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The methodology MontiBelle represents a specification formalism designed for the devel-
opment and verification of cyber-physical safety-critical systems. It allows abstraction and
underspecification and provides an extensive set of verification techniques to actually prove
specification correctness. An architecture description language for modeling Cyber-Physical
Systems is provided and combined with behavioral specifications as well as an environment to
formulate desired properties. ADLModels and specifications are translated into an equivalent
specification in the theorem prover Isabelle. Counterexamples can also be found by using a
simulation execution within the Isabelle prover and letting the counterexample-finder run in an
intelligent way through execution paths which are considered erroneous candidates. The most
important property making this methodology stand out among alternate approaches is that
refinement is fully compositional. The approach is evaluated on a synchronous flight guidance
system.

I. Introduction
Requirements Engineering is an important activity in software development. Many errors are identified in that phase

[1]. For this, DO-178C [2] emphasizes that requirements are to be developed in a hierarchically decomposable way,
communications and interrelationships among components should be unambiguously described, test coverage should be
sufficient [3], etc.

When specifying requirements, usually a compromise needs to be found between completeness, detailedness and
formality on one side and abstraction, focus on essential structure and behavior on the other side. However, rigor and
level of detail need not be excluding each other. Explicit notions of the specification, refinement and hierarchical
decomposition as well as various techniques for merging functional specifications from individual features allow to
combine both.

The methodology MontiBelle presents such a specification formalism, designed for the development and simulation-
based verification of critical systems in avionics, automotive, etc. to provide compliance with functional safety
considerations (DO-178C or ISO 26262). It allows abstraction and underspecification, while retaining full formality and
therefore provides an extensive set of verification techniques to actually prove specification correctness. An architecture
description language [4] for modeling Cyber-Physical Systems (which have been considered as important for aeronautics
in the future [5]) is provided and combined with behavioral specifications as well as an environment to formulate desired
properties. All can be defined directly in the specification framework or can be mapped from the ADL, state machines
and a logic language like OCL [6]. All (formal) requirement models and specifications are translated into an equivalent
specification in the Isabelle theorem prover [7]. Many properties can be proven correct at the push of a button using the
provided extensive proof framework as presented in [8] and shown in the video in [9] demonstrating an early version of
the methodology.

However, to find inconsistencies, counterexamples can be searched and found. This is done by using a simulation
execution within the Isabelle prover and letting the counterexample-finder run in an intelligent way through execution
paths which are considered erroneous candidates. Through simulation, the fault behavior caused by the corresponding
input can be reliably identified and debugging information is delivered. This technique is a mixture between traditional
(exemplaric) simulation and a full blown verification and usually allows to detect errors rather easily, especially when
evolving requirements specifications. However, due to its symbolic nature, it does not scale to traditional fully exemplaric
simulation, which on the other hand also is not necessary.

The behavioral semantics [10] are defined using sets of stream processing functions from the FOCUS methodology
[11, 12]. Refinement of component specifications is semantically well reflected by the concept of set inclusion between
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Fig. 1 Synchronous Pilot Flying System white box

function sets. The most important property making this methodology stand out among alternate approaches is that
refinement of a component in a decomposed structure leads automatically to refinement of the composition [10].
This property is important, because the developers only need to deal with refinement in the small and are sure that the
overall system is refined by construction as well. This is the main reason why the methodology scales to larger and
complex distributed systems, such as airplanes.

To summarize, MontiBelle offers:
1) Formal, yet abstraction-scalable specification.
2) Symbolic simulation of behavior embedded in their decomposed architectures
3) Formal Verification
4) Simulation-based fault detection and debugging
5) Timing, structural decomposition and behavioral underspecification
6) Interactions with environment (such as pilots, foreign airplanes or ground control)
The rest of the paper is organized as follows: the next section presents a running example from the avionics and the

verification challenges. Then the tool chain presents the way it deals with the specification and verification activities. A
conclusion summarizes the benefits of the methodology. For the interested reader, details of the models and the core
structured formalized in the theorem prover can be found in the appendix.

