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Abstract

Internet of Things (IoT) applications are exposed to harsh conditions due to factors such as device
failure, network problems, or implausible sensor values. We investigate how the inherent encapsulation
of component and connector (C&C) architectures can be used to develop and deploy reliable IoT
applications. Existing C&C languages for the development of IoT applications mainly focus on the
description of architectures and the distribution of components to IoT devices. Furthermore, related
approaches often pollute the models with low-level implementation details, tying the models to a
particular platform and making them harder to understand. In this paper, we introduce MontiThings, a
C&C language o�ering automatic error handling capabilities and a clear separation between business
logic and implementation details. The error-handling methods presented in this paper can make C&C-
based IoT applications more reliable without cluttering the business logic with error-handling code that
is time-consuming to develop and makes the models hard to understand, especially for non-experts.

1. Introduction
The Internet of Things (IoT) consists of billions of in-

terconnected cyber-physical devices around the globe that
collect and share data. It is the quintessential enabler of
various initiatives that will change our world [45], from the
interconnected production systems of Industry 4.0 [104], to
(automated) vehicles communicating with each other and
their environment [94], to collaborating fleets of robots in
agriculture [30] or rescue missions [6], to smart homes
o�ering their service over the Internet [86]. Connecting all
these di�erent devices will provide new insights about the
world around us as well as new means to improve it to our
benefit.

From a software engineering point of view, IoT applica-
tions are distributed over heterogeneous devices that possi-
bly share their hardware among multiple applications [70],
operate in dynamic and uncertain environments, and, in
the worst case, can fail to provide their services without
notice [95, 68]. Consequently, the development of IoT ap-
plications di�ers from the development of traditional ap-
plications [95]. While traditional development tools and
methods can also be used to develop IoT applications, these
neither provide the abstraction to properly separate busi-
ness logic and error-handling concerns nor do they provide
means to automatically deploy logical IoT applications to
heterogeneous devices. The focus of traditional development
methods on single, homogeneous platforms that are assumed
to operate reliably makes developing and deploying an IoT
application complex [74], ine�cient [95], and thus error-
prone and expensive.
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Model-driven engineering (MDE) [39] can mitigate
these challenges by lifting more models to primary de-
velopment artifacts that can abstract from implementation
details of the platforms and devices the IoT applications are
deployed to and separate concerns into di�erent modeling
languages whose models can be integrated and analyzed
automatically. To make models machine-processable and,
thus, accessible to automated analyses, syntheses, integra-
tion, and evolution, these models must conform to explicit
modeling languages [55], such as UML [84], SysML [41],
or AADL [34].

Languages for the MDE of IoT applications provide little
abstraction (e.g., Eclipse Mita1) or o�er no or only limited
mechanisms for handling error situations (e.g., ThingML [70,
51]). Hence, developers are required to specify error han-
dling and business logic in an integrated fashion. This lack
of separation of concerns hampers model comprehension,
complicating debugging, evolving, and reusing IoT applica-
tion models [95]. Overall, the question of whether “MDE
[can] play a key role in the future of IoT” is still considered
unanswered [13].

We present the novel MontiThings modeling infrastruc-
ture for the systematic engineering of IoT applications that
features (1) integrated modeling languages for architectures
of IoT applications, their deployment, and error-handling
that lift the level of abstraction in IoT system engineering
and separate these concerns properly; (2) a model-driven
toolchain for the automated synthesis of executable IoT
containers; (3) automated deployment planning, featuring
deployment suggestions, for the generated containers; and
(4) support to suggest changes to deployment goals based
on deployment planning results. The architecture model-
ing language of MontiThings extends the tried and tested
MontiArc [15, 16] architecture description language with
new modeling elements for error handling that are logically

1Eclipse Mita: https://www.eclipse.org/mita/
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separated from the architecture’s business logic, whereas
its toolchain for model checking, synthesis of executable
containers, and deployment was conceived specifically to
support the engineering of comprehensible, reliable, and
robust IoT applications. A 2020 survey on IoT reliabil-
ity [69] divides the problem space of IoT reliability into the
categories device reliability, communication and network
reliability, and application layer reliability. MontiThings
addresses these problem categories either by providing its
own mechanisms or by reusing state-of-the-art technologies
such as message brokers. To avoid human errors, Mon-
tiThings tries whenever possible to apply the used reliability
mechanisms without the developer’s involvement.

Consequently, the contributions presented in this paper
are

1. the MontiThings modeling language for reliable IoT
applications, which separates the concerns of behavior
modeling and error handling,

2. a model-driven infrastructure that produces executable
containers from MontiThings models,

3. a logics-based, automated deployment of those con-
tainers, and

4. a runtime environment for MontiThings component
realizations that automates operating with unreliable
devices.

Overall, the modeling method presented in this paper can
facilitate the engineering of IoT applications by increasing
abstraction, separating concerns, and facilitating their de-
ployment to heterogeneous devices.

In the remainder, Section 2 introduces preliminaries and
Section 3 discusses requirements for reliable and robust
IoT applications. Section 4 presents the MontiThings C&C
language, and Section 5 introduces its features for automatic
deployment and recovery. Afterward, Section 6 presents a
twofold evaluation featuring a case study and observations
on scalability. Section 7 debates related work, and Section 8
discusses other approaches to IoT modeling. Section 9 con-
cludes.

2. Background
The modeling technique and infrastructure for IoT sys-

tems presented in this paper leverage principles from MDE
and software language engineering (SLE). For realization
of the infrastructure, we exploit the MontiCore language
workbench and extend the MontiArc architecture description
language. This section introduces these preliminaries.

2.1. Model-Driven Engineering
There is a conceptual gap [39] in software engineering:

software generally should support domain experts (accoun-
tants, biologists, lawyers, mechanical engineers, medical
doctors, etc.) to solve challenges from their specific problem
domain. Yet, software is developed by software engineering

experts, which rarely have the deep problem domain un-
derstanding of the respective experts. Consequently, domain
issues are less well understood and reflected in their software
solutions. Domain experts rarely are professionally trained
software engineers. Consequently, if domain experts are able
to contribute software solutions at all, these rarely leverage
state-of-the-art methods for their maintainability, modular-
ity, verifiability, etc.

This gap can be reduced by using domain-specific mod-
els, which are well understood by the domain experts, as pri-
mary development artifacts and translating these to software
using automated analyses and syntheses that leverage state-
of-the-art solutions in the process. To make these domain-
specific models machine-processable, i.e., applicable to
automated analyses and syntheses, MDE relies on domain-
specific languages (DSLs)2, which describe the syntax and
semantics of these languages such that meaningful [39]
analyses and translations into program code can be conduced
automatically. Examples of popular DSLs are MATLAB
Simulink [9] for the engineering of cyber-physical systems,
HTML + CSS for web design, SQL [25] for database
interaction, the Icam Definition for Function Modeling
(IDEF0) [76] for functionally modeling the behavior of
cyber-physical systems, or SysML [34] for interdisciplinary
systems engineering.

Such DSLs can be textual [102, 100] or graphical [34,
66] and they can be defined via grammars [54, 8], meta-
models [93, 24], or projectional editors [20]. Moreover,
they can feature operational behavior realizations by means
of interpreters [24] or translational behavior realizations
through model transformations [65, 59]. They also can lever-
age logics, such as OCL [52] or general-purpose languages
(GPLs) [54, 8] to restrict the set of valid models.

From the need for DSLs to reduce the conceptual gap
inherent in software engineering and the wealth of ad-hoc
solutions to create such languages, the field of software
language engineering has arisen.

2.2. Software Language Engineering
SLE aims to systematize the design, engineering, main-

tenance, evolution, and operations of DSLs realized in soft-
ware. Generally, a language can be considered as the set
of sentences it comprises. Yet, for sophisticated reasoning
about languages and, for a constructive application, a more
detailed, intensional, definition is required. Research in com-
puter science produced various characterizations for DSLs,
such as: “A domain-specific language is a programming
or executable specification language that o�ers, through
appropriate notations and abstractions, expressive power
focused on, and usually restricted to, a particular prob-
lem domain.” [26] or “By focusing on a problem domain’s
idioms and jargon, DSLs avoid the notational noise re-
quired when using overly general constructs of a general-
purpose language to express the same thing. Moreover,

2We use the terms domain-specific language and modeling language
interchangeably as all modeling languages, even as generic as UML or
SysML, target a domain.
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DSLs are not necessarily programming languages: they are
languages tailored to express something about the solution
to a problem.” [103]. Notwithstanding the distinction be-
tween modeling languages and DSLs, employing such lan-
guages promises benefits regarding productivity and quality
as DSLs may provide a platform-independent “thinking and
communication tool” [101] that can leverage the concepts
and terminology the experts using the DSL are familiar with.
Thus, the availability of appropriate DSLs can greatly facil-
itate the systematic engineering of cyber-physical systems.

