
Aachen
Department of Computer Science

Technical Report

MontiArc – Architectural Modeling of
Interactive Distributed and
Cyber-Physical Systems

Arne Haber and Jan Oliver Ringert and Bernhard Rumpe

ISSN 0935–3232 · Aachener Informatik-Berichte · AIB-2012-03

RWTH Aachen · Department of Computer Science · February 2012

[HRR12] A. Haber, J. O. Ringert, B. Rumpe
MontiArc - Architectural Modeling of Interactive Distributed and Cyber-Physical Systems
RWTH Aachen University, Technical Report.
AIB-2012-03. February 2012.
www.se-rwth.de/publications/

The publications of the Department of Computer Science of RWTH Aachen
University are in general accessible through the World Wide Web.

http://aib.informatik.rwth-aachen.de/

RWTH Aachen University

Software Engineering

MontiArc

Architectural Modeling of

Interactive Distributed and Cyber-Physical Systems

– Language Reference –

Technical Report AIB-2012-03

Arne Haber
Jan Oliver Ringert
Bernhard Rumpe

February, 2012

Abstract

This report presents MontiArc, a modeling language for the description of
Component & Connector architectures. A component is a unit executing
computations and/or storing data. Information flow between components
is modeled via unidirectional connectors connecting typed, directed ports of
the interfaces of components.

Language features of the ADL MontiArc include hierarchical decompo-
sition of components, subtyping by structural inheritance, component type
definitions and reference declarations for reuse, generic component types
and configurable components, syntactic sugar for connectors, and controlled
implicit creation of connections and subcomponent declarations.

This technical report gives an overview of the MontiArc language and is a
reference for the MontiArc grammar intended to enable reuse and extension
of MontiArc and MontiArc related tools.

MontiArc is implemented using the DSL framework MontiCore. Avail-
able tools include an editor with syntax highlighting and code completion
as well as a simulation framework with a Java code generator.

Acknowledgment

We thank Thomas Kutz for his work on previous versions of this report and
his help in implementing parts of MontiArc as it is presented here. We also
want to acknowledge Class Pinkernell for supervising the diploma thesis in
which initial concepts of MontiArc have been developed three years ago.

We are further grateful to Marita Breuer, Hans Grönniger, Holger Krahn,
Martin Schindler, Steven Völkel, Galina Volkova for their work on Monti-
Core. Finally, we want to thank Christoph Hermann and Thomas Kurpick
for providing the technical infrastructure via the SSELab1 that hosts the
MontiArc simulation code generation service.

1http://www.sselab.de

http://www.sselab.de

Contents

1 Introduction 1
1.1 MontiArc ADL . 2
1.2 MontiArc Syntax at a Glance 4
1.3 Communication of MontiArc Components 7

2 MontiArc Language 11
2.1 Architecture Diagram – Basic Elements 12
2.2 MontiArc Elements . 13
2.3 Architecture Diagram Grammar Walk-Through 13
2.4 MontiArc Grammar Walk-Through 17

3 MontiArc Context Conditions 21
3.1 Basic Conditions . 21
3.2 Connections . 24
3.3 Referential Integrity . 26
3.4 Conventions . 34

4 Semantics 37
4.1 A Semantic Domain for MontiArc 38
4.2 A Semantic Mapping for MontiArc 40
4.3 Semantic Mapping Applications 42

A Simplified Grammars for Humand Reading 45
A.1 Readable Architectural Diagrams Grammar 45
A.2 Readable MontiArc Grammar 49

B Complete Grammars for Parsing 51
B.1 Architectural Diagrams Grammar 51
B.2 MontiArc Grammar . 57

Bibliography 65

Chapter 1

Introduction

Distributed interactive systems are systems that typically consist of multiple
autonomous computation units that together – composed to a network of
communicating nodes – achieve a common goal. The application areas of
distributed and embedded systems [GKL+07] are vastly growing and so
is the size of the individual systems. Typically, interactive systems are
composed of smaller systems or components, that are to a great extent
independent of each other. Some concrete examples of distributed systems
are:

• telecommunication systems,

• distributed business applications, e.g., service oriented architectures
and services in the cloud,

• logical function nets that are mapped to control devices in embedded
systems, e.g., in the automotive and avionic domain, or

• production lines and control units in automation technology and pro-
cess engineering.

Components interact with each other by exchanging messages via their
well defined interfaces. Typical kinds of communication are continuous
streams of values produced by sensors, complex data messages, events that
are propagated, or simple signals passed between components. Modeling the
architecture and distribution of such systems allows early analysis of certain
properties like the absence of deadlocks, interface compatibility of connected
components, and simulation of effect propagation.

Many systems currently emerge in the new domain of Cyber-Physical
Systems [GRSS12]. Cyber-Physical Systems are inherently distributed in-
teracting in various ways using signals, messages and data. However, model
based development of Cyber-Physical Systems become particularly inter-
esting, when modelling the context of the software control, i.e. electric and

1

hydraulic signals as well as physical material (streams of fluids or gadgets) to
simulate the system under development early. We provide an infrastructure
to model these kinds of streams as well.

For the task of modeling distributed interactive systems by capturing el-
ements of their logical or physical distribution we have developed MontiArc.
MontiArc is a textual language defined using the DSL framework Mon-
tiCore [GKR+06, KRV07b, GKR+07, KRV08, GKR+08, KRV10, Kra10,
www12b] and comes with an Eclipse integrated editor. To analyze and sim-
ulate the designed systems, MontiArc is extended with a simulation frame-
work that can execute behavior implemented in Java and declaratively at-
tached to MontiArc models. Language tooling including the simulator is
available at the MontiArc website [www12a].

MontiArc allows modeling of function nets as described in [GHK+07,
GHK+08a, GHK+08b, GKPR08, MPF09]. Using a set of feature views
enables tracing of requirements to the logical system architecture to con-
ceptually link artifacts throughout the development process. These feature
views are later on composed to a logical system architecture that is deployed
to concrete hard- and software components [GHK+08b].

MontiArc has also been extended with delta modeling concepts [CHS10]
to ∆-MontiArc [HRRS11, HKR+11a, HKR+11b]. It allows a modular def-
inition of architectural variants starting from a core architecture. Features
are added or removed by modular delta models that contain operations to
add, remove, or modify elements of an architecture. New variants are gen-
erated by a sequence of deltas that transform the core architecture to the
desired architectural variant.

In this report we will introduce the rationale behind MontiArc briefly
in the following sections on a simple example. The language reference de-
scribing MontiArc’s language features, the current version of MontiArc’s
grammar, and its context conditions is given in Chapters 2 and 3. Mon-
tiArc’s semantics is described in Chapter 4.

1.1 MontiArc ADL

MontiArc is a framework for modeling and simulation of software architec-
tures. The domain of the architecture description language (ADL) MontiArc
are so called information-flow architectures which describe the components
of a (software) system and their message-based communication. Follow-
ing [MT00]’s taxonomy for ADLs a component is a unit which executes
computations or stores data. It may have arbitrary complexity and size
being a subsystem or a single function. A component has an explicitly de-
fined interface via which it communicates with its environment. MontiArc
distinguishes between component type definitions and subcomponent decla-
rations. A component type defines the component’s interface and its internal

2

structure using subcomponent declarations. A subcomponent declaration de-
scribes the inclusion of a component of a referenced type.

AdverseDrugReactionApp

EHealthApp
appbarcode

Image EHealthProvider

EHMessage

BarcodeScanner

Image
String

ReportGenerator
Report

GenCtrl

Drug

MA

bcOutbarcode
barcode

Report

Figure 1.1: Component type AdverseDrugReactionApp

As an initial example consider Fig. 1.1 which shows the architecture of a
distributed e-health application. The subsystems involved are the applica-
tion itself receiving the picture of a barcode from the environment, a barcode
scanner service extracting the actual barcode, an e-health provider that re-
solves possible adverse reactions for given medications, and a report genera-
tor that produces a report. The illustrated architecture contains all basic ele-
ments of the ADL MontiArc. The component AdverseDrugReactionApp
can only be accessed via messages on the incoming port barcode of type
Image. The computed result will then be sent via an outgoing port of
type Report. The component AdverseDrugReactionApp consists of
subcomponents EHealthApp named app, BarcodeScanner, EHealth-
Provider and ReportGenerator which are connected to each other and
outer ports exposed to the environment via connectors. Connectors are di-
rected and always connect one sending port with an arbitrary number of
receiving ports of compatible data types. Two ports can be connected, if
either their data types are identical or the data type of the receiver is a su-
pertype of the sender’s data type. As shown in the example, naming of ports
and subcomponents is optional. Subcomponent app, which is an instance of
component EHealthApp, for example, is explicitly named, while subcom-
ponent BarcodeScanner by default gets the name barcodeScanner of
its referenced component type starting with a lower-case character.

In MontiArc communication is unidirectional. The ADL does not dictate
any further communication semantics. Communication can be synchronous
or asynchronous based on the system that is modeled. In most cases and in
our MontiArc simulation we assume an asynchronous communication which
we believe is better suited for modeling parallel and distributed computa-

3

tions. Subcomponent app in Fig. 1.1 sends messages to BarcodeScanner-
Service and EHealthProvider whereas indirect responses are received
at the incoming port Report.

In MontiArc components can either be implemented directly (as atomic
components) or defined to be a composition of other components. These
decomposed components are hierarchically structured into further subcom-
ponents (as for example AdverseDrugReactionApp in Fig. 1.1) and thus
have their behavior derived from the composition of their subcomponents.
For atomic components a reaction to incoming messages can be specified
directly. Both component kinds can be equally treated in an architec-
ture model, since they both share the same interface definitions and can
be treated as black boxes whose observable behavior conforms to their
interface. Thus, in Figure 1.1 it is initially non-distinctive, whether the
EHealthProvider is a structured or atomic component. For different
levels of abstractions this can however change during the development of
the AdverseDrugReactionApp by consecutively refining the structure of
its components.

1.2 MontiArc Syntax at a Glance

MontiArc is developed as a textual domain specific language (DSL) using the
MontiCore [GKR+08, GKR+06, KRV07b, KRV07a, KRV08, KRV10, Kra10,
www12b] framework. A textually formalized description of the component
AdverseDrugReactionApp from Fig. 1.1 is given in Lst. 1.2.

