
MontiArcAutomaton: Modeling Architecture and Behavior
of Robotic Systems

Jan Oliver Ringert∗, Bernhard Rumpe, and Andreas Wortmann

Abstract— Robotics poses a challenge for software engi-
neering as the vast numbers of different robot platforms
impose different requirements on robot control architectures.
The platform dependent development of robotic applications
impedes reusability and portability. The lack of reusability
hampers broad propagation of robotics applications.

The MontiArcAutomaton architecture and behavior model-
ing framework provides an integrated, platform independent
structure and behavior modeling language with an extensible
code generation framework. MontiArcAutomaton’s central con-
cept is encapsulation and decomposition known from Compo-
nent & Connector Architecture Description Languages. This
concept is extended from the modeling language to the code
generation and target runtime framework to bridge the gap
of platform specific and independent implementations along
well designed interfaces. This facilitates the reuse of robot
applications and makes their development more efficient.

I. INTRODUCTION

Robotics poses a challenge for software engineering. There
are vast numbers of robots ranging from industrial manip-
ulators, over service robots, to autonomous cars and space
explorers. Most of these robots define their own unique hard-
and software architectures. The software for these robots
is usually implemented by robotics domain experts using
general-purpose programming languages [1]. This lack of
abstraction leads to monolithic solutions for limited prob-
lems [2] which hampers reuse and prevents the development
of new robotics applications [3].

Within the last decade reuse for robotics software has
intensively been pursued. Most of this research focuses on
applying some form of component-based based software
development to robotics [4], [5], [6], [7], [8], [9]. These
platform-specific building blocks encapsulate domain knowl-
edge, but their development and integration still require
robotics experts to be programming experts.

Model-based development of software architecture and
behavior of robotics applications with abstraction from the
target platforms helps domain experts to focus on their
tasks. The technical implementation details are handled by
code generators. While existing modeling tools for robotics
architectures [1], [10] focus on architecture and communi-
cation issues, we have developed the integrated architecture
and behavior modeling framework MontiArcAutomaton [11],
[12], [13] for robotic systems. The goals of the MontiArcAu-
tomaton framework are:

The authors are with the Software Engineering department, RWTH
Aachen University, Germany, http://www.se-rwth.de.

∗J.O. Ringert is supported by the DFG GK/1298 AlgoSyn.

1) target platform independent development of robotic
control software,

2) problem specific modeling of control behavior,
3) support for reuse and portability of components and

libraries, and
4) efficient deployment to different target platforms with

support for native implementations.
We address the first two goals with the MontiArcAutomaton
modeling language and the latter two with the code genera-
tion and library concepts.

II. MONTIARCAUTOMATON MODELING

The language MontiArcAutomaton inherits from the Ar-
chitecture Description Language MontiArc [14] to model
distributed and hierarchically decomposed robotics systems
as Component & Connector architectures. Components are
either atomic and their behavior is directly defined, or they
are composed from other components and their behavior
is derived from the composition. Communication between
components is only possible via unidirectional connectors
between the typed ports of components. We distinguish
between the definition and the instantiation of components.
MontiArc allows multiple instantiation of components and
supports the definition of generic components, which can
be instantiated for different types, and configurable com-
ponents, which can be configured with concrete values at
their instantiation. MontiArc thus imposes stable component
interfaces as identified necessary [1], [5], [10] and therefore
promotes a separation of concerns into system integration
and component implementation.

Figure 1 illustrates these concepts on the architecture
of a simple robot called BumperBot which traverses an
area by driving straight until hitting an obstacle, it then
drives backwards a little, rotates and drives straight forward
again. The robot consists of five components, where the
controller receives input from a touch sensor via the
port bump and sends movement commands to two motors
via the ports left and right. To determine the time
driving backwards, the BumperBot additionally contains a
Timer which is set by controller using the port timer.
The component implementations of TouchSensor and
Motor are platform specific. While the models themselves
remain stable, their implementations are imported from a
corresponding platform specific library.