As software languages are software too [33], these are
subject to the same complexities as general software engi-
neering and impose additional complexities through the var-
ious meta-levels and metamodeling technologies language
engineers have to operate with. Hence, various language
workbenches [32], software specific for the purpose of en-
gineering DSLs, have been produced. These language work-
benches provide sophisticated (meta-)modeling languages
that enable describing the syntax or semantics of DSLs.
For syntax, metamodels and grammars are widely applied
to language engineering: For instance, ECore of the Eclipse
Modeling Framework [92] is a modeling language for the
specification of metamodels. A metamodel of a DSL governs
the structure of the DSL’s abstract syntax in terms of classes,
their properties, and relations. Models conforming to these
metamodels are considered valid elements of the DSL. The
GEMOC Studio [24] language workbench and others use
ECore for the definition of abstract syntaxes and provide
features, such as debugging, editing, or interpretation, based
on it. Other language workbenches, such as MontiCore [54],
Neverlang [99], or Xtext [8] employ grammars as syntax
metamodeling languages instead. These grammars support
prescribing the integrated concrete and abstract syntax of
languages through their productions as the set of deriv-
able sentences. Often, these syntax modeling languages are
context-free [22], i.e., they cannot express arbitrary well-
formedness restrictions. To define well-formedness rules,
language workbenches often employ OCL constraints [52]
or GPL context conditions [54, 99]. For semantics, language
workbenches often focus on model transformations leverag-
ing mature transformation frameworks, such as ATL [58],
epsilon [65], or MOLA [60], to define translations of models
into other formalisms (including GPL code)

Leveraging research in SLE and powerful language
workbenches, a variety of DSLs have been produced for, e.g.,
automotive software engineering [56, 27], avionics [29],
business processes [46], Internet of Things applications [42],
manufacturing systems and processes [104] software engi-
neering [48, 67], robotics [98, 73], and many more.

2.3. MontiCore Language Workbench
MontiCore [54] is a language workbench for the e�-

cient engineering of textual DSLs. To this end, it employs
grammars for the integrated definition of abstract syntax and
concrete syntax of DSLs that define which models are prin-
cipally valid. MontiCore generates a comprehensive model
processing infrastructure from each grammar, including the
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Figure 1: MontiArc architecture describing driving assistants
of a car.

abstract syntax classes representing models in machine-
processable form, parser, lexer, a model checking frame-
work, and a template-based code generation framework.
Java well-formedness rules can be integrated into the model
checking framework. This enables restricting the set of valid
models of a MontiCore DSL further. MontiCore’s template-
based code generation framework supports translating valid
models to other formalisms, including executable GPL arti-
facts. To facilitate the e�cient engineering of DSLs, Mon-
tiCore supports compositional language integration in form
of language extension, language embedding, and language
aggregation [53, 49].

2.4. MontiArc
MontiArc [15, 50] is an architecture description lan-

guage (ADL), for the MDE of cyber-physical systems.
MontiArc specifies architectures as networks of com-

ponents that exchange data with each other via typed and
directed ports. Hence, each component is a black box that
can only exchange data via its ports. Composed compo-
nents yield a behavior by instantiating other components as
subcomponents and connecting these. Atomic components
do not contain other components and instead define their
behavior using embedded behavior descriptions. MontiArc
models can be used to generate Java code [82] for simulation
purposes or to generate Python code [1] for robotics appli-
cations.

Figure 1 shows an example of a MontiArc architecture
describing driving assistants of a car. ADistanceSensor
and a Camera continuously provide the distance to the front
and an image to the AdaptiveCruiseControl compo-
nent. The AdaptiveCruiseControl uses this informa-
tion to calculate new target speeds and inform the Brake
and Motors about the new target speed. An Adaptive-
Headlight uses the current steering angle provided by the
Steering component and instructions on whether to turn
on the headlights provided by theHeadlightAssistant
component. Whether these components are composed or
atomic is transparent to their use and, hence, not depicted
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here. As MontiArc components can be hierarchically com-
posed, and of these might feature arbitrary (but finitely)
many subcomponents on arbitrary (but finitely) many hier-
archy levels. The HeadlightAssistant, in contrast, is
an atomic component that uses an automaton to model the
di�erent states of the headlight switch of the car.

MontiArc is based on the FOCUS [12] semantics for
stream processing functions. Hence, each component real-
izes a stream processing function and composed components
are actually composite functions. This semantic basis en-
ables powerful analyses rarely supported by other ADLs,
such as automated semantics-aware decomposition [63]
and refinement [17], that have been applied to architecture
modeling for various domains, including automotive [27],
cloud [71], and robotics [18].

3. Requirements
Engineering cyber-physical systems, such as IoT appli-

cations, is non-trivial using traditional programming lan-
guages. Besides the inherent complexity of programming
multi-device applications for heterogeneous platforms, de-
velopers often fall for invalid assumptions such as the as-
sumption that devices never fail [95]. To support the devel-
opment of IoT applications, IoT development languages need
to su�ciently abstract from low-level details and provide de-
velopers the necessary mechanisms to tame the complexity
of IoT application development. Based on an analysis of re-
lated work and existing commercial solutions (cf. Sec. 7) and
the di�erences between the development of IoT applications
and traditional applications in [95], we derived the following
set of requirements for the C&C language:

(R1) Error handling. The modeling infrastructure shall
enable error handling without polluting the business
logic. As IoT applications have to handle a wide vari-
ety of errors ranging from hardware errors to program-
ming errors to network outages, the language needs
to support handling these errors. When the errors
are handled within the application’s business logic,
the business logic quickly becomes incomprehensible
because error handling makes up a large part of the
code [95].

(R2) Heterogenous hardware. The modeling infrastruc-
ture shall facilitate modeling applications for di�erent
platforms. IoT applications involve heterogeneous de-
vices with di�erent capabilities [95, 68]. Any assump-
tions that the generator makes about the target plat-
form, e.g., the operating system, restrict the devices
on which the components run. In some cases such as-
sumptions are unavoidable. For example, a component
that uses a temperature sensor may only be executed
on devices that are actually equipped with a compat-
ible temperature sensor. The modeling infrastructure
should allow the modelers to express such require-
ments to prevent invalid deployment. Furthermore,
the language needs to abstract from platform-specific

details wherever possible and o�er means to select
di�erent implementations for di�erent platforms.

(R3) Dynamic deployment. The system should automati-
cally (re)deploy (software) components when devices
are added or removed from the system. Besides the
fact that users may wish to add new devices to the
system at runtime and that devices may fail, this also
enables users to take their software with them, given
that the necessary devices are available. For example,
this would enable hotel guests to use the smart home
applications they use at home in the hotel, provided
that the hotel room has the necessary equipment. This
idea of moving software components between devices
is sometimes referred to as liquid software [97, 96].

(R4) Resilience to temporary failures. The system shall
adapt to temporary device outages. IoT devices are
often battery-powered [38] and have to rely on un-
reliable network connections [95]. As a result, the
system may not assume that two devices are constantly
able to communicate with each other. Especially, some
devices may be deliberately shut down to save energy,
and two devices that might need to communicate
might not be turned on at the same time. The system
must be able to handle such temporary unavailabili-
ties.

(R5) Resilience to permanent failures. The system shall
support (semi-)automatically adapting to hard- and
software failures. IoT systems need to be resilient
to failures [95, 68, 57]. Since systems may contain
essential equipment without which the system cannot
function, the system should facilitate recovery from
failures.

Overall our requirements reflect the industries’ need for
reliability in IoT applications [78, 3].

4. The MontiThings Modeling Infrastructure
From a structural point of view, C&C ADLs essen-

tially model connections, i.e., data exchange, between com-
ponents. Similarly, IoT applications need to design data
exchange between everyday objects. Unsurprisingly, many
existing approaches for the model-based development of
IoT applications, e.g., ThingML [70, 51] and Calvin [74],
are C&C ADLs. We introduce MontiThings, a C&C ADL
for modeling IoT. In contrast to existing languages, Mon-
tiThings focuses especially on error resistance. Therefore,
we decided not to base MontiThings on an existing IoT
language but instead extend MontiArc. As MontiArc is
based on the FOCUS calculus, MontiArc models can be
verified [62], systematically refined [85], and semantics-
aware refactored [17].

MontiThings’ extensive modeling infrastructure sup-
ports the development of IoT applications from the imple-
mentation of individual components to managing redeploy-
ment and services during system execution. The process for
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Figure 2: Overall development process from implementing systems through models and handwritten code at design time, to
generating application code from these, to deploying and executing distributed systems.

developing IoT applications with MontiThings is visualized
in Fig. 2. At design time, architects model MontiThings com-
ponents that represent the platform-independent, logical ar-
chitecture of IoT systems. To this end, MontiThings employs
four di�erent types of artifacts, namely component models,
class diagrams, tagging models, and handwritten code. Each
component model defines a system respectively component
type, including its interface and behavior. Here, classes from
a class diagram provide possible types to be used in the
interface of components, therefore defining possible mes-
sages between components. The behavior of a component
is defined through its decomposition into subcomponents,
or, in case of atomic components, through embedded be-
havior descriptions. Furthermore, component behavior can
be implemented, or overwritten through handwritten code
in the target language of the used code generator. Finally,
tagging models can be used to add additional properties to
components. While component models in general can be
defined independently of any platform, platform-dependent
code may be needed to access specific services. Therefore,
handwritten code in component models can be exchanged
with respect to the target platform, providing platform-
dependent code accessing respective libraries and services.