II. Running example
We describe the verification of development steps through a representative case study adapted from an openly

available NASA report [13]. A synchronous electronic pilot flight system PFS with flight guidance components for
each pilot can be modeled as a composed feedback system visualized in fig. 1, where each channel transmits boolean
messages.

An input transmitted over channel 25 represents the transfer switch status. If pressed, a switch to the active flying
side is requested. Each of the two flight guidance systems FGS has an activeness state that denotes the active flying
side. The Bus components transmit messages between the FGS components. The complete system should fulfill the
formalized system requirements. System requirements could be:

• At least one flight guidance system is active
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Fig. 2 Synchronous Left Flight Guidance System automaton

• Flipping the transfer switch, switches the active flying side
A possible component design to fulfill the requirements is given in textual form in appendix A. Informally, the Bus
components perform a delayed (used as known for handling feedback loops in hardware modeling) transmission by
sending out an initial output message and then behaving as identity components. The Left-FGS for instance can be
designed as an automaton in fig. 2, and one can show that it complies with the requirements. The Right-FGS is defined
in an analogous matter, being initially inactive and therefore outputting �0;B4 in its initial step.

Asynchronous PFS The synchronous PFS can be extended by non-deterministic clocks for each component to model
sensor failure or component malfunctioning by restricting the FGS and Buses to only behave correctly in any step, iff
the corresponding clock outputs )AD4 in that step. This asynchronous PFS is also adapted from the asynchronous PFS
in [13].
Without any restrictions to the clocks behavior, the complete system might never react to anything and never react to any
input. By refinement, the clocks can be restricted to a 5 08A behavior such that once in a while they emit a )AD4. The
MontiArc models of the fair and unfair clock are in appendix A.

A. Simulation-based verification
Simulation-based verification can be performed by writing OCL properties in form of test-cases where all variables

are instantiated. From such an OCL expression an equivalent theorem in Isabelle is generated. Automatic provers are
applied to each of the test-cases to check these for correctness. This method is applied to all defined OCL properties,
thus an automatic verification is possible in many cases.
An example would be to test that either the left or the right side is active in the second step. The OCL property can be
formulated like this:

21[2] = CAD4 $' 23[2] = CAD4

An equivalent theorem is generated and the prover tools are automatically applied. The main structure of the verification
framework is described in appendix A.
One could extend a test-case by quantified variables and perform full formal verification:
SysReq: FORALL n IN nat. c1[n] OR c3[n];
Syntax: The inner OCL expression consists of two clauses and the logical >A operator. By 21[=], the =th element of
the stream flowing on channel 21 is donated.
Semantics: For every step in the system execution, either the left or the right FGS has to be active. Thus, it checks if at
least one side is pilot flying side.
An equivalent theorem is generated in Isabelle and automatic solvers are called.

Counterexamples In case of an unfulfilled requirement, counterexample tools like quickcheck and nitpick [8] check
the property and search for a counterexample assignment of undefined variables/symbols. This leads to an early
error-detection and thus fewer costs.
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Fig. 3 Verification Tool chain with MontiArc frontend and Isabelle backend.

/ / L i s t o f s t a t e s
s t a t e S t a r t , Next , S top ;

/ / I n i t i a l s t a t e i n c l u d i n g i n i t i a l o u t p u t
i n i t i a l S t a r t / {o = f a l s e } ;

/ / T r a n s i t i o n from " S t a r t " t o " Nex t " i f guard s a t i s f i e d , o u t p u t s " t r u e "
S t a r t −> Next [ c o u n t e r > 0 ] / {o = t rue } ;

Fig. 4 Exemplary states and transitions of a MontiArc automaton.