Each component is typically defined in its own compilation unit (file).
Similar to Java, components are organized in packages (Lst. 1.2, l. 1) which
correspond to subfolders in the modelpath. Imports of data types (ll. 4 f)
and components (ll. 8–10) refer to other compilation units using the same
import mechanism and make their declared names available to be referenced
using unqualified names. The component type definition is introduced by
the keyword component followed by the component’s type name (l. 12). In-
side the component body, which is delimited by curly brackets, architectural
elements may be defined. Among these are interfaces, invariants, subcom-
ponent declarations, definitions of inner component types, and connectors.

The interface of a component, which defines the communication with
its environment, is given by ports. Port definitions are introduced by the
keyword port followed by the communication direction (in for incoming,
out for outgoing) (ll. 17-19). The data type (e.g., Image, l. 18) specifies
which types of messages can be transmitted via a port. Naming of ports
is optional. If only one port of a data type exists on the given level, the
port does not need an explicit name, since it then by default gets the name
of its type starting with a lower-case character. For example, the port in

4

MontiArc

1 package adra;
2

3 // import message types
4 import java.awt.Image;
5 import adra.msg.*;
6

7 // import components
8 import adra.fe.EHealthApp;
9 import adra.be.BarcodeScanner;

10 import adra.be.ReportGenerator;
11

12 component AdverseDrugReactionApp {
13

14 autoconnect port;
15 autoinstantiate on;
16

17 port
18 in Image barcode,
19 out Report;
20

21 component EHealthProvider {
22 port
23 in EHMessage,
24 in String barcode,
25 out GenCtrl,
26 out Drug;
27 }
28

29 component EHealthApp app
30 [bcOut -> barcodeScanner.image];
31

32 component BarcodeScanner;
33

34 component ReportGenerator;
35

36 connect barcodeScanner.string -> eHealthProvider.barcode;
37

38 connect eHealthProvider -> reportGenerator;
39 }

Listing 1.2: The component type AdverseDrugReactionApp in textual
syntax

l. 19 is named report like its type , while port barcode has an explicit
name (l. 18). If the same data type is used for several ports of the same
component, these ports have to be explicitly named, because the default
name derived from the type would not be unique anymore.

Inner component types are used to create local component type defi-

5

nitions that may be used in the current component exclusively. For ex-
ample, component EHealthProvider is defined as an inner component
of the AdverseDrugReactionApp (ll. 21–27). The definition of an in-
ner component type starts with the keyword component followed by the
component’s type name. It then has the same structure as the component
definition on the top level of the model. To automatically create instances
of inner components, auto-instantiation is turned on (l. 15). This way a
subcomponent named eHealthProvider is created that instantiates the
inner component type.

Similarly, a component that is defined in another model can be referenced
and instantiated as a subcomponent (ll. 29-34). Like ports, subcomponents
have an optional name (e.g., app, l. 29) if it should be different from the
referenced component type. However, if multiple subcomponents of a certain
type exist or if the simple connector form, which will be described below, is
to be used, subcomponents have to be named explicitly.

The communication connections between subcomponents’ ports and in-
coming and outgoing ports of the component definition are realized by con-
nectors. For this purpose, MontiArc provides several alternatives that may
be combined with each other:

1. Standard connectors are created by the keyword connect and connect
a single source with an arbitrary number of targets (l. 36). Sources and
targets are qualified by the subcomponent name the port is attached
to. If more then one target is given they have to be separated by
commas.

2. To immediately connect outputs of a subcomponent, simple connectors
are placed directly behind the instance name (l. 30). Here, the source
bcOut is an outgoing port of EHealthApp. Other than in standard
connector definitions, the left side of a simple connector directly refers
to an outgoing port of the referenced component (and is therefore
unqualified).

3. The automatic connecting of not yet connected ports with the same
name and the same unambiguous type is triggered by the keyword
phrase autoconnect port (l. 14). However, it is not always possible
to establish the whole communication graph with this statement, hence
connect statements allow to explicitly define connections.

4. To automatically connect all not yet connected ports with the same
unambiguous type disregarding port names, the keyword phrase
autoconnect type is used. Depending on the current component
definition, its interface, and its subcomponents, the set of ports
matched by this phrase differs from the set matched by autoconnect
port.

6

5. Instead of referencing ports of subcomponents as source and target
of a (simple) connector, a name of a subcomponent contained in the
current component definition may be used as well. This means that
all compatible ports of the referenced subcomponents are connected
automatically. The connector shown in line 38 connects all outgoing
ports of subcomponent eHealthProvider with all compatible ports
of subcomponent reportGenerator.

Thus, the connector in line 36 connects port string of subcomponent
barcodeScanner with port barcode of subcomponent eHealthProvi-
der. The simple connector in line 30 connects the port bcOut of the sub-
component app with the port image of the subcomponent barcodeScan-
ner. Which form of the explicit connectors is used is a matter of taste. Using
simple connectors one can only specify outgoing connections of a subcom-
ponent and not its incoming ones.

1.3 Communication of MontiArc Components

The definition of inter component communication and the simulation of
MontiArc models is based on Focus [BS01, RR11], a framework for de-
veloping and modeling distributed systems. Communication in MontiArc
is typically asynchronous and event based. It is realized by unidirectional
channels which transport elements of a data type that represent events and
messages that are passed between components. A channel contains mes-
sages in order of their transmission and is mathematically formalized using
a stream of messages, e.g., 〈m1,m2,m3, . . . 〉.

In streams the order of messages determines the order of transmission.
Concerning the time lag between the messages, no statement can be derived.
In Focus, the progress of time can be simulated by explicitly adding tick
messages (

√
) that to some extent can be treated as ordinary messages.

Every equidistant time slice is delimited by a
√

. For messages inside a time
slice, only the order of the transmission is fixed.

In Focus, there are three different time paradigms. In timed streams,
a time slice contains an arbitrary but finite number of messages whereas in
time-synchronous streams at most one message per time slice is transmit-
ted. Untimed streams contain messages only, this way conclusions about the
order of messages can be drawn but not on their timing. For the remain-
der we focus on timed streams which are well supported by the MontiArc
simulation framework.

In order to predict the timed behavior of components, a basic under-
standing of the time model is necessary. In timed communication the time
flow is modeled in such a way that components, which have a

√
on each

incoming port, consume these
√

s and send one
√

on each outgoing port.
This mimics synchronized time progress on all channels, whereas the

√
s

7

denote a time slice has passed. Please note that message processing in the
MontiArc simulation framework enforces realizability of the simulated com-
ponents. We achieve this by requiring strong causality [BS01, RR11] for
components: each component only reacts to the current input after a delay
of at least one

√
.1

Report
Generator

GenCtrl: 〈 OP, √, √, CL, √, … 〉

Drug: 〈 √ , ASA, Clopidogrel, √, Li, √, ... 〉

Report: 〈 √ 〉

MA

t= 0 1→

1. consume a √ on each incoming port

2. increment components local time to t=1

3. emit ticks on all
outgoing ports (at t=1)

Report

Report
Generator

GenCtrl: 〈 OP, √, √, CL, √, … 〉

Drug: 〈 √ , ASA, Clopidogrel, √, Li, √, ... 〉

Report: 〈 √ , √ 〉
Report

at t=2

Report
Generator

GenCtrl: 〈 OP, √, √, CL, √, … 〉

Drug: 〈 √ , ASA, Clopidogrel, √, Li, √, ... 〉

Report: 〈 √ , √, √, Rep_1 〉
Report

at t=3

t= 1 2→

t= 2 3→

Figure 1.3: Processing of messages in the simulation

Figure 1.3 illustrates how messages are processed by MontiArc compo-
nents. Messages that are not processable immediately are buffered to not get
lost. The message OP sent to component ReportGenerator is processed
immediately inducing the component to open and generate a new report.
Processed messages are removed from the message buffer.

√
s are only con-

sumed when each incoming port of a component has received an unprocessed√
. This way the report generator has to receive a

√
on port GenCtrl and

Drug. Afterwards the local time of the component is increased by one and
a
√

is emitted on each outgoing port. After receiving the messages ASA
(acetylsalicylic acid) and Clopidogrel on port Drug in t = 1, the compo-
nent receives message CL on port GenCtrl and Li (lithium) on port Drug
in t = 2. As message CL instructs the component to close the report and
send it in the next time unit, it emits the generated report in t = 3. Hence
Rep 1 contains adverse drug reactions between ASA, Clopidogrel, and Li.

1The simulation framework also supports weakly causal components and a delay of at
least one

√
in every feedback-loop which also makes a system realizable [RR11].

8

Please note that components are allowed to access the history of a stream
but not the message buffers which would in a timed setting allow (partial)
knowledge about the future. This is exactly how weak causality of compo-
nent interaction is enforced.

The MontiArc simulation framework with a Java code generator, a tu-
torial, and a set of executable examples is available from [www12a].

9

10

Chapter 2

MontiArc Language

MontiArc is developed with the DSL framework MontiCore [KRV10] using
its language-extension mechanisms to create an expandable architectural
description language according to the guidelines presented in [KKP+09]. Its
language hierarchy is shown in Fig. 2.1.

MCG

builds on

builds on

MontiArc

ArchitectureDiagram

MontiCore Common

Figure 2.1: MontiCore grammar hierarchy of the MontiArc language.

The MontiCore Common grammar serves common modeling language
artifacts like stereotypes, cardinalities, and modifiers. Also productions for
type references and literals are provided. A detailed description of the used
language fundamentals is given in [Sch12], the MontiCore grammar format
is described in [GKR+06]. The language ArchitectureDiagram (ArcD)
serves basic architectural elements and is extended by the MontiArc lan-
guage that is tailored to the event-based simulation of the modeled dis-
tributed systems. The main elements and concepts of the two languages
are explained in Sections 2.1 and 2.2. Complete grammar definitions are
given in the appendix in Lst. B.1 on page 51 and Lst. B.2 on page 57.
The MontiCore grammar of both languages will be explained in Sections 2.3
and 2.4.