The development artifacts at design time are input to
code generation that generates the target code for the indi-
vidual components, integrates it with the handwritten code,
compiles the code, and finally packages the components
in application containers that can then be executed on IoT
devices. During generation, component models are pre-
processed by transformations, adding explicitly derivable
properties and preparing the models for code generation

before they are then translated into the target language.
Since C/C++ is one of the most popular languages for
developing IoT applications [28], and platform-specific and
other handwritten code should be easily integrated with the
models, MontiThings translates the models to C++ code.
The generated code furthermore extends an existing runtime
environment that addresses problems common to any com-
ponent, such as management of incoming messages. After
integration with handwritten code, the application code is
then compiled though a selected compiler and packaged into
shippable and deployable units of software during container-
ization.

To execute the applications, the containers are dis-
tributed to individual IoT devices, considering hardware
requirements (cf. Sec. 5). For this purpose, hardware require-
ments, distribution requirements, and the available devices
are modeled. If a valid distribution is found, the application
containers are directly deployed accordingly. At runtime,
these then communicate given the previously defined ar-
chitecture to provide their services. In addition, the appli-
cations can access other predefined services, such as Mon-
tiGem [2, 43], to store and visualize application specifics,
or a deployment manager that handles redeployment of
components in case of device failures. We implemented all
aspects presented in Figure 2 and Figure 6 in at least a
prototype implementation and provide an overview of the
design time aspects in the following and present in more
detail deployment and error recovery in Section 5.1.
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(a) Component model of an irrigation sprinkler in graphical and textual
notation.

component SprinklerController {

port in MoistureLevel moisture;

port in int windspeed;

port out SprinklerMode mode;

pre windspeed >= 0 && windspeed < 50;

catch { windspeed = 20; };

post mode == OFF || windspeed < 19;

behavior moisture, windspeed {

if (moisture == LOW && windspeed < 19) {

if (windspeed < 13) {

mode = OSCILLATING;

} else {

mode = EXTENSIVE;

}

else {

mode = OFF;

}

}

}

1
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4
5
6
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8
9
10
11
12
13
14
15
16
17
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20
21
22

Error handling

Business logic

MontiThings

(b) Atomic component model of a sprinkler system containing a
behavior description and error handling.

Figure 3: Irrigation sprinkler that commands the sprinkler mode based on the current wind-speed and moisture. Assesses the
current level of moisture based on the desired target moisture. Black ports mark interaction with the environment using code
templates (cf. Sec. 4.4). Grey ports and their connectors can be added automatically (if desired) (cf. Sec. 4.4).

4.1. MontiThings ADL
In MontiThings, a system is modeled by hierarchically

composed components that expose their behavior through
their interfaces, consisting of typed, directed ports. Compo-
nents are composed through connectors between their inter-
faces, describing the interactions of these. The strong type
system of MontiThings is divided into component types,
which are defined by component models and can be in-
stantiated as subcomponents, and communication data types
defined in class diagrams. The definition of component types
in MontiThings follows the formal definition of MontiArc
component types [80] and is realized through the systematic
language extension mechanism of MontiArc [15]. Further-
more, MontiThings builds on Focus [12], a mathematical
framework of stream processing functions. As such, each
component defines a time-discrete stream processing func-
tion [81], or, in case of underspecification or variability, a set
of stream processing functions. A component’s behavior is
a time-discrete relation of incoming and outgoing messages,
i.e., messages the component receives via its incoming ports
and messages the component emits via its outgoing ports.
For composed components, the component’s behavior is
defined by its composition of subcomponents, whereas for
atomic components, behavior is defined through embedded
behavior descriptions [19], such as embedded I_O< au-
tomata [80, 83].

While components are mostly represented in a graphical
form for better visualization, component types in Mon-
tiThings are implemented in textual descriptions. The tex-
tual syntax of component descriptions and the mapping to
the otherwise used graphical representation is exemplified
by the irrigation sprinkler shown in Fig. 3. The example
furthermore contains the textual description of a sprinkler
controller implemented as an atomic component. Definitions

of component types may include port declarations (lines 2-
4), pre- and postconditions (lines 6-9), and a behavior de-
scription (lines 11-21). Besides processing locally defined
variables, statements in behavior descriptions may read and
write the component’s variables, read from the components’
input ports (lines 12, 13), and write on the component’s
output ports (lines 14, 16, 19). Behavior blocks are executed
in the event of new incoming messages. Reading from input
ports always accesses the message of the last event on that
port and writing on an output port implies emitting a new
message over the respective port. Besides behavior descrip-
tions, components can contain pre- and postconditions that
define boolean expressions over inputs and outputs, respec-
tively.

4.2. Error Detection and Handling (R1)
The problem space of IoT reliability can be categorized

into device reliability, communication and network reliabil-
ity, and application layer reliability [69]. Local problems
such as a failing sensor can be detected, and in some cases
solved, by a single device. More complex errors can af-
fect multiple devices, e.g., a network failure or a missing
communication partner due to a device failure. This section
discusses device and application layer reliability issues that
are solved by the device that detects them. More complex
failures are considered in Sec. 5.2 and Sec. 5.3.

Sensors may produce erroneous values [69, 61, 40] for
numerous reasons, including wrong calibration, harsh envi-
ronmental conditions, degradation over time [69, 77], and
programming errors. Therefore, a modeling language for
specifying IoT systems that often contain sensors must o�er
appropriate countermeasures. MontiThings provides mul-
tiple mechanisms to detect and handle errors (R1). Pre-
and postconditions can be used to detect invalid inputs and
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Figure 4: Simplified overview of MontiThings’ metamodel, the generated code, and the runtime environment. After parsing, we
generate C++ code using Apache Freemarker templates. Each generated file can be extended by hand-written code using the
TOP mechanism described in [54].

programming errors before they cause hard-to-locate errors
in other parts of the system. Preconditions check that a com-
ponent’s inputs are valid, whereas postconditions inspect
the outputs of a component. At runtime, violating pre- or
postconditions can be handled using catch statements, as
known from exception handling in many object-oriented
languages. These catch statements can be used to, for ex-
ample, use a default sensor value if the actually measured
sensor value seems corrupted. Unhandled violated pre- and
postconditions lead to error messages.

Fig. 3(b) shows a sprinkler controller modeled using
MontiThings that demonstrates pre- and postconditions. The
precondition in line 6 is checked before the input of the
incoming port windspeed is forwarded to the behavior
implementation. If windspeed has a negative value or a
value 50 or more, the catch statement in line 7 sets it to 20.
After executing the behavior (lines 11-21), the postcondition
in line 9 is checked before forwarding the output to the
outgoing port. By validating the results after the computa-
tion, the postcondition in this example also checks that the
sprinkler is turned o� in cases where windspeed exceeds
a threshold.

From the users’ perspective, stopping (parts of) a system
due to violated pre- and postconditions is a strong intrusion

that should only be used as a last resort, i.e., to prevent
errors from accumulating. The occasional occurrence of
an implausible sensor value should not require such steps.
Instead, the system should use reasonable default values as
a fallback. What “reasonable” means in this context depends
on the particular application. Turning on the hazard warning
lights in a vehicle whose sensors incorrectly indicate that
the brakes are not working will not cause much damage.
Switching on the sprinklers in a building where a single
sensor falsely reports a fire can cause considerable material
damage. For these reasons, it is up to the modeler to decide
which default values are reasonable.

4.3. Runtime Environment and Code Generation
As an extension of MontiArc, MontiThings is imple-

mented using the language workbench MontiCore [54] and
the template engine Freemarker. Abstract and concrete syn-
tax are realized through an EBNF-like grammar with Mon-
tiCore providing additional infrastructure for language re-
alization, including symbol table, context-conditions, and
code generators. A corresponding but simplified metamodel
of MontiThings component models is shown in the up-
per part of Fig. 4. Noteworthy here is that MontiThings
relies on MontiCore’s language extension mechanism to
include already existing language constituents, for example
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MontiCore’s library of types, and expressions [14]. These
enrich MontiThings with capabilities for stating expressions
in behavior blocks or types of ports and also provide ad-
equate type checks with models from an aggregated class
diagram language (called CD4Analysis) providing corre-
sponding type definitions.

Processing MontiThings component models from tex-
tual files to generated code is a multi-step process. First,
the model is parsed and translated into an abstract syntax
tree (MontiCore provides a fulled fledge parser for a given
grammar). Afterwards, the models’ symbol table is created,
model transformations are executed, and well-formedness
is checked. Finally, the models are translated into code
through MontiThings specific code generator employing
Freemarker templates and accessing information stored in
the abstract syntax trees and symbol table. Model-specific
code is generated against and directly linked to an existing
and predefined runtime environment (RTE), as shown in the
bottom part of Fig. 4. The RTE provides common implemen-
tations and interfaces for ports, components, and the like,
and technology-specific implementations that may be reused
in the generated code. For ports, the RTE provides a common
interface and common implementations of ports for specific
network technologies, such as MQTT. In cases where ports
should access hardware or an operating system not supported
through the RTE, developers may need to provide respective
templates, which are then used during code generation in-
stead. Furthermore, a port may be read using multiple com-
munication technologies, thus managing multiple ports that
could be realized using di�erent technologies. Finally, ports
in the implementation support both sending and receiving
data, especially for composed components where ports may
forward data to subcomponents’ ports.