Component behavior in MontiArcAutomaton can be mod-
eled platform independently using the I/Oω automata [15],
[16] paradigm. The behavior of the atomic component

[RRW13c] Jan Oliver Ringert, Bernhard Rumpe, Andreas Wortmann
MontiArcAutomaton: Modeling Architecture and Behavior of Robotic Systems
In: Workshops and Tutorials Proceedings of the 2013 IEEE International Conference on Robotics and Automation (ICRA),
May 6-10, 2013, Karlsruhe, Germany.
www.se-rwth.de/publications

BumperBot
pressed

Timer(500)
timer

TouchSensor
bumper

bump

/ right: STOP,
 left: STOP

bump:true
/ right: FWD,
 left: FWD

bump:true
/ right: BWD
 left: BWD
 timer: DOUBLE_DELAY

signal:ALERT
/ right: FWD,
 timer: SINGLE_DELAY

signal: ALERT
/ left: FWD

driving

turning

idle

signal

backing

Motor
leftMotor

Motor
rightMotor

cmd

cmd
right

left

timer
signal

cmd

BumpControl
controller

Transistion triggered by input
ALERT on port signal after

driving backwards

Component instance
timer of type Timer

instantiated with 500ms

Input port signal
of component
BumpControl

Component instance
leftMotor of type
Motor from the

platform specific
library

cmd var t signal var t’

SET * ? 0

? t < 500 ? t+1

? t == 500 ALERT t+1

…

Fig. 1. Software architecture and behavior model of the BumperBot robot. The behavior of component controller is implemented as an I/Oω

automaton. The behavior of component timer is implemented as a set of rules.

controller, which defines how the robot reacts to an
obstacle, is modeled as an I/Oω automaton over the ports of
the embedding component. We are currently experimenting
with embedding further domain specific languages into Mon-
tiArc component definitions. As an example, the behavior
of component timer is implemented using a language of
rules over ports and variables of the component. The first line
describes that after receiving the command SET on port cmd
independent of the current value of variable t, the component
emits no signal on port signal (denoted by ⊥) and t is
set to 0.

III. CODE GENERATION AND PLATFORM-SPECIFIC CODE

MontiArcAutomaton provides code generators for several
target languages [12]. Currently supported target languages
are Mona (for formal analysis), EMF Ecore (for graphical
editing), Java, and Python (both for deployment). The code
generators for Java and Python additionally support the robot
operating system (ROS) [7] either by means of rosjava1

or natively. The framework further provides an Eclipse2

based editor for the textual and graphical development of
MontiArcAutomaton models.

We have developed a model library of standard compo-
nents that need target and runtime specific implementations.
MontiArcAutomaton code generators support the generation

1The rosjava website: https://code.google.com/p/rosjava/.
2The Eclipse foundation website: http://www.eclipse.org/.

of wrapper components that can be configured with a specific
implementation without modifying the generated code. This
mechanism allows to provide hand written implementations
that persist regeneration of code from models. We use the
same mechanism for all generated code, which enables us,
e.g., for testing purposes, to replace the manual or generated
implementations of components.

Currently, MontiArcAutomaton only supports component
composition, automata, and native code implementations
of components. We plan to extend the support for other
modeling languages, e.g., the rules language illustrated in
component timer in Fig. 1, through MontiCore’s language
embedding mechanisms [17]. This way engineers will be
able to implement behavior using automata, native code, and
their favorite DSLs while the composition of components
to systems is – oblivious to their implementation – on the
architecture level using MontiArc with explicitly defined
component interfaces.

IV. CONCLUSION

We have presented the MontiArcAutomaton framework
and modeling language, which allow platform independent
modeling of robot control architectures and behavior as
Component & Connector architectures. The models provide
stable interfaces and can be decomposed to be developed
independently. MontiArcAutomaton models of the software
architecture are platform independent and can be transformed

to platform specific implementations by generators for dif-
ferent target platforms. These can easily be developed us-
ing the compositional MontiArcAutomaton code generation
framework. The MontiArcAutomaton framework is based
on MontiCore and thus extensible with different behavior
modeling languages up to implementations in native pro-
gramming languages.