11

2.1 Architecture Diagram – Basic Elements

The basic elements of the Architecture Diagram language are components
with ports, subcomponents, and connectors that unidirectional connect ports
of components. A component type definition defines a component type and
its interface. The interface of a component is a set of typed and directed
ports. The internal structure of components can be defined by referencing
subcomponents and composing them via connector definitions.

Component type definitions introduce new component types that are
identified by unique qualified names and interfaces consisting of sets of ports.
A component’s ports are either incoming or outgoing ports. Incoming ports
allow a component to receive messages of the port’s type. In the current
implementation MontiArc allows the modeler to use predefined types of the
Java language or define new types using UML/P class diagrams [Rum04b,
Sch12]. Outgoing ports are a component’s mean to communicate with it’s
environment. These ports are also typed with the type of messages that can
be transmitted.

Component type names can be parametrized with type parameters. This
concept allows the definition of generic component types that use type pa-
rameters inside their component’s ports definition or as type parameters in
references to subcomponents. An example for generic components with type
parameters is a delay component that is parametrized with the type of its
incoming and delayed outgoing messages.

Besides type parameters MontiArc also supports configurable compo-
nents with configuration parameters. These parameters are values that are
set when a component is referenced as a subcomponent or when instantiated
as a system inside the MontiArc simulation. An example for a configurable
component is a filter component that can be configured with a set of ele-
ments that should be filtered out.

Connectors define unidirectional communication channels between ports
of components. Messages emitted from an outgoing port of one component
and forwarded to an incoming port of another component are the only way
that components can interact (feedback-loops of a component to itself are
also allowed).

MontiArc supports the extension of component definitions by a structural
inheritance mechanism. A component type definition can extend another
component type. The new type inherits all ports, inner component type
definitions, and subcomponent references as well as the connectors defined
between them.

12

2.2 MontiArc Elements

The language MontiArc is defined as an extension of Architecture Diagrams.
It preserves all language concepts and adds:

• invariants on component behavior

• declaration of the component’s timing paradigm

• implicit model completion for connections

• implicit reference declaration for subcomponents

Invariant expressions can be defined for components and written in al-
most any external invariant language. With MontiCore’s language reuse
features [GKR+08] the MontiArc language is currently configured to use
Java expressions and OCL expressions as invariants.

The timing paradigm of components can be defined as part of the compo-
nent type definition inside MontiArc. The available paradigms are timed,
untimed, and timesynchronous as explained in Sect. 1.3.

MontiArc allows to automatically complete component definitions with
connectors according to some predefined rules. The connectors completion
strategies currently available are port to connect ports with matching name
and compatible type, type to connect ports with matching types, or off
to disable automatic connection of ports.

In many cases when a component type is defined inside a parent com-
ponent it is the modelers intention to create a subcomponent by referencing
this new component inside the parent component. To automatically instan-
tiate subcomponents together with their definition the modeler can enable
the autoinstantiate concept on the parent’s component level.

2.3 Architecture Diagram Grammar
Walk-Through

We continue by explaining the MontiCore grammar of the architecture di-
agrams language ArdD. A detailed description of the MontiCore grammar
format that is used to define concrete and abstract syntax of a language is
found in [GKR+08]. However, the most important concepts of MontiCore
grammars, that are needed to understand the given language definitions,
are the following. Optional elements are annotated with a question mark
?, alternatives are separated by |, and keywords are given in quotes. If
keywords are additionally surrounded by brackets ([...]) a Boolean field
is created in the abstract syntax that holds true, if this keyword occurs in
the concrete syntax. A * denotes elements that may occur arbitrary many
times.

13

Grammar for ArcD

1 ArcComponent implements ArcElement =
2 Stereotype?
3 "component" Name (instanceName:Name)?
4 ArcComponentHead ArcComponentBody;

Listing 2.2: Component type definition production

The root element of an ArcD model is a component type definition. The
production ArcComponent that is shown in Lst. 2.2 defines the structure
of a component type definition. It may be annotated with a stereotype
followed by the keyword component and a component type name. The
optional instanceName may be used to create a subcomponent declaration
along with the definition of an inner component type. For root component
definitions the usage of an instance name is forbidden (c.f. Chapter 3).

Grammar for ArcD

1 ArcComponentHead =
2 TypeParameters?
3 ("[" ArcParameter* "]")?
4 ("extends" ReferenceType)?;

Listing 2.3: Component head production

Grammar for ArcD

1 ArcParameter =
2 Type Name;

Listing 2.4: Parameter definition production

The production ArcComponentHead is shown in Lst. 2.3. It provides
optional definition of TypeParameters (c.f. l. 2) that are used to define
generic type variables. These variables may serve as port data types in
the scope of the component body. A list of ArcParameters is enclosed
by squared brackets (c.f. l. 3). These are used to define variables with a
type and a name that are visible in the scope of the component definition
(c.f. Lst. 2.4). The values of these variables are set when a parametrizable
component type is used as type of a subcomponent declaration. Finally a
component type may extend a super component, its type name is given after
the extends keyword (c.f. Lst. 2.3 l. 4).

Lst. 2.5 shows the production of a component type body. It con-
tains arbitrary many ArcElements that are parenthesized by curly brack-
ets. ArcElement is an interface that is implemented by productions that
are architectural elements and may occur in a component type definition.
Therefore the inner structure of a component type is given by a set of

14

Grammar for ArcD

1 ArcComponentBody =
2 "{"
3 ArcElement*
4 "}";

Listing 2.5: Component body production

ArcElements. To extend this language with more elements that may be
part of a component type, new productions that implement this interface
may be defined in a subgrammar.

Grammar for ArcD

1 ArcInterface implements ArcElement =
2 Stereotype?
3 "port" (ArcPort)* ";";

Listing 2.6: Interface definition production

Grammar for ArcD

1 ArcPort =
2 Stereotype?
3 ("in" | "out")
4 Type Name?;

Listing 2.7: Port definition production

The production ArcInterface that defines the interface definition of a
component is given in Lst. 2.6. After an optional stereotype and the keyword
port a list of ports is given. A port (c.f. Lst. 2.7) may have a stereotype.
After the port’s direction, in is used for incoming and out for outgoing
ports, the port’s data type and an optional name are given.

Grammar for ArcD

1 ArcSubComponent implements ArcElement =
2 Stereotype?
3 "component"
4 ReferenceType
5 ("(" ArcConfigurationParameter* ")")?
6 (ArcSubComponentInstance*)? ";";

Listing 2.8: Production for subcomponent declarations

The internal structure of decomposed component types is given by sub-
components. The syntax of a subcomponent declaration is defined by the
production ArcSubComponent that is shown in Lst. 2.8. After an optional

15

Grammar for ArcD

1 ArcConfigurationParameter =
2 QualifiedName | Literal;

Listing 2.9: Configuration parameter production

stereotype and the keyword component the type of the subcomponent is
given. This is a reference to another component type definition. An optional
list of arguments is parenthesized by round brackets. These arguments are
used to set configuration parameters of referenced configurable components.
As shown in Lst. 2.9 this may be either a reference to an enumeration or a
static constant or a variable name (both given by a QualifiedName), or
a literal value.

Grammar for ArcD

1 ArcSubComponentInstance =
2 Name
3 ("[" ArcSimpleConnector
4 (";" ArcSimpleConnector)* "]")?;

Listing 2.10: Production to explicitly name subcomponents with optional
simple connectors

Grammar for ArcD

1 ArcSimpleConnector =
2 source:QualifiedName "->" targets:QualifiedName
3 ("," targets:QualifiedName)*;

Listing 2.11: Simple connector production

To create more then one subcomponent declaration or to assign an ex-
plicit name, an optional list of instances is used (c.f. Lst. 2.8 l. 6). The
production ArcSubComponentInstance is shown in Lst. 2.10. It has a
name and an optional colon separated list of simple connectors parenthe-
sized by squared brackets. These simple connectors (c.f. Lst. 2.11) directly
connect outgoing ports of the bounded subcomponent declaration with one
or more target ports. Please note that source:QualifiedName is an
extension to normal grammars, where QualifiedName is the nonterminal
(type) and source is the name of the containing variable in the abstract
syntax that usually also codes the form of use. Here it allows to distinguish
between a source and many targets (see [GKR+06]).

Another way to connect ports of subcomponent declarations or the local
interface definition is given by connectors. The syntax is defined by the
ArcConnector production that is shown in Lst. 2.12. After an optional
stereotype and the keyword connect the source of the connector is given

16

Grammar for ArcD

1 ArcConnector implements ArcElement=
2 Stereotype?
3 "connect" source:QualifiedName "->"
4 targets:QualifiedName ("," targets:QualifiedName)* ";";

Listing 2.12: Connector production

by a qualified name. After an arrow -> one or more comma separated
targets are given. Source or target of a connector may be either a port
of the current component, a name of a subcomponent declaration, or a port
that belongs to a subcomponent declaration. In the last case the port is
qualified by the name of the subcomponent to which it belongs.

2.4 MontiArc Grammar Walk-Through

Grammar for MontiArc

1 ArcComponentBody =
2 "{"
3 MontiArcConfig*
4 ArcElement*
5 "}";

Listing 2.13: Component body production in MontiArc

MontiArc extends the ArchitectureDiagram language in two ways. First,
it extends the language with configuration elements that have to implement
the interface MontiArcConfig. These configuration elements have to be
placed before other architectural elements in a component’s body. Hence
the production ArcComponentBody of the super grammar is overridden
as shown in Lst. 2.13.

Grammar for MontiArc

1 MontiArcInvariant implements ArcElement =
2 "inv" Name ":" InvariantContent ";";

Listing 2.14: Invariant production in MontiArc

Second, to constrain the behavior of a component MontiArc adds invari-
ants defined in OCL/P [Rum04b, Rum04a] or Java to components. This is
shown in Lst. 2.14. After the keyword inv the name of the invariant is
given followed by its content.