During code generation, each component type definition
is translated into a set of classes, namely classes for the com-
ponent’s pre- and postconditions, its implementation, its in-
terface, its current state, and their aggregation. Here, the in-
terface of a component bundles incoming and outgoing ports
whereas the components’ implementation class realizes the
component logic either derived from atomic components’
descriptions or the composition of subcomponents. Objects
of the state class may represent the components state during
runtime and furthermore provide functionality for automatic
serialization. Employing MontiCore’s TOP mechanism [54],
developers may extend and override any generated file, such
as the components implementation, without losing changes
on re-execution of the code generator.

4.4. Integrating the System with Its Environment
and Other Systems (R2)

IoT applications require access to sensors and actua-
tors or, more generally, access to hardware. The system
boundary of MontiThings is exactly this hardware access.
Consequently, hardware access is realized via ports, as these
are the interface of components for communication with
the outside world. To include implementations for these,
developers can provide code templates for ports, which inject

enum Color { Red, Green, Blue, Yellow; }1

CD4A!
class diagram
(incomplete view)

Color   convert (uint_8 element);
uint8_t convert (Color element);

C++

Java

CD4A

PortComponent
Impl-File

CD4A

Port

C++

Component
Impl-File

ColorDiagramAdapter Serialize / 
Deserialize 

to JSON

enum Color { Red, Green, Blue, Yellow; }1

CD4A!
class diagram
(incomplete view)

Cpp { from <cinttypes> import uint8_t as Color; }1
AdapterC++ types

Figure 5: Class diagram adapters allow developers to use
custom C++ types in their handwritten code while enabling
MontiThings to serialize the data in a standardized way
to exchange it with other components or services (here:
MontiGem).

behavior into the ports during code generation. The code
within these templates must be able to provide data to the
architecture (in the case of an incoming port) or process
data provided by the architecture for hardware access (in
the case of an outgoing port). Di�erent platforms may use
di�erent templates to realize the same hardware access (R2).
Therefore components are by-design easily testable. As the
hardware access only happens within templates, these can be
easily exchanged by mocks providing test inputs instead of
real sensor values.

To prevent this approach from limiting the composability
of components, we use a priority mechanism: Similar to
how subclasses may overwrite methods of their superclasses
in many object-oriented languages, the composed compo-
nents that instantiate a component may overwrite the port
templates of their subcomponents by connecting the port
using a connector. If a port is connected with a connector,
only the values provided by this connector will be processed
by the component. If there is no such connector, the port
uses its code templates. Having unconnected ports without
code templates is forbidden. This priority mechanism makes
it possible to reuse components whose ports have code
templates even in contexts where hardware access is not
desired.

Data types of ports, variables, and parameters are defined
through classes of UML/P class diagrams [21], a variant of
UML class diagrams. Each type defined by a class diagram
is translated into an equivalent definition of the desired target
language through the use of code generators, with C++
being the target language of MontiThings. While we encour-
age modeling of data structures to keep models independent
of target code, we acknowledge that developers sometimes
want to use types from libraries of the specific target GPL.
Therefore, MontiThings allows replacing the class diagram
types with concrete C++ types in the generated code using
tags [47]. Tags are externally defined elements that enrich
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Figure 6: Overall deployment process. Architects push MontiThings architectures to an online repository on a DevOps platform.
The DevOps platform generates GPL code from the architecture which it provides to the IoT devices using containers. IoT devices
ask a central deployment manager which container images to execute based on the rules defined by the deployer (R3).

a model with additional information. In the case of Mon-
tiThings, they target elements of class diagrams and enrich
them with information about the generated code. That is,
they tag an element (e.g., a class) in a class diagram by
referencing its name and list a corresponding element of the
target language it is converted to. Fig. 5 exemplifies this. In
this example, a class named Color from a class diagram is
converted into uint8_t in the generated code. For each of
these tags, the user has to implement twoconvertmethods
for converting between the GPL type and the class diagram
type. When handing data to handwritten code, MontiThings
will convert the class diagram types to the GPL types. When
exchanging data within the system or with other systems,
MontiThings uses the types based on class diagrams.

This approach has multiple advantages. First, the class
diagrams for analysis (CD4A)-based types can be schemati-
cally serialized and deserialized to, in our case, JavaScript
object notation (JSON). This allows us to send the data
between ports of di�erent components. Moreover, the se-
rialized data can also be exchanged with other systems. In
Fig. 5, the data is exchanged with MontiGem, a tool for
the MDE of web-applications. We exchange data between
MontiGem and MontiThings to synthesize digital twins.
More information on how we keep the physical devices
synchronized to digital twins is out of this article’s scope
and can be found in [64]. Additionally, this approach also
fosters underspecification by enabling architects to work
with very abstract types (e.g., Image or Temperature)
while programmers can use concrete types. Using abstract
types instead of very technical types makes the models less
dependent on concrete GPL libraries and makes the models
easier to understand by non-programmers.

As mentioned in the introduction of this section, we
decided to base our language on MontiArc instead of an IoT-
focused C&C language because MontiArc models can be
verified. For this, however, the interface of the components
needs to reflect all in- and outputs of the system, including
those of (unconnected) ports with code templates. To solve
this, the unconnected ports of each subcomponent need to
be connected to the ports of the composed components that
instantiates the subcomponent. To avoid having to forward
ports through hierarchy levels manually, MontiThings o�ers
automated model transformations. Through these, all ports
of the interfaces of subcomponent instances that are not
wired internally in the topology of the composed component
are forwarded and become part of the interfaces of the
composed components that instantiate them. Ports that do
mark interactions with the environment, and those that are
automatically forwarded to the composed component, are
marked in the graphical representations through black and
gray ports, respectively. Furthermore, MontiThings enables
automatically creating connectors based on the ports’ types
and names to support the definition of larger system topolo-
gies.

5. Automatic Deployment and Recovery
Traditionally, the decision which hardware executes

which software is made by humans, often in advance of
writing the software. In future IoT systems, this strategy
is no longer feasible. On the one hand, hardware made for
specific software may become useless once the developer of
the software decides to no longer support the servers needed
to execute the software. This is neither economically nor
ecologically sustainable. On the other hand, coupling soft-
and hardware requires that customers need to unnecessarily
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replace their devices with devices similar to those they al-
ready own, just because they want to get software from a dif-
ferent vendor. A more sustainable strategy is to monitor and
analyze the available hardware continuously and then decide
which software to execute on which device. Similar concepts
have been proposed under various names, including, for
example, liquid software [97] or self-adaptation [23, 7].

In MontiThings, containerized software is deployed to
general-purpose hardware based on the software’s require-
ments and the capabilities of the hardware. In addition to
that, MontiThings leverages the fact that components in
C&C architectures communicate only via clear interfaces
to ensure that software components can communicate with
each other even if the devices on which they are deployed do
not have synchronized sleep cycles and thus are not online
at the same time. To bridge short outages caused by battery-
saving modes, MontiThings also automatically serializes
the states of components. Once they come back online,
they deserialize the saved state and can pick up their work
where they left o� before entering battery-saving mode. In
case of an unexpected failure of a device, MontiThings can
automatically transfer the software state of its components
to other devices.

5.1. Deployment (R3)
Fig. 6 gives an overview of MontiThings’ deployment

process. The process starts by developing a C&C architec-
ture using the MontiThings language (cf. Sec. 4). Each time
developers push artifacts into an online repository, a DevOps
tool splits the architecture into single components. After
splitting the architecture, the DevOps platform generates
C++ code from these components. This code is compiled
and packed into container images that can be received and
executed by the IoT devices. We choose to use GitLab as
DevOps platform because it o�ers Git repositories, contin-
uous integration pipelines (GitLab Runner), and a container
registry in one place.

To find out which container images to execute, IoT
devices communicate with a central deployment manager.
Fig. 7 gives an overview of the deployment manager. Each
IoT device informs the deployment manager about its ca-
pabilities and characteristics, e.g., available sensors, the
device’s location, or its operating system. Additionally, a
human deployer provides a set of rules the deployment
manager has to fulfill during the automatic deployment. The
rules are encoded in JSON, similar to the format presented
for Calvin in [4].

The deployment manager parses the information pro-
vided by the IoT devices and the JSON file containing the
rules. Being a language for logic programming, Prolog can
be used to deterministically find a valid deployment that
fulfills all rules or state that a valid deployment is not pos-
sible given the available IoT devices. The generated Prolog
program consists of three parts: 1) facts about the current
state of the devices, 2) functions for finding distributions that
fulfill the deployment rules, and 3) a set of helper functions.

property("device",       1,             "firedetector_b1_f1_off6").
property("has_hardware", "smokesensor", "firedetector_b1_f1_off6").

property("has_hardware", "pirsensor",   "firedetector_b1_f1_off6").
property("location",     "building1",   "firedetector_b1_f1_off6").

property("location",     "floor1",      "firedetector_b1_f1_off6").
% ...further facts...

