generation transformer) that support the generation of highly

performant code. The many tests covering different aspects of the

models and toolchain help correctness and decrease the chance

of errors.

Both the language and the toolchain have proven themselves

through real-world use cases (Schulte to Brinke et al., 2022;

Hagen et al., 2022; Oberländer et al., 2022; Bouhadjar et al., 2022;

Jaras Castaños, 2023), and have shown to be of practical value

for research in computational neuroscience, achieving performance

that is competitive with hand-written simulation code. Nordlie

et al. (2009) suggest a checklist for model descriptions but do

not define the desired formulation of neuron and synapse models

in detail. NESTML provides exactly such a formulation, as it is

expressive yet concise, easy to write, and understood by humans,

yet is also precise (unambiguous) and suitable for computer

simulation; properties which make it perfect for inclusion in a

paper-based as well as software-based publication, something that

would not be practical for an XML-based format.

Our results reveal a small performance reduction between the

hand-written code of NEST and the code generated by NESTML.

The hand-written NEST built-in models were developed over

several years and subject to several rounds of optimization to

enhance their performance. It is therefore to be expected that

NESTML code, generated from generic model-agnostic templates,

will miss some model-specific optimizations and therefore

experience some performance loss. We believe that this slight

loss is more than compensated for by the significant time savings

achieved in writing and verifying the numerics of new models,

as the use of NESTML allows the modeling process (Figure 1) to

be carried out using the agile software engineering methodology

(Alliance, 2001), emphasizing incremental development, early and

continuous delivery of results, and flexibility in implementing

changes. Moreover, future improvements in the toolchain could

even lead to performance gains. For example, extending the set

of model transformers to precompute constants needed for ODE

updates could improve the performance of the generated code to

be on par with, or even outperform, the hand-written NEST model

code.
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A standard model interchange format like NESTML helps

in making models more findable, accessible, interoperable, and

reusable (“FAIR” principles; Wilkinson et al., 2016). In the context

of computational models, findable means that in a database of

potentially hundreds of model variants, the appropriate model can

be easily found. Accessible models are those that do not require

extensive toolchain dependencies to work with. Interoperable

models are usable across different computation hardware and

simulation platforms. Reusable models are those that can be easily

extended and iterated upon. These design goals are supported

by the accessible, human-readable syntax of NESTML, as well as

its supporting infrastructure, such as a curated model database,

detailed online documentation, and continuous integration (see

Section 4.1). Writing models in NESTML makes it easy for

newcomers to the field to extend and adapt, rather than having to

write low-level code or start from scratch. Several platforms are

currently under development for the collaborative development,

visualization and sharing of models, as well as a searchable database

of models, for instance, Open Source Brain (OSB; Gleeson et al.,

2019) and EBRAINS (EBRAINS, 2025). The wider use of NESTML

as a modeling standard would facilitate interchange and promote

interoperability between these software services.

Simulation software should be reliable, supporting the

reproducibility of scientific results. An individual simulator should

exhibit replicable behavior: repeated simulations of the same

model should yield bitwise identical results, regardless of the

number of threads or processing nodes used. In contrast, using

a different numerical solver or simulating the same model on

a different computer platform may alter the results, especially

in network models exhibiting chaotic and unstable dynamics.

However, overall, results and conclusions should be reproducible,

obtaining the same overall quantitative and qualitative conclusions

(for a commentary on this terminology, see Plesser, 2018).

Recent work comparing numerical results across simulators

(Gleeson et al., 2010) and examining implementation issues

that are inherent to network modeling (Henker et al., 2012;

Gutzen et al., 2018; Trensch et al., 2018) point to the need for a

thorough suite of benchmarks for simulator testing. NESTML

facilitates replicability and reproducibility studies by having a

common model interchange format and a large number of unit

tests, covering most of the models in the database. When cross-

validating between neuromorphic platforms, the same NESTML

model can be used as a basis; any differences in simulation results

must then be due to differences in the platform code itself rather

than the model.

4.1 Software development methodology

NESTML is research software, that is, software that is used

in research (Hasselbring et al., 2024) (although our software

license, GNU GPL v2.0 Free Software Foundation, 1991 also

allows commercial use). Overall, software can be classified in

various tiers: from analysis code (one-off script; often not revised

after publication), to prototype (best effort maintenance) to

research software infrastructure (professional product). Adhering

to software engineering best practices during development helps to

achieve an infrastructure level of software quality. Practices that we

have found particularly helpful are:

• The processing toolchain for NESTML is designed using

standard software design patterns, such as the visitor pattern

for iterating over the AST, a symbol table for resolving names

and scopes, and context condition checks for model validation

(Section 2.5.2; Hölldobler et al., 2021). The code is well

documented (using in-code comments and docstrings) and a

reference manual is automatically generated in the form of a

webpage.

• Our software development process follows the agile approach

(Alliance, 2001). In accordance with this, new toolchain

features are typically based on case studies and requests from

end users. Each feature is documented from an end user

perspective.