The autoconnect statement defined in production MontiArcAuto-
Connect (c.f. Lst. 2.15) controls the autoconnect behavior of the compo-
nent. The following modes are available:

17

Grammar for MontiArc

1 MontiArcAutoConnect implements MontiArcConfig =
2 "autoconnect" Stereotype?
3 ("type" | "port" | "off") ";";

Listing 2.15: Autoconnect statement in MontiArc

• type automatically connect all ports with the same unique type

• port automatically connect all ports with the same name and a com-
patible type

• off (default) turns auto connect off

Grammar for MontiArc

1 MontiArcAutoInstantiate implements MontiArcConfig =
2 "autoinstantiate" Stereotype?
3 ("on" | "off") ";";

Listing 2.16: Autoinstantiate statement in MontiArc

Auto-instantiation is used to automatically create instances of inner com-
ponent types, if these are not explicitly declared as subcomponents. Lst. 2.16
contains the production defining the syntax of this feature. After the key-
word autoinstantiate and an optional stereotype the mode is chosen
using on or off, where off is the default case.

Grammar for MontiArc

1 MontiArcTimingParadigm implements MontiArcConfig =
2 "behavior" Stereotype?
3 ("timed" | "untimed" | "timesynchronous") ";";

Listing 2.17: Production to choose a timing paradigm in MontiArc

To denote which timing paradigm (see Sect. 1.3 on page 7) a compo-
nent implements the production MontiArcTimingParadigm is used that
is shown in Lst. 2.17. After the keyword behavior, and an optional stereo-
type, the following modes are available:

• timed (default) streams are timed and may contain arbitrary many
data messages in a time slice

• untimed streams are untimed and contain only data messages

• timesynchronous streams are timed but contain at most one data
message in a time slice, hence all incoming ports of a component are
read simultaneously

18

Each component type may have its own timing paradigm. If subcompo-
nent declarations of a component type definition reference component types
with different timing paradigms, the distinct behavior regarding time has
to be adapted to achieve a smooth interaction. Introducing up- and down-
scaling subcomponent declarations that translate between different timing
paradigms in terms of a behavior refinement (see [BS01]) will then serve as
adapters between subcomponents with different timing paradigms.

19

20

Chapter 3

MontiArc Context
Conditions

In MontiArc quite a number of context condition checks are implemented
in order to verify that a defined MontiArc model is well-formed and to sup-
port the modeler with feedback about detected problems. These context
conditions are grouped into conditions concerning uniqueness, connections,
referential integrity, and conventions. The following sections list these con-
ditions and explain them by means of examples.

3.1 Basic Conditions

To define a concept for visibility of identifiers we introduce namespaces to
MontiArc that define areas in a model in which names are managed together
(c.f. [Kra10, Völ11]). These identifiers are names of ports, subcomponent
declarations, generic type variables, configuration parameters, and invariant
definitions. In MontiArc we distinguish two different kinds of namespaces. A
component namespace contains identifiers that are declared within a compo-
nent type definition. Such a namespace is not hierarchical, hence identifiers
defined in a top level namespace are not imported into a contained com-
ponent namespace. In contrast, an invariant namespace that is contained
in a component namespace imports all names that are defined within its
parent namespace. An invariant namespace may also contain a hierarchical
namespace structure according to the language that is used to define the
invariant.

An example for namespaces, identifiers, and their visibility is given in
Fig. 3.1. The shown component type definition FilterDelay contains
three namespaces. The top-level namespace belongs to the component type
definition itself. It contains the red colored identifiers of the configuration
parameter fil, the port names inData and delayedAndFiltered, the
subcomponent declaration f and del, as well as the invariant isFiltered.

21

component FilterDelay[String[] fil] {

 port

 in String inData,

 out String delayedAndFiltered;

 component Filter(fil) f;

 component Delay del {

 port

 in String inData,

 out String delayedData;

 }

 connect inData -> del.inData;

 connect del.delayedData -> f.toFilter;

 connect f.filteredData -> delayedAndFiltered;

 ocl inv isFiltered:

 forall mOut in delayedAndFiltered:

 !(mOut isin fil);

}

Delay

Component

Namespace

FilterDelay

Component

Namespace

isFiltederd

Invarant

Namespace

inner OCL

Namespace

MA

Figure 3.1: Namespaces and identifier declarations in MontiArc.

Please note that using the optional instance name while defining an inner
component type will automatically declare a subcomponent with the used
instance name (c.f. Sect. 2.3). As this subcomponent is declared in the par-
ent component of the inner component definition, its identifier also belongs
to the parents namespace.

The parent namespace FilterDelay contains another component name-
space that belongs to the inner component type definition Delay. All iden-
tifiers within this namespace are colored blue. The port name inData is
still unique, as identifiers of the parent namespace, that also contains this
name, are not imported.

Namespaces of invariants import identifiers of their parent namespace,
thats why the port name delayedAndFiltered as well as the parameter
name fil may be used inside the namespace of invariant isFiltered. It
also has a hierarchical structure denoted by the inner OCL namespace, as
a forall construct opens a new namespace in the OCL language.

22

B1: All names of model elements within a component name-
space have to be unique.

To clearly identify each model element, all names within a component name-
space have to be unique. This holds for port names, subcomponent declara-
tion names, generic type parameter names, configuration parameter names,
and names of invariants. Listing 3.2 contains several violations of this con-
dition. First, configuration parameter fil has the same name as one in-
coming port (see ll. 1, 4). Second, the subcomponent declaration del and
an invariant have the same name (c.f. ll. 10, 16).

MontiArc

1 component FilterDelay[String[] fil] {
2

3 port
4 in char[][] fil, // ’fil’ already declared in l. 1
5 in String inData,
6 out String delayedAndFiltered;
7

8 component Filter(fil) f;
9

10 component Delay del {
11 port
12 in String inData,
13 out String delayedData;
14 }
15

16 ocl inv del: // ’del’ already declared in l. 10
17 forall mOut in delayedAndFiltered:
18 !(mOut isin fil);
19 }

Listing 3.2: B1: Violation of contxt condition U by using names more then
once in a namespace.

B2: Root component type definitions do not have instance
names.

The optional instance name of component type definitions (c.f. Sect. 2.3,
page 13) is used to create a subcomponent declaration along with the defi-
nition of an inner component type. The created subcomponent then belongs
to the parent component type. Root component types do not have a parent,
and therefore using an instance name for a root component type definition
will result in a not assignable subcomponent. Hence, the usage of instance
names for root component definitions is forbidden.

23

MontiArc

1 component ABPSenderComponent mySenderComp { // instance
2 // name for
3 component Sender innerSender { // root def.
4 // ... // forbidden
5 }
6 // ...
7 }

Listing 3.3: B2: Instance names of component definitions.

In Lst. 3.3, the component definition ABPSenderComponent<T> has
an instance name mySenderComp which is not allowed. For the inner com-
ponent definition Sender this concept is used to create a subcomponent
declaration named innerSender along with the definition of the inner
component type.

3.2 Connections

CO1: Connectors may not pierce through component inter-
faces.

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af;
7 component Filter(’b’) bf;
8

9 connect msgIn -> af.msgs;
10 connect bf.filteredMsgs -> msgOut;
11 connect af.filteredMsgs -> bf.msgs.d; // d not visible
12 }
13

14 component Filter[char f] {
15 port
16 in String msgs,
17 out String filteredMsgs;
18 component Delay(1) d;
19 // ...
20 }

Listing 3.4: CO1: Qualified sources and targets of connectors.

Qualified sources or targets of a connector consist of two parts. The first

24

part is a name of a subcomponent, the second part is a port name. Lst. 3.4
contains the definition of component types A B Filter and Filter. The
former contains two subcomponent declarations of the latter. The connec-
tor show in l. 9 connects port msgIn of A B Filter with port msgs of
subcomponent af. As this port is part of the interface of af’s type, this
connector is valid. The same holds for the second connector in l. 10 that
connects the output of bf to the outgoing port msgOut. However, the tar-
get of the third connector shown in l. 11 is subcomponent d that belongs to
component type Filter that is declared as subcomponent bf. As subcom-
ponent declarations are encapsulated and may only be accessed indirectly
via their connected ports, d is not visible in the scope of A B Filter and
must not be used as a target of a connector.

CO2: A simple connector’s source is an outgoing port of the
referenced component type and is therefore not qualified.

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af
7 [filteredMsgs -> bf.msgs];
8 component Filter(’b’) bf
9 [bf.filteredMsgs -> bf.msgs]; // source is qualified

10 // ...
11 }

Listing 3.5: CO2: Correct and invalid sources of simple connectors.

A source of a simple connector always has to be an outgoing port of the
subcomponent’s component type. A qualification is therefore not needed as
the port is implicitly qualified using the bounded subcomponents name.
The first simple connector in line 7 of Lst. 3.5 connects outgoing port
filteredMsgs of subcomponent af with the incoming port msgs of sub-
component bf and is valid. The source of the second connector in l. 9 con-
tains the subcomponent’s name bf as an additional qualifier and is therefore
invalid.

25

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af;
7 component Filter(’b’) bf;
8

9 connect msgIn -> af;
10 connect af -> bf;
11 connect bf -> msgOut;
12 }

Listing 3.6: CO3: Using unqualified sources and targets in connectors.

CO3: Unqualified sources or targets in connectors either refer
to a port or a subcomponent declaration.

If sources or targets of a connector are unqualified, then they must refer
to a port or a subcomponent name declared in the scope of the current
component type definition. If a name of a subcomponent is used, all yet
unconnected ports are connected that have a valid type. For example the
first connector given in Lst. 3.6 in l. 9 automatically resolves incoming port
msgs of subcomponent af as the target of the connector, as its type fits
to the type of the connector’s source. The second connector given in l.
10 connects all compatible outgoing ports of subcomponent af with all
compatible incoming ports of subcomponent bf. Finally, the third connector
in l. 11 connects one compatible outgoing port of subcomponent bf with
the outgoing port msgOut. This, however, is only possible if a unique
compatible port can be resolved. If more then one compatible port is found,
no connections are created and a warning is emitted.

3.3 Referential Integrity

R1: Each outgoing port of a component type definition is used
at most once as target of a connector.

In MontiArc the sender of a message or signal is always unique for the
receiver. Hence every receiving port only receives signals from a unique
sender, while a sender may transmit its data to more then one receiver.
Therefore outgoing ports of a component type definition are used at most
once as a target of a connector. In Lst. 3.7 the component type definition
A B Filter violates this condition. The outgoing port msgOut is used

26

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af
7 [filteredMsgs -> msgOut]; // ambiguous sender
8 component Filter(’b’) bf;
9

10 connect msgIn -> af.msgs, bf.msgs;
11 connect bf.filteredMsgs -> msgOut; // ambiguous sender
12 }

Listing 3.7: R1: Unique receivers of connectors.

as a target of the simple connector given in l. 7 and also as a target of
the connector given in l. 11. A unique sender may not be identified, as
it may be the outgoing port of subcomponent af or the outgoing port of
subcomponent bf. In contrast, a sender of a connector may transmit its
messages to more than one receivers. Hence the connector given in l. 10 is
valid.