1
2
3
4
5
6

Fact kind Fact content Device name

get_distribution_FireDetector(FireDetector) :-
% Get online devices

get_available_devices(AllDevices),
include(property("state","online"), AllDevices,OnlineDevices),

% Find devices fulfilling hardware requirements
include(property("has_hardware","pirsensor"),   

OnlineDevices, DevicesHW1),
include(property("has_hardware","smokesensor"), 

OnlineDevices, DevicesHW2),

% Find devices that have all required hardware
apply_conjunction([DevicesHW1, DevicesHW2],  Candidates),

% Requirement: at least one device on floor 1

check_gte(property("location", "floor1"), 1, Candidates),

% Bind result to target variable
Candidates = FireDetector.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Prolog
«gen»

services:
firedetector:

container: firedetector
image: registry.example.com/firedetector

networks:
- internal
ports:

- 5555:1337
- 5556:8080

x-iot-manager:
context:

ip: 137.226.168.144
# ...further components...

1
2
3
4
5
6
7
8
9

10
11
12
13

&

YAML
«gen»

Prolog
«gen»&

Device state
changes

Update
facts.pl

Evaluate
rules.pl

Activity Diagram

Gen. docker-
compose.yml

Notify
devices

Figure 7: Deployment manager behavior and code generation.
Based on the status information received from the devices,
facts are generated (1). These facts are used in queries (2) to
calculate valid deployments. If a valid deployment is found,
the manager tells the devices what to execute by sending
them docker-compose.yml files (3) corresponding to the
deployment.

Using the devices’ state information, the manager gener-
ates a set of Prolog facts which represent its knowledge about
the world (¨ in Fig. 7). Thereby, each generated prolog fact
consists of a fact kind, which specifies what the fact is about,
the fact content, i.e., the actual information, and the name of
the device to which the fact applies. Further, the manager
uses the human-readable JSON rules and generates a set of
prolog rules for finding valid deployments (≠ in Fig. 7). If
there is no solution, Prolog considers the deployment query
false. Finding the distribution consists of two steps: First,
the program identifies all devices that fulfill the requirements
of a component. Then the program tries to find a set of
devices that fulfill all of the constraints given by the user.
Besides hardware requirements, these requirements can also
consist of location requirements, e.g., require having a fire
detector in each room, or arbitrary user-defined properties.
Since the deployment manager has global knowledge of the
system, numerical requirements can also be expressed, e.g.,
require having at least three fire detectors in each room. It
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Figure 8: Failure recovery (R5): If a component fails and gets replaced by a new component, MontiThings can automatically
recover the state of the failed component by replaying its messages to the new component. To not disturb the rest of the system
with the messages generated while replaying old messages, the new component’s output port are only connected to the system
after the old state has been fully restored.

is also possible to specify that components must not run on
the same device. This is sometimes desirable for security
reasons.

Additionally, Prolog’s backtracking mechanism can also
be used to make suggestions on how to repair a set of unsatis-
fiable rules. This is done by accepting the unsatisfiable rules
and documenting what rules are dropped. Moreover, more
relaxed versions of rules can be added to make suggestions
on how to modify the rules. By sorting them such that the
original rule comes before the alternative or dropped rules,
Prolog’s backtracking mechanism will always choose the
original queries over the modified or dropped ones. For
example, if a rule requests ten temperature sensors from a
system that only has eight, Prolog cannot fulfill the query.
Because the query cannot be fulfilled, Prolog then tries to
find a deployment with nine and, after that, eight temperature
sensors.

If Prolog can find a valid deployment, the deployment
manager informs each IoT device which container images to
execute. To do so it generates docker-compose.yml
files telling each device which Docker containers to execute
and where to pull the images from (Æ in Fig. 7). The
IoT devices must report back to the deployment manager
regularly. If there is no contact to the deployment manager
for too long, the deployment manager will try to deploy the
lost components on other devices.

5.2. Fault Tolerance—Temporary Failures (R4)
The fact that IoT devices are often battery-powered is

often neglected when designing C&C languages. Since the
devices are battery-powered, they frequently need to go into
sleep mode to prolong their battery life. This, however,
makes them unable to receive or send messages. Systems
based on the assumption that all devices are always online
could, therefore, su�er from complicated errors. As dis-
cussed in [95], another extreme is that developers have to
write large amounts of error-handling code. This lack of

separation of concerns can make the business logic of an
application harder to understand.

MontiThings, in contrast, tries to make the communica-
tion between the devices as reliable as possible while, on
the other hand, hiding as much of the work required for that
from the developers and architects. A key characteristic of
C&C architectures is that components only communicate via
defined interfaces, i.e., their ports. This characteristic is an
advantage for us to make communication reliable.

To ensure that components always have a reliable com-
munication partner, we introduce a central message broker
to the system. Cloud providers such as Microsoft Azure
or Amazon web services (AWS) can provide such message
brokers with high availability. Therefore, we do not consider
the broker to be a single point of failure. For e�ciency, Mon-
tiThings normally moves messages between ports of com-
ponents deployed within a single container only in memory.
However, it replaces the ports of the outermost component
within each container by communication with a message
broker. In our prototypical implementation, we utilize an
Eclipse Mosquitto MQTT broker. A message broker per-
sisting messages between the devices can bridge temporary
device outages (R4) by allowing them to receive messages
once they come back online. Conceptually, this can be
considered an application of the device shadow pattern [79].
Normal MQTT brokers neither persist messages nor answer
requests from the devices. Thus, we add a service in the form
of an MQTT client that can handle such requests from the
IoT devices.

5.3. Fault Tolerance—Permanent Failures (R5)
Besides handling temporarily unavailable devices, Mon-

tiThings also leverages its service added to the message bro-
ker to handle failing components. As components in C&C
architectures may only communicate with the outside world
via their ports, we can use these messages to restore the
states of devices. Such persisting of state-changing events is
sometimes referred to as event sourcing. The possibility of
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reconstructing the states of actors in actor-based program-
ming using event sourcing has previously been discussed,
e.g., in [31]. Usually, such event sourcing requires develop-
ers to define state-changing events and provide them to the
event sourcing system. As components in C&C architectures
already have a defined interface, MontiThings can do this
automatically.

Fig. 8 gives an overview of how MontiThings handles
failing components. When a component fails (1), the de-
ployment manager will notice that the component does not
respond anymore and request a di�erent device to execute
the failed component (2). Then, MontiThings replays the
messages of the failed component that were persisted by the
service added to the message broker (3). During replaying
the messages, only the input ports of the new component
are connected to the message broker. This is done so that
the output produced by the new component during this
state recovery phase is not forwarded to components that
already received and processed the output when the failed
component sent it. After all messages have been replayed
and the state of the failed component has been restored, the
outgoing ports of the new component are connected to the
message broker (4).

While this approach is conceptually simple, it gets slower
as more and more messages are processed by a component,
i.e., O(n), where n is the number of messages to be re-
played. To mitigate this, MontiThings generates functions
to serialize the current state of a component. Storing the
serialized states comes at the price of causing network tra�c
and requiring storage on the server that stores the states.
However, it reduces the e�ort for recovering from a failure to
O(1) if the state is serialized everymmessages, as at most the
(constant number of) m messages since the last serialization
are required to recover the state.

6. Evaluation
This section evaluates the MontiThings modeling infras-

tructure. First, we model a smart home application based
on academic and commercial components. Then, we deploy
that application using our Prolog-based approach. Lastly, we
evaluate the scalability of the deployment.

6.1. Modeling Case Study
To demonstrate our architecture language, we chose to

model an exemplary smart home as smart homes are a
popular use case for IoT systems [78]. Similar to the smart
home case study presented in [5], our smart home manages
the home’s temperature and air quality and handles fires.
Fig. 9 gives an overview of the most important components
of the smart home. Overall, the case study consisted of 17
component types. As shown in Fig. 9(a), our smart home
consists of thermostats (Fig. 9(f)), which homeowners can
use to set their temperature preferences. Air conditioning
components (Fig. 9(c)) open the windows if either it is too
warm or the air quality drops below a certain level. If it is too
cold, the heating will turn on. Additionally, our smart home
also contains fire extinguisher components. This component

uses a fire detector as a subcomponent (Fig. 9(e)). If it detects
a fire, it will tell the sprinklers of the home to turn on until
the fire is extinguished.

The thermostat and the fire detector are based on com-
mercial solutions: The Rock und Roll UT5223 thermostat
and the Google Nest Protect4. For easier comprehensibility,
we reduced the functionality to the core functionality of the
devices. The thermostat shows users the current temperature
on a display. It has three di�erent temperature modes: Eco,
Comfort, and Auto. Eco and Comfort use di�erent tempera-
tures. Auto selects automatically switches between Eco and
Comfort using a user-defined schedule. For example, users
can choose to use a lower temperature at night when they
are asleep (Eco mode) and a higher temperature during the
day when they are awake (Comfort mode). The Nest Protect
serves as a basis for our fire detector. Like the Nest Protect,
the fire detector has an LED and speaker to read information
to the homeowners. The fire detector issues warnings using
an LED and a speaker that reads messages to the user. Ad-
ditionally, the color of the LED is influenced by the battery
level of the device and can be used to illuminate the home at
night if it detects movement. If smoke or carbon monoxide
is detected, the fire detector warns the homeowners using its
LED and speaker. For comprehensibility, we, however, omit-
ted more complex functionalities such as communication
with a web server that can be used to, e.g., silence warnings.
Our approach for such communication with web servers is
described in [64].