III. Tool Chain
The tool chain is separated in frontend and backend stages. Figure 3 shows an overview. The frontend allows

to model architecture and behavior using MontiArc [14] as well as desired properties using the Object Constraint
Language (OCL) [15]. The backend can be further separated into two parts. Firstly, MontiArc and OCL specifications
are transformed into Isabelle theories. For architecture and behavior, this is achieved by a mapping to equal concepts
encoded in Isabelle. The OCL invariants are mapped to lemmas. Secondly, the encoding is mapped to its semantic [16].
This semantic mapping is completely implemented in Isabelle and as such mathematically correct. The final result is (a
set of) FOCUS stream processing functions (SPFs). The complete tool chain is supported by Integrated Verification
Environment (IVE), combining modeling, transformation, and verification in one single tool. The tool is designed to be
easily qualifiable itself by having the majority of code generation being performed in Isabelle (this is achieved by using
genericity concepts such as locals [17]). Isabelle code is easily certified due to its axiomatic and conservative nature
[18]. The part of the generator from the ADL into the prover is thus kept at a minimum.

A. MontiArc
MontiArc is a textual, high-level domain specific language (DSL) developed at RWTH Aachen [14]. It allows

specifying realizable-by-construction components by mixing a component-connector architecture description language
(ADL) with formal behavior specification. The language also supports non-determinism by underspecification. Each
component defines an interface using typed ports. Components can be instantiated and reused. Atomic components
have their behavior defined either using automata or by (potentially recursive) equations relating infinite input/output
streams (history-oriented) [8, 19]. Automata mainly consist of states and transitions as shown in fig. 4. Recursive
stream specifications allow to declaratively specify the desired relations between inputs and outputs in a higher-level
style closer to informal natural language and shall-statements, without explicitly modeling the implementation.

B. OCL
OCL is part of the Unified Modeling Language (UML) [20]. It is designed to define constraints on objects modeled

by other UML languages such as class diagrams (CDs) and object diagrams (ODs). The OCL implementation developed
at RWTH Aachen [15] was extended to work with MontiArc models. This extension enables the specification of desired
properties of MontiArc instances.
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C. IVE
IVE is a purpose built VSCode [21] plugin to support the complete toolchain. The software allows seamless

combination of all stages through syntax highlighting, syntax checks, reference checks, sensible overview of files,
Isabelle integration, and graphical representations. An example view of the interface is given in appendix A.

IV. Conclusion
This paper presented MontiBelle, a framework for reasoning over cyber-physical systems. It addresses the challenge

that due to increasing complexity of avionics software, traditional verification methods on informal requirements such
as reviews, while keeping reasonable certification costs, scale no longer. So by presenting a formal textual ADL for
specifying requirements coupled with a reasoning infrastructure, a number of traditional verification activities can be
replaced or complemented.
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A. MontiBelle

A. MontiArc Models
In this section, different textual MontiArc models describing the components mentioned in this paper are given and

explained.

Textual Parametric Bus MontiArc Model Here, a history-oriented specification (spec) and a state-oriented specifca-
tion (automaton) is presented. The spec describes the behavioral connection between complete output and input streams.
The parameter initialSide makes it possible to reuse the same model for both Buses.

component Bus ( boo l e an i n i t i a l S i d e ) {
t im i ng c a u s a l s y n c ;

p o r t
i n boo l e an in ,
ou t boo l e an out ,
/ / The Bus component has an i n p u t and o u t p u t p o r t

spec Bus {
ou t [ 0 ]= i n i t i a l S i d e ;
/ / The i n i t i a l o u t p u t i s d e f i n e d by t h e i n i t i a l S i d e p a r ame t e r

ou t [ n+1]= i n [ n ] ;
/ / I t t h en behaves l i k e a de l a y ed i d e n t i t y component

}
}

The automaton describes the element-wise output calculation and constitutes an implementation per construction.