R2: Each incoming port of a subcomponent is used at most
once as target of a connector.

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af;
7 component Filter(’b’) bf;
8

9 connect msgIn -> bf.msgs, af.msgs; // ambiguous sender
10 connect bf.filteredMsgs -> af.msgs; // ambiguous sender
11 connect af.filteredMsgs -> msgOut;
12 }

Listing 3.8: R2: Unique receivers of connectors.

As already discussed in the previous context condition, the sender of a
message is always unique for a receiver. Incoming ports of subcomponents
may be used as receivers in a connector and must therefore be used at most
once as a receiver in the context of a component type definition. In Lst. 3.8
this context condition is injured by the connectors given in ll. 9–10. The

27

incoming port msgs of subcomponent af is used twice as a target.

R3: Full qualified subcomponent types exist in the named
package.

MontiArc

1 component A_B_Filter {
2 // ...
3 component ma.msg.Filter(’a’) af;
4 // ...
5 }

Listing 3.9: R3: Qualified subcomponent types.

If a qualified component type is used for a subcomponent, a compo-
nent type definition has to exist in the denoted package. For example
the subcomponent declaration shown in Lst. 3.9 uses the qualified type
ma.msg.Filter (c.f. l. 3). Hence a component definition Filter has
to exist in package ma.msg.

R4: Unqualified subcomponent types either exist in the cur-
rent package or are imported using an import statement.

MontiArc

1 package ma;
2 import ma.msg.Filter;
3 component A_B_Filter {
4 // ...
5 component Filter(’a’) af;
6 component C_D_Filter cdf;
7 // ...
8 }

Listing 3.10: R4: Unqualified subcomponent types.

If an unqualified component type is used for a subcomponent, it must
either exist in the current package or it must be imported using an import
statement. Subcomponent af given in Lst. 3.10 uses the unqualified type
Filter that is imported in l. 2. The type of subcomponent cdf (l. 6)
is unqualified and not imported. Therefore a component type definition
C D Filter has to exist in the current package ma given in l. 1.

28

R5: The first part of a qualified connector’s source or target
must correspond to a subcomponent declared in the current
component definition.

MontiArc

1 component A_B_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af;
7

8 connect msgIn -> af.msgs;
9 connect bf.filteredMsgs -> msgOut; // subcomponent bf

10 } // does not exist

Listing 3.11: R5: Subcomponents in qualified connector parts.

If a source or target of a connector is qualified, the qualifier must be the
name of a subcomponent that is declared in the namespace of the current
component definition. In Lst. 3.11 the target of the first connector (l. 8) is
qualified with af. As a subcomponent af is declared in l. 6 the qualifier
is valid. In contrast the source of the second connector (l. 9) is qualified
with bf, but a subcomponent with that name is not declared. Hence, this
connector is invalid.

R6: The second part of a qualified connector’s source or target
must correspond to a port name of the referenced subcompo-
nent determined by the first part.

The second part of a qualified source or target of a connector is a port
name. A port with that name must exist in the component type of the
subcomponent that is given by the qualifier. In Lst. 3.12 the target of the
first connector given in l. 12 is port toDelay of subcomponent del. As
shown in l. 8 the component type of this subcomponent contains this port.
Hence, the first connector is valid. The source of the second connector
(l. 13) is port delayed of subcomponent del. As this port does not exist
in component type Delay (c.f. ll. 6–10), this connector is invalid.

R7: The source port of a simple connector must exist in the
subcomponents type.

In simple connectors, the source directly references an outgoing port in the
type of the subcomponent to which the simple connector belongs to. This

29

MontiArc

1 component FilterDelay {
2 port
3 in String inputData,
4 out String delayed;
5

6 component Delay del {
7 port
8 in String toDelay,
9 out String delayedData;

10 }
11

12 connect inputData -> del.toDelay;
13 connect del.delayed -> delayed; // port delayed does
14 } // not exist

Listing 3.12: R6: Ports in qualified connector parts.

MontiArc

1 component FilterDelay {
2 port
3 out String delayed1,
4 out String delayed2;
5

6 component Delay {
7 port
8 in String toDelay,
9 out String delayedData;

10 }
11

12 component Delay
13 d1 [delayedData -> delayed1],
14 d2 [delayed -> delayed2]; // port delayed does
15 } // not exist

Listing 3.13: R7: Sources of simple connectors.

port has to exist. In Lst. 3.13 the source of the first simple connector in l. 13
exists and the connector is therefore valid. As the component type Delay
does not have an outgoing port delayed (c.f. ll. 6–10), the second simple
connector given in l. 14 is invalid.

R8: The types of two connected ports have to be compatible,
i.e., the target port has the same type or is a supertype of the
source port type.

To assure type correct communication, source and target ports of connectors
have to be compatible. A receiver may be connected to a sender, if both

30

MontiArc

1 component MyComp {
2 port
3 in Integer myInt,
4 out Object myObj;
5

6 component Buffer<Integer> bInt;
7 component Buffer<Object> bObj;
8 component Buffer<String> bStr;
9

10 connect myInt -> bInt.input;
11 connect bInt.buffered -> bObj.input;
12 connect bObj.buffered -> bStr.input; // incompatible
13 connect bStr.buffered -> myObj; // types Object,
14 } // String
15 component Buffer<T> {
16 port
17 in T input,
18 out T buffered;
19 }

Listing 3.14: R8: Type compatible connectors.

have the same type or the receiver type is a supertype of the source type.
Lst. 3.14 contains some examples for connectors with different source and
target types. The first connector in l. 10 ist obviously valid, as source and
target type are the same. The second connector in l. 11 connects a source
port with type Integer and a target port with type Object. As Object
is a supertype of Integer, this connection is valid. The third connector
(l. 12) connects Object with String. Because String is a subtype of
Object and not a supertype, it is invalid. The fourth connector in l. 13 is
valid again, as Object is a supertype of String.

R9: If a generic component type is instantiated as a subcom-
ponent, all generic parameters have to be assigned.

A generic component is a component that defines generic type parameters
in its head (see Sect. 2.1, page 12). If such a component type is used as a
subcomponent type, a data type has to be assigned to each of these generic
type parameters. Lst. 3.15 contains the definition of the generic component
type Buffer in ll. 1–5 that has two generic type parameters K and V.
In the component type definition MyComp in ll. 6–11 two subcomponents
are declared that have the aforementioned type. The first subcomponent
declaration (l. 8.) assigns a data type to each type parameter and is valid.
The incoming port input of b1 has now the type Integer, the outgoing
port has the type String. The second subcomponent declaration b2 in l. 9

31

MontiArc

1 component Buffer<K, V> {
2 port
3 in K input,
4 out V buffered;
5 }
6 component MyComp {
7 // ...
8 component Buffer<Integer, String> b1;
9 component Buffer<Integer> b2; // type parameter V

10 // ... // not assigned
11 }

Listing 3.15: R9: Using generic component types as subcomponent types.

only assigns one type parameter. As the Buffer component type claims
two generic type parameters, the subcomponent declaration is invalid.

R10: If a configurable component is instantiated as a subcom-
ponent, all configuration parameters have to be assigned.

MontiArc

1 component LossyDelay<T>[int delay, int lossrate] {
2 port
3 in T msgIn,
4 out T delayed;
5 }
6 component MyComp {
7 // ...
8 component LossyDelay<String>(1, 5) ld1;
9 component LossyDelay<String>(1) ld2; // missing

10 // ... // parameter
11 } // lossrate

Listing 3.16: R10: Using configurable component types as subcomponent
types.

A configurable component defines configuration parameters in its head
(see Sect. 2.1, page 12). If such a component type is used as a subcompo-
nent type, a value has to be assigned to each configuration parameter. In
Lst. 3.16 the configurable component type LossyDelay defined in ll. 1–5
is used as type of subcomponent ld1 in l. 8. In the subcomponent decla-
ration a value is assigned to both configuration parameters. Therefore the
subcomponent declaration is valid. The second subcomponent declaration
in l. 9 only assigns one value, as two values are expected, the declaration is
invalid.

32

R11: Inheritance cycles for components are forbidden.

MontiArc

1 component ABPReceiver<T>
2 extends CommonReceiver<T> { // inheritance cycle
3 // ...
4 }
5

6 component CommonReceiver<T>
7 extends ABPReceiver<T> { // inheritance cycle
8 // ...
9 }

Listing 3.17: R11: An inheritance cycle in MontiArc.

Lst. 3.17 shows an example for an inheritance cycle. The component
type ABPReceiver extends the CommonReceiver component type (l. 2)
which is a subtype of the ABPReceiver component (l. 7). Such a system
cannot be instantiated, therefor inheritance cycles are forbidden.

R12: An inner component type definition does not extend the
component type in which it is defined.

MontiArc

1 component Outer {
2

3 component Inner extends Outer { // structural
4 // ... // inheritance cycle
5 }
6 // ...
7 }

Listing 3.18: R12: Structural extension cycle.

A structural extension cycle is given, if an inner component type def-
inition extends the component type of its surrounding parent component.
As the inner component will import itself in a structural extension cycle,
it may not be instantiated using our mechanism. Therefore it is forbidden
for inner component type definitions to extend its parent component. This
context condition is violated in Lst. 3.18 where the inner component type
Inner extends its parent component type Outer.

33

MontiArc

1 component A {
2 // ...
3 component B myB; // reference cycle
4 }
5 component B {
6 // ...
7 component A myA; // reference cycle
8 }

Listing 3.19: R13: Structural extension cycle.

R13: Subcomponent reference cycles are forbidden.

A reference cycle is given, if two component types declare each other as
subcomponets. As instantiation of such a system will result in an endless
instantiation process, these cycles are forbidden. An example for a reference
cycle is shown in Lst. 3.19. Component type A contains a subcomponent
declaration of type B (c.f. l. 3). The component type B contains itself a
subcomponent of type A (c.f. l. 7). If component type A is instantiated,
an instance of component type B is created that will itself create another
instance of A and so forth.