The clear separation between business logic and tech-
nical details makes it possible to specify the architecture
before knowing which hardware will be used. It keeps the
models easier to understand for non-experts. For example,
the WindowController component (Fig. 9(b)) does not
require architects to understand technical details of how to
read out the air quality or how to control the actuator of
the window, and the technical experts are not required to
understand the models and their modeling language but can
focus on the technical challenges of interacting with the
hardware.

Compared to other ADLs such as MontiArc, Calvin,
or ThingML, shifting the technical details of hardware ac-
cess to ports leads to an overall lower number of required
components. Other languages often model hardware access
using components whose only purpose is to access hardware
and make it available to the architecture (cf. Fig. 1). By
shifting hardware access into ports, we do not require such
components. Forwarding ports automatically (gray ports
in Fig. 9) can bring ports to the system’s outermost com-
ponent. Thereby, composed components get more compact
as visible by the di�erence between Fig. 9(c) and Fig. 9(d),
where the textual representation only defines one port.

Furthermore, our pre- and postconditions (cf. Sec. 4.2)
are limited to single components. Nevertheless, some error

3https://rockundroll.de/media/pdf_dateien/
UT522vorabversion_Horst_Rock_GmbH.pdf

4https://store.google.com/us/product/nest_
protect_2nd_gen
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(a) SmartHome component. Its Temperature ports refer to the same port and
are only split up for layout reasons.

component WindowController {

port in AirQuality airQuality;

port in int temperature, desiredTemp;

port out WindowState windowState;

pre temperature > -20 && temperature < 60;

catch { temperature = 22; };

behavior {

if (temperature > (desiredTemp + 10) 

|| airQuality == BAD) {

windowState = OPEN;

} else if (temperature > desiredTemp) {

windowState = HALFOPEN;

} else {

windowState = CLOSED;

}

}

}
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MontiThings

(b) Textual representation of temperature and air-quality-based
window opener (based on [5]).
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(c) Air quality-based window opener based on [5].

component AirConditioner {

port in int desiredTemperature;

AirQualityAssessment aqa;

WindowController wc;

desiredTemperature -> wc.desiredTemperature;

aqa.airQuality -> wc.airQuality;

}
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(d) Air quality-based window opener based on [5].
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Figure 9: Smart home system used as our case study. The components were inspired by either commercial or academic smart
home systems. Black and gray ports have the same meaning as those in Fig. 3

situations require a broader view of the system. For example,
our case study controls the heating and windows of a smart
home. The rules to open the window when the air quality
drops below a certain level and to heat the building when it
gets too cold individually make sense. However, if the two
rules are applied together, this can lead to the windows being
opened while the heating is on. Such situations should be
avoided but cannot always be identified from the perspective
of a single component.

6.2. Deployment Case Study
After generating C++ code from the architecture, build-

ing the code, and containerizing the resulting applications,
the next step is to deploy these containerized applications.
Fig. 10 shows the ground plan of the o�ce to which our
distributed application should be deployed. Each blue letter
in this figure stands for one hardware device. There are four
di�erent hardware devices: Air quality devices (A) contain

sensors for measuring temperature and air quality, and an
actuator for opening or closing a window. Fire detector
devices (F) are modeled after Google’s Nest Protect and
contain smoke, carbon monoxide, and movement sensors.
Further, they have an LED and a speaker. Heating devices
(H) contain a display, buttons, a temperature sensor, and a
radiator. Sprinklers (S) only contain the sprinkler as their
only actuator.

Without any further constraints, our Prolog-based de-
ployment calculates a deployment where each component
with a hardware requirement is deployed to the device con-
taining at least the requested hardware. One possible con-
straint could be to require a FireDetector component
(Fig. 9(e)) in each room. In this case, Prolog evaluates to
false, i.e., the request could not be fulfilled because the
kitchen and other rooms do not have the necessary hardware
to deploy the component. Now, we assume that o�ce six
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Figure 10: Floor plan for the devices in our case study. A =
Airquality, F= Fire detector, H = Heating, S = Sprinkler.

contains chemical equipment that might trigger a false pos-
itive fire alarm. To prevent false alarms, we set a constraint
that requires the number of fire detector components in
room office6 to be zero. Now, our deployment chooses to
deploy the FireDetector to all rooms with a fire detector
device except for the device in office6. If we further
require at least six fire detector components, Prolog informs
us that this request cannot be fulfilled but could be fulfilled
if we relax that rule to require only five. Here we can see one
limitation of the backtracking mechanism: As the rule to not
deploy a fire detector component to o�ce six is fulfilled, Pro-
log does not suggest dropping this rule to be able to fulfill the
other rules. Prolog’s backtracking only suggests modifying
violated rules to get their corresponding queries to evaluate
to true. To prevent cooling down the building during win-
ter by opening multiple windows, another constraint requires
to deploy at most three WindowControllers (Fig. 9(e)).
With this constraint, the solution is ambiguous. Prolog found
156 possible solutions in 0.73 s. Theoretically, there are≥3

k=1
�6
k

�
= 41 di�erent solutions for drawing three or less

out of six possible elements. The additional solutions found
by Prolog come from unnecessarily respecting the order in
which the components are deployed (i.e.,

≥3
k=1

6!
(6*k)! ) as

Prolog does not support sets but only lists. As Prolog is based
on backtracking, it uses the first solution it finds. In this case,
Prolog’s first solution is to deploy a WindowController
only in the kitchen, as our requirement only says to deploy
at most three WindowControllers. While this solution
is correct, users may consider it unintuitive.

6.3. Deployment Scalability
With the redistribution of systems at runtime, it is partic-

ularly relevant how quickly changes can be applied since the
system’s execution and thus the provision of functionality
is interrupted. To investigate the execution time of our
implementation of the deployment, we conducted scalability
experiments. In these, we consider the runtime for finding a
valid deployment from generated prolog facts and queries
along three dimensions:
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Figure 11: Mean execution time in seconds for finding a
valid distribution or falsifying that one exists based on the
magnitude of the investigated properties. Error bars denote
standard deviation.

1. increasing number of components (container images)
that need to be redistributed

2. increasing number of distribution constraints (hard-
ware or location constraints)

3. and increased number of devices that could be suitable
targets for components to be deployed.

The investigation subject is the deployment of components
in a single, possible larger o�ce building consisting of
multiple locations (a room on some floor). Each location can
be equipped with arbitrarily many devices providing various
kinds of hardware. The components are to be distributed
across the various locations and have certain hardware re-
quirements that may or may not be fulfilled by some de-
vice in some room. Furthermore, there are constraints on
distributing components across locations, e.g., at least one
fire sprinkler per floor or at most 2 smoke detectors per
room. Possible characteristics of the restrictions are changes
in the components’ hardware requirements and the num-
ber of locations to which the components are distributed.
During the investigations, we examined each dimension in
a separate experiment for an increasing magnitude of the
investigated property, while the other properties remained
constant. That is, to measure the impact of an increase in
the number of images to be distributed, several experiments
were performed for 10 up to 1050 images to be distributed
across 10 devices, each image having up to 10 hardware
and location requirements. For each value of a property, ten
tests were performed with randomized input. The generated
prolog facts and queries were consulted via SWI-Prolog5,
and goals were executed until the first binding succeeding
the query was reported or until the goal fails. The reported
runtimes indicate the mean waiting time from sending the
input to receiving the response.

The results of the experiments are shown in Fig. 11.
The mean execution times are reported in seconds against

5https://www.swi-prolog.org/
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an increasing number of components, available hardware,
devices, or locations. The plot furthermore shows the stan-
dard derivation of the observed execution times for the
ten tests performed for each value. The results show that
the execution time is mostly a�ected by an increase in the
number of devices, providing more possible targets to choose
from. Here, the execution time increases linearly with the
number of devices. Execution time for an increasing number
of images to be distributed similarly increased linearly;
however, a higher number of images to be distributed is
less impactful than an increase in the number of devices.
An increase in the number of constraints on hardware or
locations does not noticeably increase execution time. The
standard deviations of the observations are generally reason-
able and are due to minor di�erences in the complexity of the
generated inputs as well as measurement errors. However,
both the tests for an increasing number of devices and for
an increasing number of images show two clearly stronger
fluctuations. This suggests that the worst execution time for
more complex examples could be noticeably worse than the
mean execution time. Since we are not yet able to determine
the worst execution time exactly, it would be necessary to
implement appropriate safety mechanisms for time-critical
systems, which, for example, fall back to appropriate defaults
if the execution time is too long.