component Bus ( boo l e an i n i t i a l S i d e ) {
t im i ng c a u s a l s y n c ;

p o r t
i n boo l e an in ,
ou t boo l e an out ,
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/ / The Bus component has an i n p u t and o u t p u t p o r t

au tomaton Bus {
s t a t e S i n g l e ;
i n i t i a l S i n g l e / { ou t = i n i t i a l S i d e } ;
/ / The i n i t i a l Outpu t i s d e f i n e d by t h e i n i t i a l S i d e p a r ame t e r

S i n g l e −> S i n g l e / { ou t = i n } ;
/ / The t r a n s i t i o n o u t p u t s i t s i n p u t e l emen t

}
}

Textual Parametric FGSMontiArc Model Two specification variants are provided. Again, the parameter initialSide
is used to define both FGS within one MontiArc model.

component S ide ( boo l e an i n i t i a l S i d e ) {
t im i ng sync ;

p o r t
i n boo l e an t s ,
/ / p o r t r e c e i v i n g t h e s t a t e o f t h e t r a n s f e r sw i t c h
i n boo l e an ospf ,
/ / p o r t r e c e i v i n g t h e ( d e l a y ed ) o u t p u t o f t h e o t h e r FGS v i a a Bus
ou t boo l e an pf ;
/ / o u t p u t p o r t r e p r e s e n t i n g t h e a c t i v e n e s s o f t h e FGS

spec S ide {
l e t a c t i v e [ 0 ] = i n i t i a l S i d e AND

a c t i v e [ n +1] = pf [ n ] ;
/ / h e l p e r d e f i n i t i o n t o check whe the r t h e s i d e i s a c t i v e o r i n a c t i v e

l e t p r e _ t s [ 0 ]= True AND
p r e _ t s [ n+1]= t s [ n ] ;

/ / h e l p e r d e f i n i t i o n t o a c c e s s t h e t r a n s f e r sw i t c h s t a t e i n t h e l a s t s t e p

( (NOT a c t i v e [ n ] ) AND t s [ n ] AND (NOT p r e _ t s [ n ] ) ) IMPLIES pf [ n ] ;
/ / Sw i t che s t o a c t i v e , i f t h e t r a n s f e r sw i t c h i s p r e s s e d
( (NOT a c t i v e [ n ] ) AND (NOT t s [ n ] ) OR p r e _ t s [ n ] ) IMPLIES (NOT pf [ n ] ) ;
/ / Does no t sw i t c h a c t i v e , i f t h e t r a n s f e r sw i t c h i s no t p r e s s e d o r s t i l l p r e s s e d
( a c t i v e [ n ] AND osp f [ n ] ) IMPLIES (NOT pf [ n ] ) ;
/ / Sw i t che s i n a c t i v e , i f t h e o t h e r s i d e sw i t c h ed a c t i v e
( a c t i v e [ n ] ABD (NOT osp f [ n ] ) ) IMPLIES pf [ n ] )
/ / S t a y s a c t i v e as long as t h e o t h e r s i d e i s i n a c t i v e

}
}

The automaton defined in the model behaves exactly like the specification.

component S ide ( boo l e an i n i t i a l S i d e ) {
t im i ng sync ;

p o r t
i n boo l e an t s ,

/ / p o r t r e c e i v i n g t h e s t a t e o f t h e t r a n s f e r sw i t c h
i n boo l e an ospf ,
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/ / p o r t r e c e i v i n g t h e ( d e l a y ed ) o u t p u t o f t h e o t h e r FGS v i a a Bus
ou t boo l e an pf ;

/ / o u t p u t p o r t r e p r e s e n t i n g t h e a c t i v e n e s s o f t h e FGS

boo l ean p r e _ t s ;

au tomaton S ide {
s t a t e Ac t ive , I n a c t i v e ;
i n i t i a l ( i f i n i t i a l S i d e t h en Ac t i v e e l s e I n a c t i v e ) / { p r e _ t s = t r u e } ;