• Unit and integration tests: A battery of unit tests is run that

tests the toolchain itself. If successful, a second series of tests

is run that generate and build code, and run a simulation

in NEST and other target platforms, allowing numerical

validation of the behavioral output of all models that are

part of the NESTML distribution, such as the response of

neurons to input, checks on the timing of emitted spikes,

and for synapses, how the weight change is dependent on the

timing of pre- and postsynaptic spikes. Many of the models

are tested in ways that are specific to the behavioral repertoire

of that model; developers of a new model should ensure that a

corresponding set of tests is created and added as part of the

toolchain code alongside the model itself. Each new feature of

the toolchain also includes one or more tests for that feature.

• Continuous integration (CI): A CI workflow is triggered

whenever code is contributed to the NESTML codebase.

In the CI environment, all unit and integration tests are

automatically run. The test results are shown on the GitHub

web interface; if any of the tests fail, the code is rejected.

Currently, we use GitHub Actions4 as our CI provider.

Users of NESTML are invited to contribute to NESTML

itself, adapting or adding language elements, or performing bug

fixes and feature enhancements on the PyNESTML toolchain. All

contributions are reviewed by at least one NESTML developer

before being merged into the git (Torvalds, 2022) development

branch of NESTML5. On a regular cycle, new NESTML software

releases are published, identified by a major, minor and patch-level

semantic version number (Preston-Werner, 2013) and an entry

on Zenodo with DOI 6. Backwards-incompatible changes, such as

changes to the NESTML grammar, are infrequent. In this case, the

NESTML major version number is incremented (Preston-Werner,

2013), and we provide detailed instructions for how models should

be adapted. Typically, a semantically equivalent form can be readily

found in the knowledge graph.

In addition to the PyNESTML toolchain code and

documentation, we curate a database of models, the entries of

4 GitHub Actions: https://github.com/features/actions.

5 https://github.com/nest/nestml

6 Zenodo: Research Shared; https://www.zenodo.org.
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which can serve as templates or examples for further development

and customization. These are distributed alongside the code in

the NESTML GitHub repository7 and are bundled into software

releases (alongside the toolchain itself). Users are invited to

contribute the models they developed in their research into our

central database, complemented by unit tests, documentation and

usage tutorials.

4.2 Limitations

When new use cases are considered for implementation in

NESTML, there are three categories of feasibility. The easiest class

of modeling challenges is where a particular model has not yet

been created in the NESTML model catalog, but implementing the

model is feasible within the span of no more than a few hours.

A second class of challenges is when a model cannot be

implemented in NESTML right now, but that could be made

possible by adjusting or augmenting the templates, and which could

be completed in a time span of weeks or months, possibly involving

discussions with the NESTML development team. These challenges

fit within the scope of NESTML, but the necessary features are

not yet implemented. An example of such a challenge is to add

support for a new simulation engine to the toolchain, or for a new

plasticity rule that requires, for instance, additional buffering of

state variables at previous timepoints.

Then there is a third category of maximally difficult problems,

which could be possible in principle to implement, but which

fall outside the NESTML scope. For example, neuron models that

require an awareness of the totality of connections coming into the

cell are at present difficult to implement because NESTML is not

aware of the instances and connectivity of the models it defines.

This makes mechanisms such as synaptic normalization, in which

the norm of the vector of all synaptic weights of a cell is held

constant, fundamentally unsuitable for expression in NESTML.

4.3 Future work

Developing and adopting standards is hard: even in simple

descriptions, there are many edge cases to consider, while the

standard should be flexible and generic enough to allow widespread

adoption; flexibility may be key to making standards work in

practice (Holmes et al., 2010). NESTML will continue to evolve,

in particular in terms of its language features and support

for simulation engines. Progress is underway to support the

neuromorphic platform SpiNNaker-2 (Mayr et al., 2019) and to

support the ability for NEST to run on GPU accelerators (Golosio

et al., 2021, 2023), as well as other hardware that minimizes energy

use by means of spike-based learning paradigms that are inherently

robust to noise, such as those based on surrogate gradient methods

(Yang and Chen, 2025).

The same mathematical model can be implemented in

a number of ways in NESTML. There should be a set of

design guidelines (see for instance Wimalaratne et al., 2009),

7 NESTML GitHub repository: https://github.com/nest/nestml.

complementary to our existing curated model database. In the

future, even more rigorous formalization of the denotational and

operational semantics of each language element in a formal calculus

would allow formal, logically sound proofs about the model

properties, further bolstering the FAIR principles. In general, we

strive to continuously improve our documentation in terms of

extent and precision.

In the broader computational neuroscience software

ecosystem, we aim to integrate better with other standards,

such as NeuroML (Sinha et al., 2024), by providing “source-to-

source” translators or “transpilers”. For the NESTML to NeuroML

translation, this can use the existing code generation facilities in

NESTML.

At present, NESTML tutorials are frequently given using

Jupyter Notebooks running on “the cloud”: high-performing

computing resources, accessible via the internet, meaning no

installation of software is necessary for the students. A full

integration of NESTML into NEST Desktop (Spreizer et al., 2021),

a graphical user interface (GUI) for NEST Simulator aimed at

teaching, is currently underway. Using a GUI in combination with

NESTML would lead to an even lower threshold for use, especially

in the context of students using NESTML in the classroom as an

educational tool.
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