3.4 Conventions

CV1: Instance names should start with a lower-case letter.

MontiArc

1 component Inverter<T> [Number delta] {
2 port
3 in Integer input,
4 out Integer inverted;
5

6 component Filter(delta) myFilter;
7

8 java inv isInverted: {
9 //...

10 }
11 }

Listing 3.20: CV1 and CV2: Naming Conventions of MontiArc

Names in the scope of component definitions should start with a lower
case letter. This context condition affects names of ports, subcomponent
declarations, configuration parameters, and invariants. Therefor all names

34

contained in the component definition depicted in Lst. 3.20 obey this rule.
Violating this context condition will result in a warning.

CV2: Types should start with an upper-case letter.

Component types and generic type parameters should start with an upper
case letter. Hence the component name Inverter as well as the used
generic type parameter T are well formed. Violating this context condition
will result in a warning.

CV3: Duplicated imports should be avoided.

Defining identical imports more than once will result in a warning.

CV4: Unused direct imports should be avoided.

The definition of imports which are not used in the model violates this
convention and results in a warning.

CV5: In decomposed components all ports should be used in
at least one connector.

MontiArc

1 component A_Filter {
2 port
3 in String msgIn,
4 in String foo, // unused port
5 out String msgOut;
6

7 component Filter(’a’) af;
8

9 connect msgIn -> af.msgs;
10 connect af.filteredMsgs -> msgOut;
11 }

Listing 3.21: CV5: Using all ports.

If incoming or outgoing ports of a decomposed component type are not
used in at least one connector, a warning is produced to inform the mod-
eler that parts of the components interface are unconnected. In Lst. 3.21
the ports msgIn and msgOut are both used and connected to subcompo-
nents (c.f. ll. 9-10). In contrast port foo is not connected and a warning is
produced (l. 4).

35

CV6: All ports of subcomponents should be used in at least
one connector.

MontiArc

1 component A_Filter {
2 port
3 in String msgIn,
4 out String msgOut;
5

6 component Filter(’a’) af;
7 component Filter(’b’) bf; // unconnected ports msgs,
8 // filteredMsgs
9 connect msgIn -> af.msgs;

10 connect af.filteredMsgs -> msgOut;
11 }

Listing 3.22: CV6: Using all ports of subcomponents.

If ports of subcomponents are unconnected, this may result in an un-
expected behavior. Hence, the modeler is informed with a warning, if sub-
components in a decomposed component type definition have unconnected
ports. All ports of subcomponent af in Lst. 3.22 are connected in the con-
nectors given in ll. 9-10. But no ports of subcomponent bf are connected,
therefore a warning is created.

36

Chapter 4

Semantics

A complete modeling language definition consists not only of the syntax
of the language but also of the language’s semantics in (terms of mean-
ing [HR04]). We have given some examples of models of the MontiArc lan-
guage in Chapters 1-3 and intuitively explained the semantics of the models
presented. When working with modeling languages, building models, and
developing tools the models’ semantics requires a more formal definition
than a verbal and often vague description as given above. A formal and
sound background is a prerequisite for building integrated model-based de-
velopment frameworks [BS01, BR07].

In general the semantics of a language L in terms of its meaning expressed
in a semantic domain S can be defined using a semantic mapping function
m : L → P(S) as illustrated in Fig. 4.1 (see [HR04]). The idea behind this
denotational semantics is simply to explain every model of L in terms of the
semantic domain.

Semantic domain S
m: L → P(S)

Figure 4.1: Semantic mapping of a modeling language to its semantic domain

The semantic domain S is a formal model with well defined and well
understood elements, which is able to capture the meaning of elements of
systems modeled using a modeling language. In the general case, where
models can be under-specified or do not have an exact one-to-one represen-
tation in the semantic domain, one model (as an element of the language
L) can be mapped to a set of elements of the semantic domain that capture
its meaning – including alternatives due to the underspecification. If the
domain of stream processing functions SPF (see [BDD+93, Rum96, RR11])
was chosen to represent MontiArc components, the semantics of the Mon-

37

tiArc component LossyChannel from Fig. 4.2 could be the set of all stream
processing functions with the (simplified) signature f : Zω → Zω since noth-
ing is known about the behavior of the LossyChannel component from
looking at the MontiArc model itself. A combination of structure and behav-
ior in the semantics domain allows for example the refinement and evolution
of architectures [PR97, PR99].

Lossy
Channel

Integer
portIn

Integer
portOut

Figure 4.2: The component LossyChannel (from the example in Sect. 1.1)

In the following semantics definition we focus on the structure of systems
modeled using the ADL MontiArc. It is however no problem to extend the
semantic domain presented in Sect. 4.1 to a semantic domain that supports
also behavior as demonstrated in [BCR06, BCR07a, BCR07b, Grö10] for
object oriented systems. An extension of the semantic domain and map-
ping function with behavior is straight forward as shown and discussed in
[BDD+93, BS01, BR07]. MontiArc can be seen as one of the modular system
views discussed in [BR07] describing interfaces, hierarchical decomposition,
and composition of components.

The semantic domain we present in the next section makes the semantic
mapping of MontiArc models a function m : L → S, that maps every well
formed model to exactly one element of the semantic domain.

4.1 A Semantic Domain for MontiArc

We give a semantic domain that captures the structure of systems described
using the ADL MontiArc. It consists of components with ports, subcom-
ponents, and connectors as shown in the following equations and is derived
from the grammars of the MontiArc language family:

Component = CType× P(Port)× P(SubComponent)×
P(Connector) (4.1)

Port = {IN, OUT} × PType× PName (4.2)

SubComponent = CName× Component (4.3)

Connector = CName× PName× CName× PName (4.4)

The notation P(Port) refers to the power set of the set Port. The sets CType
of component type names, CName of subcomponent names, PName of port
names, and PType of port data types are not further specified and could,

38

e.g., consist of simple strings as well as possibly more complex elements
defining their own hierarchy like the Java type system.

The construct Component of equation 4.1 represents components with
their component type, ports, subcomponents, and connectors. Please not
that this semantic domain does not necessarily require component types
since these are reflected in the set of ports, subcomponents and connectors.
We chose to add component types to the semantic domain as an extension
to allow distinguish for example a Filter from a Delay component which
might have identical interfaces and both no further subcomponents. Also
the set CType might well support generic component types, e.g., by a string
representation of the complete parametrized type name.

Connectors (equation 4.4) are part of their owning component and refer-
ence the component’s subcomponents and ports by their names. For conve-
nience we require that the set CName contains an element † that is similar
to the keyword this used in some object oriented languages. A connec-
tion in the semantic domain from a port of the parent component to a port
of one of its children would use the †-symbol to refer to the parent com-
ponent. For example the MontiArc connector connect messageIn ->
sender.messageIn maps to the tuple (†,messageIn, sender,messageIn)
in the semantic domain.

In the following we refer to elements of the structures Component, Port,
SubComponent, and Connector by using the abbreviation .cName to refer
to a field of type CName of a tuple (if the element position in the tuple
is unique). We give some well-formedness rules of the semantic domain,
similar to MontiArc context conditions discussed in Chapter 3:
Component types determine the structure of a component:

∀c1, c2 ∈ Component :

c1.cType = c2.cType⇒ c1 = c2 (4.5)

Please note that on the other hand an identical structure does not imply
the same component type.
The names of all ports of a component are unique:

∀c ∈ Component, p1, p2 ∈ c.ports :

p1.pName = p2.pName⇒ p1 = p2 (4.6)

The names of all subcomponents of a component are unique:

∀c ∈ Component, sc1, sc2 ∈ c.subComponents :

sc1.name = sc2.name⇒ sc1 = sc2 (4.7)

Connectors can only connect ports of the component they belong to or its
direct subcomponents where the ports have the correct direction:

∀c ∈ Component,∀(s, pns, r, pnr) ∈ c.connectors :

39

(s = † ⇒ ∃p ∈ c.ports : p.pName = pns ∧ p.direction = IN) ∧
(s 6= † ⇒ ∃(s, c′) ∈ c.subComponents, p ∈ c′.ports :

p.pName = pns ∧ p.direction = OUT) ∧
(r = † ⇒ ∃p ∈ c.ports : p.pName = pnr ∧ p.direction = OUT) ∧
(r 6= † ⇒ ∃(r, c′) ∈ c.subComponents, p ∈ c′.ports :

p.pName = pnr ∧ p.direction = IN) (4.8)

Every port reads at most from one port connected by a unique connector:

∀c ∈ Component,∀(s1, pn1s, r1, pn1r), (s2, pn2s, r2, pn2r) ∈ c.connectors :

r1 = r2 ∧ pn1r = pn2r ⇒
(s1, pn1s, r1, pn1r) = (s2, pn2s, r2, pn2r) (4.9)

The domain given in equations (4.1) - (4.4) is a simplified and abstract
version of systems modeled using the MontiArc language. The list of rules
(4.5) - (4.9) is not complete but demonstrates the most important properties
of the semantic domain. This formalization of the essential concepts helps
when reasoning about the meaning of different models.

4.2 A Semantic Mapping for MontiArc

We sketch a semantic mapping of MontiArc to the semantic domain intro-
duced in the previous section to highlight some important decisions in the
design of MontiArc’s semantics.

A complete and formal definition of the semantic mapping function
m : L→ S can be done compositionally as, for example, shown in [CGR08]
for class diagrams and sketched in [GRR09] for general modeling languages:
When defining the semantic mapping of a model, children elements of nodes
in the abstract syntax tree can be mapped by independent or adequately
parametrized mapping functions thus simplifying the definition of the map-
ping by decomposition.

Here we only show some examples to illustrate the semantic mapping.
The result of mapping the LossyChannel component from Fig. 4.2 to its
semantics is as expected:

Component = {(LossyChannel, ports, ∅, ∅)}
ports = {(IN, Integer, portIn),

(OUT, Integer,portOut)}
Port = ports

SubComponent = ∅
Connector = ∅

40

CType = {LossyChannel}
PType = {Integer}

PName = {portIn, portOut}
CName = ∅

A more interesting example is the semantics of the structured component
BoardLightsControl given in Lst. 4.3. In this example the component
definitions TurnSignalController and HeadLightsController are
referenced as subcomponents.