Ac t i v e −> I n a c t i v e [ o sp f ] / { p r e _ t s = t s , p f= f a l s e } ;
Ac t i v e −> Ac t i v e [NOT osp f ] / { p r e _ t s = t s , p f= t r u e } ;

I n a c t i v e −> Ac t i v e [ t s AND NOT p r e _ t s ] / { p r e _ t s = t s , p f= t r u e } ;
I n a c t i v e −> I n a c t i v e [ (NOT t s ) OR p r e _ t s ] / { p r e _ t s = t s , p f= f a l s e } ;

}
}

Having modeled all sub-components of the PFS, the complete system can be modeled by connecting the sub-
components.

<< d e t e rm i n i s t i c >>component P i l o t F l y i n g S y s t em {
t im i ng sync ;

p o r t
i n boo l e an t s ,
/ / t r a n s f e r sw i t c h i n p u t p o r t
ou t boo l e an l p f ,
/ / l e f t s i d e i s a c t i v e o u t p u t p o r t
ou t boo l e an r p f ;
/ / r i g h t s i d e a c t i v e o u t p u t p o r t

component S ide ( t r u e ) l s i d e ;
/ / l e f t s i d e FGS component
component Bus ( t r u e ) l r b u s ;
/ / Bus c o nn e c t i n g l e f t t o r i g h t s i d e FGS
component S ide ( f a l s e ) r s i d e ;
/ / r i g h t s i d e FGS component
component Bus ( f a l s e ) r l b u s ;
/ / Bus c o nn e c t i n g r i g h t t o l e f t s i d e FGS

connec t t s −> l s i d e . t s ;
/ / c o n n e c t i n g t r a n s f e r sw i t c h i n p u t t o L−FGS i n p u t ( c h anne l c5 )
connec t t s −> r s i d e . t s ;
/ / same t o t h e r i g h t s i d e ( ch anne l c5 )
connec t l s i d e . p f −> l r b u s . l s ;
/ / c o n n e c t i n g L−FGS ou t p u t t o LR−Bus ( channe l c1 )
connec t l r b u s . r s −> r s i d e . o s p f ;
/ / c o n n e c t i o n LR−Bus o u t p u t t o R−FGS i n p u t ( c h anne l c2 )
connec t r s i d e . p f −> r l b u s . r s ;
/ / c o n n e c t i n g R−FGS ou t p u t t o RL−Bus ( channe l c3 )
connec t r l b u s . l s −> l s i d e . o s p f ;
/ / c o n n e c t i n g RL−Bus o u t p u t t o L−FGS i n p u t ( c h anne l c4 )
connec t l s i d e . p f −> l p f ;
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/ / c o n n e c t i n g L−FGS ou t p u t t o a o u t p u t p o r t ( o u t p u t r e p r e s e n t s a c t i v e n e s s )
c onnec t r s i d e . p f −> r p f ;
/ / c o n n e c t i n g LRFGS ou t p u t t o a o u t p u t p o r t ( o u t p u t r e p r e s e n t s a c t i v e n e s s )

}

The complete system was visualized in fig. 1.

Textual Unfair Clock MontiArc Model Two specification variants are provided.

component C lockUn f a i r {
t im i ng c a u s a l s y n c ;

p o r t
ou t boo l e an c l k ;

spec C lockUn f a i r {
LEN c l k = INF ;

}

au tomaton C lockUn f a i r {
s t a t e S i n g l e ;
i n i t i a l S i n g l e ;

S i ng l e −>S i n g l e / { c l k = t r u e } ;
S i ng l e −>S i n g l e / { c l k = f a l s e } ;

}
}

Textual Fair Clock MontiArc Model Two specification variants are provided.