The experiments show that systems with more than
1000 components or restrictions can still be redistributed
within a reasonable time for application areas requiring
response times in the millisecond range. As such, our so-
lution performs significantly better than the approach for
fleet deployment shown in [91], in which the execution
time of deployment assignment for more than two hundred
devices is in the double-digit seconds range. For larger, more
complex, and time-critical systems, our solution may not be
used without adjustments. However, these limitations are not
a major limitation for the application of component rede-
ployment. On the one hand, the number of such large and
complex systems is probably limited. For large, time-critical
systems, the problem could also be broken down into smaller
problems through suitable architectural decomposition. This
solution would have to be applied mainly when more than
1024 components need to be distributed, as this is the current
technical upper limit of our implementation inherited from
the underlying technologies.

7. Related Work
Over the last few years, multiple IoT-focused C&C lan-

guages have been proposed. ThingML [70, 51] provides a
C&C modeling language that allows defining components
using statecharts enriched with handwritten code. ThingML
uses these models to generate C, Java, or JavaScript code.
The handwritten code is either written in one of the target
languages or in ThingML’s own C-like language. ThingML
works on a relatively low level of abstraction where frag-
ments of target GPL code may be included in the model.
This makes developing applications using ThingsML easy

for developers who already have experiences in the target
GPL. The other side of the coin is that the models are often
platform-specific and may be impossible to understand for
users who do not have experience with the target GPLs6.
Moreover, coupling models and target languages in the same
file fosters creating redundant models for di�erent target
languages that only di�er in the GPL code. MontiThings
instead tries to completely separate the model and the target
GPL (cf. Sec. 8). Also, ThingML is mainly used to generate
application code but does not provide means for the auto-
matic (re)deployment of its components.

In contrast, Calvin [74, 4, 75] is a Python-based C&C
language that automatically deploys its components. Calvin’s
components have requirements, and its devices have capa-
bilities. By matching requirements and capabilities, Calvin
decides which devices can execute which components. Ad-
ditional rules may be used to guide further the deployment,
e.g., by specifying that a certain component should be
executed not by one but by all compatible actors. Mon-
tiThings was influenced by this general idea but moved it
to a centralized system to increase the rules’ expressiveness
and reduce communication between devices (cf. Sec. 8). For
example, the decentralized approach makes it impossible to
request at least three devices to run a certain software as
devices lack global knowledge about the network.

Similar to Calvin, Distributed Node-RED [10, 44] also
uses the approach of matching device capabilities against
component requirements. Developers model IoT applica-
tions using a web-application. Whenever the application
changes, the system informs the IoT devices using MQTT,
which will then execute the matching components. As with
Calvin, MontiThings allows for more expressive deployment
rules, such as requesting at least a specific number of devices
to execute a component.

OpenTOSCA for IoT [90] is a deployment tool for
MQTT-based IoT applications. In contrast to MontiThings,
this approach requires a low-level specification of IP ad-
dresses and other technical details of the IoT devices. The
benefit of not relying on a container engine is that their ap-
proach enables targeting more resource-constraint devices.
MontiThings’ deployment process requires the IoT devices
to have the necessary resources to execute Docker images.

GeneSIS [37, 35, 36] is a model-based tool for IoT
application deployment. It supports three types of artifact:
ThingML components, Node-RED containers, and blackbox
artifacts, i.e., binaries not further inspected by GeneSIS. A
deployment model specifies in a graph structure how soft-
ware artifacts are mapped to IoT devices. If GeneSIS detects
a discrepancy between the current state of the system and the
desired state, it calculates the necessary changes to reach the
desired state. Compared to MontiThings, GeneSIS is more
focused on the technical aspects of deploying artifacts on the
IoT devices. It also supports deploying software to devices

6Example: https://github.com/TelluIoT/ThingML/
blob/master/org.thingml.samples/src/main/thingml/
core/_linux/mqtt/mqtt_client.thingml
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not directly connected to the Internet. In comparison, Mon-
tiThings currently only supports deploying Docker contain-
ers to devices directly connected to the internet. However,
GeneSIS does not provide its own reasoner to decide which
software to deploy on which device. A future extension point
could be to add MontiThings’ deployment logic as input to
GeneSIS and let GeneSIS manage the technical aspects of
the deployment.

CapeCode [11] is a Ptolomy-based development envi-
ronment that uses that extends Ptolomy by actors using the
accessor pattern. Accessors are (in summary) actors that ac-
cess non-modeled software. They serve as a kind of proxy for
this software. Similar to MontiThings and Calvin, CapeCope
accessors have (abstract) requirements. If a platform meets
all requirements of an accessor, it can execute the accessor.

The idea of connecting to hardware through a vari-
ant of ports has also been proposed by real-time object-
oriented modeling (ROOM) [89, 87]. In ROOM, service
access points and service provision points act similar to ports
in that they coordinate data exchange between components
(called actors in ROOM) and other layers of the system.
These service access and provision points are connected. Be-
sides that, ports represent communication channels between
components. MontiThings di�ers from that in that there is
a single concept of ports. This makes MontiThings com-
ponents more flexible as their ports (with code templates)
do not strictly depend on lower layers or hardware to be
available but can also be reused in a di�erent context by
attaching a connector to them.

Similarly, Node-RED7 is a graphical JavaScript-based
C&C development tool that connects components that often
access external software. For example, a Twitter component
can be used to monitor new messages containing a particular
hashtag on Twitter. AWS IoT Things Graph8 provides a
graphical C&C modeling tool similar to Node-RED. After
modeling the data flow using the C&C modeling tool, users
define which components should be deployed to which de-
vices. The deployment can then be carried out automatically
by AWS. Overall, AWS provides a whole ecosystem for
IoT development, including operating systems and clients
for IoT devices (Amazon FreeRTOS and AWS Greengrass),
device management (AWS IoT Device Management), and
connectivity (AWS IoT Core). Microsoft Azure o�ers a
similar infrastructure, including over-the-air deployment,
under the name “Azure IoT Hub”. Since most of the projects
mentioned above projects are research projects, obviously
none of these (including this paper) o�ers a competitive
ecosystem to AWS. However, if we only compare the e�ort
required to generate an executable application from a C&C
model, MontiThings can generate large parts of the code for
IoT devices that have to be handwritten with AWS. More-
over, MontiThings achieves a clearer separation of business
logic and infrastructure of the handwritten code.

7https://nodered.org/
8https://aws.amazon.com/iot-things-graph/

Eclipse Mita9 is a programming language for IoT appli-
cations that was originally developed by Bosch and itemis
as a development tool for the Bosch Cross Domain De-
velopment Kit (XDK). Mita generates C code from high-
level behavioral descriptions on how to react to certain
events. To support a new platform, an Xtend-based code
generator for that particular platform has to be provided. The
Mita language is, however, very close to its target language
C, and mainly sets itself apart from C/C++ by providing
a convenient syntax for writing event-handling callbacks.
While the language does provide support for MQTT to
exchange messages with other systems, the language itself
is rather limited and targeted more at generating software
for single low-powered devices such as Arduinos or the
XDK. Compared to Mita, MontiThings is focused on more
complex applications that require, e.g., failure tolerance.

Regarding the deployment of IoT applications, Balena
is closest to MontiThings as MontiThings’ deployment is
based on Balena. Balena10 is a tool for managing the deploy-
ment of IoT applications. It mainly provides an operating
system for various popular platforms, called balenaOS, a
web application for managing devices, called balenaCloud,
and a failure-resistant, less resource-demanding variant of
Docker, called balenaEngine. Developers can use Balena to
deploy one or multiple Docker containers to multiple IoT
devices. To do so, developers push their code to a Git repos-
itory provided by Balena. Balena’s continuous integration
pipeline then creates Docker images from the containers.
These images are then pulled by all registered IoT devices
using the supervisor that handles communication with the
cloud. This supervisor is part of balenaOS and thus installed
on all devices registered in the balenaCloud. As a com-
mercial service, Balena naturally provides a more mature
ecosystem than research projects like MontiThings. Mon-
tiThings, however, o�ers more expressive deployment rules.
While Balena deploys the same containers to all devices,
MontiThings follows a rule-based approach like Calvin.
Since Balena does not foster MDE but mainly focuses on the
deployment, MontiThings is better at supporting developers
in creating the applications to be deployed. For example,
MontiThings automates many error-handling and connectiv-
ity tasks that have to be implemented with handwritten code
using Balena and thereby also achieves a clearer separation
of concerns.

Regarding our requirements (Sec. 3), MontiThings is
the only tool mentioned above that fulfills all requirements
out-of-the-box. Of course, features such as error-handling
or resilience to failures can be implemented using most of
the other approaches by integrating handwritten code. This,
however, makes the applications more time-consuming (and
hence expensive) to implement and test, often leads to a
worse separation of concerns, and (in some cases) makes
the models harder to understand. By promoting a clear
separation of business logic and implementation details,
MontiThings models are easy to understand and can be

9Eclipse Mita: https://www.eclipse.org/mita/
10https://www.balena.io/
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used to discuss the product under development between
developers and non-developers.