1 package automotive.ecu;
2

3 import automotive.ecu.controller.TurnSignalController;
4 import automotive.ecu.controller.HeadLightsController;
5

6 component BoardLightsControl {
7

8 autoconnect port;
9

10 port
11 /* ... */
12

13 component TurnSignalController frontSignalController;
14

15 component TurnSignalController rearSignalController;
16

17 component HeadLightsController;
18 }

Listing 4.3: The component BoardLightsControl re-
using the component TurnSignalController twice as frontSignal-
Controller and rearSignalController

The corresponding part of the semantics of component BoardLights-
Control is given in the following equations:

Component = {(BoardLightsControl, {. . .}, subCompsBLC , {. . .}),
(TurnSignalController, {. . .}, {. . .}, {. . .}) = TSC,

(HeadLightsController, {. . .}, {. . .}, {. . .}) = HLC,

. . .}
subCompsBLC = {(frontSignalController, TSC),

(rearSignalController, TSC),

(headLightsController, HLC)}

41

SubComponent = subCompsBLC ∪ {. . .}
Port = {. . .}

Connector = {. . .}
CType = {BoardLightsControl,TurnSignalController,

HeadLightsController, . . .}
PType = {. . .}

CName = {frontSignalController, rearSignalController,

headLightsController, . . .}
PName = {. . .}

The set Component consists of all components in the semantics of the
model. Its first element represents the component type BoardLights-
Control. By containing set subCompsBLC it includes besides the sub-
component headLightsController (with structure HLC) the subcomponents
frontSignalController and rearSignalController both of type TurnSignal-
Controller. These subcomponents have identical structure (abbreviated
as TSC) in the semantics.

In contrast to the MontiArc syntax level – where these components were
just defined once and then referenced – in the semantic domain they are
identical copies of the referenced component. This unfolding of the nested
references into components makes the structure of an architecture more
explicit.

4.3 Semantic Mapping Applications

In Chapter 2 we have introduced the language hierarchy of MontiArc starting
from the basic ADL ArcD. For this language we have developed a code
generator that translates the modeled architectures into code that can be
executed within a simulation framework. Furthermore we have developed
tool support for context condition checks, a symbol table infrastructure, and
an Eclipse editor.

MontiArc extends the language ArcD and reuses most of the developed
infrastructure. One specific case of reuse is done by transforming models
of the syntactically richer language MontiArc to equivalent ArcD models.
This is done by a set of transformations on the models’ abstract syntax. One
of these transformations is, e.g., replacing the autoconnect statement by
a set of connectors added to the abstract syntax. These transformations
are implemented in Java and assumed to be semantics preserving. The
MontiArc keyword autoconnect is removed and the connectors added
to the abstract syntax are concepts inherited from ArcD and their code
generation is already implemented in the ArcD code generator.

42

To prove the correctness of these transformations one could define a
semantic mapping m from the language MontiArc containing the additional
language features to the semantic domain presented above. Applying the
semantic mapping m to a MontiArc model should yield the same result as
first applying the AST transformations and then the mapping msimp from
the simpler language (see Fig. 4.4).

Semantic domain S

AST
Trafo

m msimp

MontiArc Simplified MontiArc

autoconnect

Figure 4.4: Semantic mapping of MontiArc and simplified MontiArc to show
correctness of AST transformations

With a complete definition of the abstract syntax, the semantic domain,
and the semantic mappings m and msimp one could apply the semantic
mappings to the MontiArc model and the transformed ArcD model to show
that the AST transformation is semantics preserving. With an additional
formalization of the AST transformation one could even show the correctness
of the transformation for all MontiArc models:

∀l ∈ MontiArc : msimp(astTrafo(l)) = m(l).

43

44

Appendix A

Simplified Grammars for
Humand Reading

These grammars are meant for human reading. They are MontiArc gram-
mars, where all parsing pragmas have been striped of. They still describe
the full context free language.

A.1 Readable Architectural Diagrams Grammar

Readable Grammar for ArcD

1 package mc.umlp.arcd;
2

3 /**
4 * Simplified ArcD grammar.
5 *
6 * @author Arne Haber
7 */
8 grammar SimpleArchitectureDiagram {
9

10 /* ==*/
11 /* ======================= OPTIONS ======================*/
12 /* ==*/
13 options {
14 compilationunit ArcComponent
15 }
16

17 /* ==*/
18 /* ===================== PRODUCTIONS ====================*/
19 /* ==*/
20 /**
21 * A component may contain arbitrary many ArcElements.
22 * This interface may be used as an extension point to

45

23 * enrich components with further elements.
24 */
25 interface ArcElement;
26

27 /**
28 * A component is a unit of computation or a data store.
29 * The size of a component may scale from a single
30 * procedure to a whole application. A component may be
31 * either decomposed to subcomponents or is atomic.
32 */
33 ArcComponent implements ArcElement =
34 Stereotype?
35 "component" Name (instanceName:Name)?
36 ArcComponentHead ArcComponentBody;
37

38 /**
39 * A components head is used to define generic type
40 * parameters that may be used as port types in the
41 * component, to define configuration parameters that may
42 * be used to configure the component, and to set the
43 * parent component of this component.
44 */
45 ArcComponentHead =
46 TypeParameters?
47 ("[" ArcParameter* "]")?
48 ("extends" ReferenceType)?;
49

50 /**
51 * The body contains architectural elements of
52 * this component.
53 */
54 ArcComponentBody =
55 "{"
56 ArcElement*
57 "}";
58

59 /**
60 * An ArcInterface defines an interface of a component
61 * containing in- and outgoing ports.
62 */
63 ArcInterface implements ArcElement =
64 Stereotype?
65 "port" (ArcPort)* ";";
66

67 /**
68 * An incoming port is used to receive messages, an
69 * outgoing port is used to send messages of a specific
70 * type.
71 */

46

72 ArcPort =
73 Stereotype?
74 ("in" | "out")
75 Type Name?;
76

77 /**
78 * A subcomponent is used to create one or more instances
79 * of another component. This way the hierarchical
80 * structure of a component is defined.
81 *
82 */
83 ArcSubComponent implements ArcElement =
84 Stereotype?
85 "component"
86 ReferenceType
87 ("(" ArcConfigurationParameter* ")")?
88 (ArcSubComponentInstance*)? ";";
89

90 /**
91 * A subcomponent instance binds the name of an instance
92 * with an optional list of simple connectors used to
93 * connect this instance with other subcomponents/ports.
94 */
95 ArcSubComponentInstance =
96 Name
97 ("[" ArcSimpleConnector
98 (";" ArcSimpleConnector)* "]")?;
99

100 /**
101 * A connector connects one source port with one or many
102 * target ports.
103 */
104 ArcConnector implements ArcElement=
105 Stereotype?
106 "connect" source:QualifiedName "->"
107 targets:QualifiedName ("," targets:QualifiedName)* ";";
108

109 /**
110 * A simple way to connect ports.
111 */
112 ArcSimpleConnector =
113 source:QualifiedName "->" targets:QualifiedName
114 ("," targets:QualifiedName)*;
115

116 /**
117 * ArcParameters are used in configurable components.
118 */
119 ArcParameter =
120 Type Name;

47

121

122 /**
123 * ArcConfigurationParameter are used to configure
124 * configurable components. It is either a value or a
125 * variable name.
126 */
127 ArcConfigurationParameter =
128 QualifiedName | Literal;
129 }

Listing A.1: Simplified common MontiCore grammar for architectural
diagrams

48

A.2 Readable MontiArc Grammar

Readable Grammar for MontiArc

1 package mc.umlp.arc;
2

3 /**
4 * Simplified MontiArc grammar.
5 */
6 grammar SimpleMontiArc extends ArchitectureDiagram {
7

8 /* ==*/
9 /* ======================= OPTIONS ======================*/

10 /* ==*/
11 options {
12 compilationunit ArcComponent
13 }
14

15 /* ==*/
16 /* ===================== PRODUCTIONS ====================*/
17 /* ==*/
18

19 /**
20 * MontiArc components may contain arbitrary many
21 * configurations. These configurations have to
22 * implement this interface.
23 */
24 interface MontiArcConfig;
25

26 /**
27 * Extends the component body from super grammar with a
28 * configuration.
29 * @Overwrite ArchitectureDiagram.ArcComponentBody
30 */
31 ArcComponentBody =
32 "{"
33 MontiArcConfig*
34 ArcElement*
35 "}";
36

37 /**
38 * An invariant constrains the behavior of a component.
39 */
40 MontiArcInvariant implements ArcElement =
41 "inv" Name ":" InvariantContent ";";
42

43 /**
44 * AutoConnect is used to connect ports automatically.
45 */

49

46 MontiArcAutoConnect implements MontiArcConfig =
47 "autoconnect" Stereotype?
48 ("type" | "port" | "off") ";";
49

50 /**
51 * Autoinstantiate is used to instantiate inner components
52 * without generic parameters or configuration parameters
53 * automatically. If more then one instance of this inner
54 * component is created by using a reference, the
55 * automatically instanciated reference will dissapear.
56 */
57 MontiArcAutoInstantiate implements MontiArcConfig =
58 "autoinstantiate" Stereotype?
59 ("on" | "off") ";";
60

61 /**
62 * Sets the time behaviour from the component.
63 */
64 MontiArcTimingParadigm implements MontiArcConfig =
65 "behavior" Stereotype?
66 ("timed" | "untimed" | "timesynchronous") ";";
67 }

Listing A.2: Simplified MontiCore grammar for MontiArc

50

Appendix B

Complete Grammars for
Parsing

These grammars are the exact versions used in the MontiCore framework to
define tool support.