REFERENCES

[1] C. Schlegel, T. Hassler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in Advanced
Robotics, 2009. ICAR 2009. International Conference on, 2009, pp.
1–8.

[2] P. J. Mosterman, “Elements of a Robotics Research Roadmap: A
Model-Based Design Perspective,” in Workshop on Manufacturing and
Automation, Washington, D.C., 2008.

[3] M. Hägele, N. Blümlein, and O. Kleine, “Wirtschaftlichkeitsanalysen
neuartiger Servicerobotik- Anwendungen und ihre Bedeutung für die
Robotik-Entwicklung,” BMBF, Tech. Rep., 2011. [Online]. Available:
http://www.ipa.fraunhofer.de/

[4] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards component-based robotics,” in Intelligent Robots and Sys-
tems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on.
IEEE, 2005, pp. 163–168.

[5] D. Brugali and P. Salvaneschi, “Stable Aspects In Robot Software
Development,” International Journal of Advanced Robotic Systems,
vol. 3, 2006.

[6] D. Brugali, A. Brooks, A. Cowley, C. Côté, A. Domínguez-Brito,
D. Létourneau, F. Michaud, and C. Schlegel, “Trends in Component-
Based Robotics,” in Software Engineering for Experimental Robotics,
ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, vol. 30, ch. 8, pp. 135–
142.

[7] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot

Operating System,” in ICRA Workshop on Open Source Software,
2009.

[8] T. Niemueller, A. Ferrein, D. Beck, and G. Lakemeyer, “Design Prin-
ciples of the Component-Based Robot Software Framework Fawkes,”
in Proc. of Second International Conference on Simulation, Modeling,
and Programming for Autonomous Robots, ser. Lecture Notes in
Computer Science. Darmstadt, Germany: Springer, 2010.

[9] S. Thierfelder, V. Seib, D. Lang, M. Häselich, J. Pellenz, and
D. Paulus, “Robbie: A Message-based Robot Architecture for Au-
tonomous Mobile Systems,” in INFORMATIK 2011 - Informatik
schafft Communities, H.-U. Heiß, P. Pepper, H. Schlingloff, and
J. Schneider, Eds. Köllen Druck+Verlag GmbH Bonn., 2011.

[10] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven Software Devel-
opment in Robotics : Communication Patterns as Key for a Robotics
Component Model,” in Introduction to Modern Robotics, D. Chugo
and S. Yokota, Eds. iConcept Press, 2011.

[11] J. O. Ringert, B. Rumpe, and A. Wortmann, “A Requirements Model-
ing Language for the Component Behavior of Cyber Physical Robotics
Systems,” in Modelling and Quality in Requirements Engineering.
Monsenstein und Vannerdat Münster, 2012, pp. 133–146.

[12] J. O. Ringert and B. Rumpe and A. Wortmann, “From Software Archi-
tecture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems,” in Software Engineering 2013 Workshopband, ser.
LNI, Stefan Wagner and Horst Lichter, Ed., vol. 215. GI, Köllen
Druck+Verlag GmbH, Bonn, 2013, pp. 155–170.

[13] “MontiArcAutomaton project web page,” http://www.se-rwth.de/
materials/ioomega/, 2013, Accessed 3/13.

[14] A. Haber, J. O. Ringert, and B. Rumpe, “Montiarc - architectural mod-
eling of interactive distributed and cyber-physical systems,” RWTH
Aachen, Tech. Rep. AIB-2012-03, february 2012.

[15] B. Rumpe, Formale Methodik des Entwurfs verteilter objektorien-
tierter Systeme. Herbert Utz Verlag Wissenschaft, 1996.

[16] J. O. Ringert and B. Rumpe, “A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing,” Interna-
tional Journal of Software and Informatics, vol. 5, no. 1-2, pp. 29–53,
July 2011.

[17] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a framework
for compositional development of domain specific languages,” STTT,
vol. 12, no. 5, pp. 353–372, 2010.