<< t r a n s R e f i n e s =" C lockUn f a i r ">>component C l o ckFa i r {
t im i ng sync ;

p o r t
ou t boo l e an c l k ;

spec C l o ckFa i r {
LEN c l k = INF ;

FORALL n IN na t . EXISTS m IN na t . m<n+10 AND ou t [m]= t r u e ;
}

i n t c o u n t e r ;

au tomaton C l o ckFa i r {
s t a t e S i n g l e ;
i n i t i a l S i n g l e / { c o u n t e r = rand { j . j <=10}};

S i n g l e −> S i n g l e [ coun t e r >0] / { c l k = f a l s e } ;
S i n g l e −> S i n g l e [ c o u n t e r ==0] / { c l k = t r u e , c o u n t e r = rand { j . j <=10}};

}
}
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B. IVE

Fig. 5 Integrated Verification Environment

C. Fundamentals of the encoded stream-based framework
Based on the encoding of streams in [8, 22],

domain
’a s t r e am = l s c o n s " ’a " ( l a zy " ’a s t r e am " )

the following datatypes lead to a user-friendly and efficient framework regarding, length, proof-length, and tool
support.

For composing stream processing functions, we add labeled channels [23] and code the structure "stream bundles"
(SB) from [16].
Every channel of the stream bundle has a set of allowed messages it can transmit. The predicate sb_well is true, if all
channels only transmit allowed messages. The domain is defined by a parametric type variable 2 and is visible in the
signature of every SB.

t ypede f ’ c SB ( " ( _Ω ) " )
= "{ f : : ( ’ c ⇒M st r e am ) . s b_we l l f }"

A fixpoint operator can be defined over the SB type. It composes two continuous functions over SBs. The operator is
defined over a recursive fixpoint and→ in the signature denotes that a function is continuous [22]. The Ω abbreviation
for bundles was introduced to the framework while defining SBs.

d e f i n i t i o n sp fComp: : " ( ’ I 1Ω →’O1Ω ) →( ’ I 2Ω →’O2Ω )
→ ( ( ( ’ I 1 ∪ ’ I 2 ) − ( ’O1 ∪ ’O2 ) ) Ω →( ’O1 ∪ ’O2 )Ω ) "

A stream processing function (%� is a continuous function that maps input SBs to output SBs. Since the domains
of SBs are visible in the signature, the same holds for the domain and range of SPFs. Since specified components can be
modeled as SPFs, a composed system of components can be defined with the composition operator B? 5 �><?. Again,
the used SPF type is taken from [16].

type_synonym ( ’ I , ’O ) SPF = "{ f : : ( ’ I Ω →’OΩ ) }"

A specification (SPS) is defined as a set of SPFs. By defining it as a type synonym, all predefined and proven
properties over general sets automatically hold over the SPS type. SPS represents the semantics of non-deterministic
components. The composition operator can be lifted straightforwardly to sets of functions.

type_synonym ( ’ I , ’O ) SPS = " ( ’ I , ’O ) SPF s e t "

Automatons can be used to model (under-)specified components. Here we mention deterministic automatons, which
can be used for describing the behavior of components. By the abbreviation

√
we denote a SB element (a E42C>A of

messages). The data type definition uses A42>A3 explained in [24].
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record ( ’ s t a t e , ’ i n , ’ o u t ) dAutomaton =
d a T r a n s i t i o n : : " ’ s t a t e ⇒ ’ i n

√
⇒( ’ s t a t e × ’ o u tΩ ) "

d a I n i t S t a t e : : " ’ s t a t e "
d a I n i t O u t : : " ’ o u tΩ "

The semantics of a deterministic automaton is a SPF. The semantics of a non-deterministic automaton is a SPS.
Semantical mappings are implemented according to [16].

d e f i n i t i o n daSem: : " ( ’S , ’ I , ’O ) dAutomaton ⇒ ( ’ I Ω →’OΩ ) "

Locales are introduced in [17] and were used in MontiBelle to relocate most of the generator inside the theorem
prover (instead of largely generating from the ADL), thus the code generator is easier qualifiable.
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