8. Discussion
Language designers can mainly be tempted in two ways

to undermine the platform independence of their language:
When designing the type system or when designing the
behavior specification. Having a certain target GPL in mind,
a language designer might consider adding types of the target
GPL to the modeling language to enable modelers to use
more complex types. Moreover, self-developed behavioral
languages are often considered as too inexpressive compared
to GPLs. Especially if low-level hardware functionalities are
to be implemented, accessing GPL libraries in the model can
seem attractive. Both of these pitfalls come at the cost of
making it harder to write code generators for di�erent target
GPLs. They also require modelers to understand the target
GPL and, as more generators are added, to add more and
more annotations to the model that make the model more
di�cult to comprehend.

In an earlier version of the language, MontiThings al-
lowed importing and directly using C++ types as port types.
ThingML approaches this problem by including annota-
tions in the model that define how certain types should be
handled by the respective code generators (e.g., @c_type
"const char*") and which import statements are nec-
essary (e.g., @c_header "#include <stdio.h>").
Moreover, ThingML allows tagging components, called
“thing” in ThingML, to be specific to a particular target GPL
(@platform "javascript"). This is mostly done for
components that include code of the respective target GPL.
For example, a within a ThingML statechart may execute
code when triggering a transition. A major drawback is that
it can easily introduce code duplication if several platform-
specific things need to be maintained that di�er only in the
included target code GPL.

[95] discusses that developers who create IoT systems
often come from a di�erent background (e.g., smartphone
app development) and thus make mistakes when develop-
ing distributed (IoT) systems that are inherently di�erent.
We argue that MDE and IoT languages can help to fur-
ther abstract from the challenges of developing distributed
systems. For example, MontiThings abstracts from device
failure by providing means to resolve such situations au-
tomatically. However, such abstractions are currently still
very limited. Safety-critical applications may require more
fine-grained control over latency, jitter, and other network-
related parameters than other applications. Such fine-grained
control over network parameters is currently out-of-scope for
MontiThings. While MontiThings addresses multiple of the
problem categories from [69], we want to emphasize that
MontiThings is not intended to solve all possible reliabil-
ity issues. Instead, MontiThings aims at highlighting how
model-driven development can facilitate the utilization of re-
liability mechanisms. Other high-level reliability issues such
as anomaly detection [69], which are currently not covered

by MontiThings could be added as a service (cf. Fig. 2). Low-
level mechanisms, such as those a�ecting communication
protocols, could be added by extending the RTE on which
the generated code is built.

For MDE platforms to be successful in the IoT domain,
more research is needed on MDE platforms to find the right
level of abstraction that both gives developers fine-grained
control when needed but also does not overwhelm them
with long lists of parameters they do not need for their
specific project. On code-level, MontiThings separates low-
level details from the business logic by enabling developers
to use handwritten C++ code to define the behavior of
components if the developer considers MontiThings’ Java-
like behavior language not expressive enough. Furthermore,
generated code can be overwritten using handwritten code.
For the deployment, however, the user does not have such
fine-grained options but has to rely on MontiThings’ mech-
anisms.

Moreover, our method currently relies on employing
(Docker) containers, which are automatically generated from
the models as environments for the component implemen-
tations. Yet, it is generally possible to deploy the gener-
ated component implementations manually, as we see cases
where this would be beneficial, such as operating with very
computationally constrained hardware. For such systems,
containers might produce undesired computation overhead.
Thus, we are investigating lightweight alternatives to con-
tainers to provide alternative deployment techniques within
MontiThings. Furthermore, our approach does currently not
have means of minimizing possible redeployments, i.e., min-
imizing the number of components that have to be rede-
ployed.

Components in C&C models are black boxes that should
only be accessed using their interface, i.e., their ports. This
fact enables architects to compose components indepen-
dently of each other. Also, this fact makes it possible to
deploy components to devices independently. While it is
technically possible to distribute the components to de-
vices independently of each other, this is often not rea-
sonable. In other words, one has to di�erentiate between
platform independence and platform ignorance [88]. Sim-
ilar to Modeling and Analysis of Real-time and Embedded
systems (MARTE) [88] and Calvin [4], MontiThings allows
to specify requirements to the platform but hides to the
developer how these requirements are fulfilled. Also, we
give architects the option to limit MontiThings from split-
ting certain parts of the architecture (cf. Sec. 5.1). Overall,
however, we conclude that deployment aspects should not
be included in C&C models if possible and instead be
configured separately.

In practice, however, we noticed that architects, devel-
opers, and other stakeholders—even in the early stages of
the development—may have specific devices in mind when
designing the architecture. This may be due to the fact that
IoT products, unlike smartphone applications, as of today are
often sold bundled as hardware and software. Standardized
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platforms like Apple HomeKit11 aim at providing standard-
ized access to IoT devices. Nevertheless, many IoT products
still exist in their own ecosystems. To be sustainable, future
developers will need to make use of the devices their cus-
tomers already own. This requires that their way of thinking
changes from developing software for specific devices to
developing software for a specified environment.

This has implications for the design of C&C languages.
For C&C architectures to be successfully deployed auto-
matically, architects must be given the ability to specify
requirements to their environment. To interact with compo-
nents not provided by the code generator, other languages
often use components that act as substitutes for components
not provided by the generator [4, 11]. However, in order to
ensure a certain reliability of the resulting product during
development, C&C languages should enable architects to
specify such substitutes further. If such a specification exists,
the compatibility of the self-developed components with
the components provided by third parties can be tested.
MontiThings uses the mechanisms shown in Sec. 4.2 for this
purpose.

Overall, research on IoT deployment is currently “still
in its infancy” [72]. MontiThings uses a centralized de-
ployment system in contrast to Calvin’s peer-to-peer-based
deployment approach [4, 75]. After evaluating the peer-
to-peer-based approach, we came to the conclusion that a
centralized approach is better fitted for IoT use cases for
multiple reasons:

Firstly, IoT devices are often battery-powered. Battery-
powered devices enter sleep modes to save energy. There-
fore, they can be unavailable for communication for ex-
tended periods of time. Furthermore, communication causes
high energy consumption. If possible, communication should
be avoided. Cloud providers such as Amazon AWS and
Microsoft’s Azure nowadays provide centralized infrastruc-
ture with high availability. Thus one can reasonably expect
them to provide central entities for IoT systems. By handling
deployment-related tasks using a central entity, we can
reduce communication between the devices and thus allow
them to enter sleep mode more often.

Secondly, IoT devices are often based on low-perfor-
mance hardware. While we expect this to become less and
less of a factor in the future, devices should not be required to
keep parts of the software they do not need available for other
devices. This allows IoT devices to allocate more resources
to running the actual application.

Thirdly, in a full peer-to-peer approach, no IoT device
knows the full topology of available devices. This restricts
the expressiveness of the rules used for deploying the com-
ponents. Without knowledge of the whole system, the re-
quirements can be only based on properties of individual
devices, but not on properties of the system as a whole.
Since MontiThings’ deployment is based on a centralized
approach, it can be used to express constraints that require
global knowledge about the system, e.g., that a certain num-
ber of devices should run a particular component.

11https://developer.apple.com/homekit/

Technically, one of the most challenging tasks was cre-
ating connectivity between the devices. Many middlewares
rely on knowing the IP addresses and port numbers of
their communication partners. While this requirement is
easily fulfilled in lab environments where devices even can
have statically assigned IP addresses, it fails in IoT projects
where devices are behind a NAT or can connect via cellular
networks and thus have IP addresses that change regularly.
Hence, middlewares such OpenDDS explicitly state their
discovery protocol is not suited for IoT projects12, and con-
tainer orchestration tools such as Kubernetes explicitly re-
quire the absence of a network address translation (NAT)13.
To circumvent this problem, we use a central message broker
(Eclipse Mosquitto14) in such environments. We think this
is reasonable as many IoT applications do parts of their
processing in a cloud [78]. While this causes a higher latency
compared to decentralized approaches, many IoT applica-
tions that communicate over the Internet and not via a local
network do not have hard time constraints that would require
the slightly lower latency. We also provide decentralized
communication between the components, but ultimately, the
decision on which networking model to use must be made
based on the application’s requirements and should be made
in advance by the code generator. By extending our Port
class, developers can, of course, also provide other means of
communication.

9. Conclusion
We presented the MontiThings modeling infrastructure

for the systematic MDE of IoT applications that supports
separation of error-handling from the development of busi-
ness logic, features a comprehensive model-driven toolchain
for generating executable containers, and an e�cient de-
ployment even for large IoT systems. With this in place,
developers of IoT systems can focus on implementing the
business logic first, before they make error handling explicit
(instead of merging it into the business parts), and can lever-
age the power of logic programming to compute optimal
deployments for their architectures.

Based on this separation of concerns, we presented a
systematic modeling method for reliable IoT applications
that leverages sophisticated language, code, and model in-
tegration techniques. Overall, this can facilitate engineering
IoT systems by increasing abstraction, separating concerns,
and facilitating their deployment to heterogeneous devices.

Source Code
MontiThings is available on GitHub:

https://github.com/MontiCore/montithings

12http://download.objectcomputing.com/OpenDDS/
OpenDDS-latest.pdf

13https://kubernetes.io/docs/concepts/cluster-
administration/networking/

14https://mosquitto.org/
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