B.1 Architectural Diagrams Grammar

Grammar for ArcD

1 package mc.umlp.arcd;
2

3 version "1.0";
4 /**
5 * Grammar for common architectural elements. Provides
6 * infrastructure for component definitions, component
7 * interface definitions, and the hierarchical structure
8 * of components.
9 *

10 * @author Arne Haber
11 */
12 grammar ArchitectureDiagram extends mc.umlp.common.Common {
13

14 /* ==*/
15 /* ======================= OPTIONS ======================*/
16 /* ==*/
17 options {
18 compilationunit ArcComponent
19 nostring
20 parser lookahead=5
21 lexer lookahead=7
22 }

51

23

24 /* ==*/
25 /* ===================== PRODUCTIONS ====================*/
26 /* ==*/
27 /**
28 * A component may contain arbitrary many ArcElements.
29 * This interface may be used as an extension point to
30 * enrich components with further elements.
31 */
32 interface ArcElement;
33

34 /**
35 * A component is a unit of computation or a data store.
36 * The size of a component may scale from a single
37 * procedure to a whole application. A component may be
38 * either decomposed to subcomponents or is atomic.
39 *
40 * @attribute stereotype an optional stereotype
41 * @attribute name type name of this component
42 * @attribute instanceName if this optional name is given,
43 * it is automatically created a subcomponent that
44 * instantiates this inner component. This is only
45 * allowed for inner component definitions.
46 * @attribute head is used to set generic types, a
47 * configuration and a parent component
48 * @attribute body contains the architectural elements
49 * inherited by this component
50 */
51 /ArcComponent implements
52 (Stereotype? "component" Name Name? ArcComponentHead

"{")=> ArcElement =
53 Stereotype?
54 "component" Name (instanceName:Name)?
55 head:ArcComponentHead
56 body:ArcComponentBody;
57

58 /**
59 * A components head is used to define generic type
60 * parameters that may be used as port types in the
61 * component, to define configuration parameters that may
62 * be used to configure the component, and to set the
63 * parent component of this component.
64 *
65 * @attribute genericTypeParameters a list of type
66 * parameters that may be used as port types in the
67 * component
68 * @attribute parameters a list of ArcParameters that
69 * define a configurable component. If a configurable
70 * component is referenced, these parameters have to be

52

71 * set.
72 * @attribute superComponent the type of the super
73 * component
74 */
75 /ArcComponentHead =
76 (options {greedy=true;}:
77 genericTypeParameters:TypeParameters)?
78 ("[" parameters:ArcParameter
79 ("," parameters:ArcParameter)* "]")?
80 ("extends" superComponent:ReferenceType)?;
81

82 /**
83 * The body contains architectural elements of
84 * this component.
85 *
86 * @attribute arcElement list of architectural elements
87 */
88 /ArcComponentBody =
89 "{"
90 ArcElement*
91 "}";
92

93 /**
94 * An ArcInterface defines an interface of a component
95 * containing in- and outgoing ports.
96 *
97 * @attribute stereotype an optional stereotype
98 * @attribute ports a list of ports that are contained in
99 * this interface

100 */
101 /ArcInterface implements (Stereotype? "port")=>

ArcElement =
102 Stereotype?
103 "port" ports:ArcPort ("," ports:ArcPort)* ";";
104

105 /**
106 * An incoming port is used to receive messages, an
107 * outgoing port is used to send messages of a specific
108 * type.
109 *
110 * @attribute stereotype an optional stereotype
111 * @attribute incoming true, if this is an incoming port
112 * @attribute outgoing true, if this is an outgoing port
113 * @attribute type the message type of this port
114 * @attribute name an optional name of this port
115 */
116 /ArcPort =
117 Stereotype?
118 (incoming:["in"] | outgoing:["out"])

53

119 Type Name?;
120

121 /**
122 * A subcomponent is used to create one or more instances
123 * of another component. This way the hierarchical
124 * structure of a component is defined.
125 *
126 * @attribute stereotype an optional stereotype
127 * @attribute type the type of the instantiated component
128 * @attribute arguments list of configuration parameters
129 * that are to be set, if the instantiated component is
130 * configurable.
131 * @attribute instances list of instances that should be
132 * created
133 */
134 /ArcSubComponent implements
135 (Stereotype? "component" ReferenceType
136 ("(" | Name | ";"))=> ArcElement =
137 Stereotype?
138 "component"
139 type:ReferenceType
140 ("(" arguments:ArcConfigurationParameter
141 ("," arguments:ArcConfigurationParameter)* ")")?
142 (instances:ArcSubComponentInstance
143 ("," instances:ArcSubComponentInstance)*)? ";";
144

145 /**
146 * A subcomponent instance binds the name of an instance
147 * with an optional list of simple connectors used to
148 * connect this instance with other subcomponents/ports.
149 *
150 * @attribute name the name of this instance
151 * @attribute connectors list of simple connectors
152 */
153 /ArcSubComponentInstance =
154 Name
155 ("[" connectors:ArcSimpleConnector
156 (";" connectors:ArcSimpleConnector)* "]")?;
157

158 /**
159 * A connector connects one source port with one or many
160 * target ports.
161 *
162 * @attribute source source port or component instance
163 * name
164 * @attribute targets a list of target ports or component
165 * instance names
166 */
167 /ArcConnector implements

54

168 (Stereotype? "connect" QualifiedName "->")=>
ArcElement=

169 Stereotype?
170 "connect" source:QualifiedName "->"
171 targets:QualifiedName ("," targets:QualifiedName)* ";";
172

173 /**
174 * A simple way to connect ports.
175 *
176 * @attribute source the source port or component instance
177 * name
178 * @attribute targets a list of target port or component
179 * instance names
180 */
181 /ArcSimpleConnector =
182 source:QualifiedName "->" targets:QualifiedName
183 ("," targets:QualifiedName)*;
184

185 /**
186 * ArcParameters are used in configurable components.
187 *
188 * @attribute Type the type of the parameter
189 * @attribute name the name of the parameter
190 */
191 /ArcParameter =
192 Type Name;
193

194 /**
195 * ArcConfigurationParameter are used to configure
196 * configurable components. It is either a value or a
197 * variable name.
198 *
199 * @attribute typeRef reference to an Enum type or
200 * static constant
201 * @attribute variable a variable name
202 * @attribute value a concrete literal value
203 */
204 /ArcConfigurationParameter =
205 (Name ".")=> typeRef:QualifiedName |
206 variable:Name |
207 value:Literal;
208

209 /* ==*/
210 /* =================== ASTRULES =========================*/
211 /* ==*/
212 // replacement of ASTCNode with UMLPNode
213 ast ArcComponent astextends
214 /mc.umlp.common._ast.UMLPNode;
215 ast ArcComponentHead astextends

55

216 /mc.umlp.common._ast.UMLPNode;
217 ast ArcComponentBody astextends
218 /mc.umlp.common._ast.UMLPNode;
219 ast ArcPort astextends
220 /mc.umlp.common._ast.UMLPNode;
221 ast ArcConnector astextends
222 /mc.umlp.common._ast.UMLPNode;
223 ast ArcSimpleConnector astextends
224 /mc.umlp.common._ast.UMLPNode;
225 ast ArcSubComponent astextends
226 /mc.umlp.common._ast.UMLPNode;
227 ast ArcSubComponentInstance astextends
228 /mc.umlp.common._ast.UMLPNode;
229 ast ArcParameter astextends
230 /mc.umlp.common._ast.UMLPNode;
231 }

Listing B.1: Common MontiCore grammar for architectural diagrams

56

B.2 MontiArc Grammar

Grammar for MontiArc

1 package mc.umlp.arc;
2

3 version "1.0";
4 grammar MontiArc extends mc.umlp.arcd.ArchitectureDiagram {
5

6 /* ==*/
7 /* ======================= OPTIONS ======================*/
8 /* ==*/
9 options {

10 compilationunit ArcComponent
11 nostring
12 parser lookahead=5
13 lexer lookahead=7
14 }
15

16 /* ==*/
17 /* ===================== PRODUCTIONS ====================*/
18 /* ==*/
19

20 /**
21 * MontiArc components may contain arbitrary many
22 * configurations. These configurations have to
23 * implement this interface.
24 */
25 interface MontiArcConfig;
26

27 /**
28 * Extends the component body from super grammar with a
29 * configuration.
30 *
31 * @attribute MontiArcConfig configures the component
32 * @attribute ArcElement the architectural elements in the
33 * body
34 * @Overwrite ArchitectureDiagram.ArcComponentBody
35 */
36 ArcComponentBody =
37 "{"
38 MontiArcConfig*
39 ArcElement*
40 "}";
41

42 /**
43 * An invariant constrains the behavior of a component.
44 *
45 * @attribute kind the optional kind of this invariant.

57

46 * @attribute name name of the invariant
47 * @attribute invariantExpression the invariant defined
48 * in the language ’kind’
49 */
50 MontiArcInvariant implements
51 (Name? "inv" Name ":")=> ArcElement =
52 (kind:Name)? "inv" Name ":"
53 invariantExpression:InvariantContent(parameter kind)

";";
54

55 /**
56 * AutoConnect is used to connect ports automatically.
57 *
58 * @attribute stereotype optional stereotype
59 * @attribute type autoconnect unambigous ports with the
60 * same type
61 * @attribute port autoconnect unambigous ports with the
62 * same name and compatible type
63 * @attribute off do not use autoconnection (default)
64 */
65 MontiArcAutoConnect implements MontiArcConfig =
66 "autoconnect" Stereotype?
67 (["type"] | ["port"] | ["off"]) ";";
68

69 /**
70 * Autoinstantiate is used to instantiate inner components
71 * without generic parameters or configuration parameters
72 * automatically. If more then one instance of this inner
73 * component is created by using a reference, the
74 * automatically instanciated reference will dissapear.
75 *
76 * @attribute stereotype optional stereotype
77 * @attribute on turns autoinstantiate on
78 * @attribute off turns autoinstantiate off (default)
79 */
80 MontiArcAutoInstantiate implements MontiArcConfig =
81 "autoinstantiate" Stereotype?
82 (["on"] | ["off"]) ";";
83

84 /**
85 * Sets the time behaviour from the component.
86 *
87 * @attribute stereotype optional stereotype
88 * @attribute timed a timed component
89 * @attribute untimed an untimed component
90 * @attribute timesynchronous a timesynchronous component
91 * (can only process one message per timeunit)
92 */
93 MontiArcTimingParadigm implements MontiArcConfig =

58

94 "behavior" Stereotype?
95 (["timed"] | ["untimed"] | ["timesynchronous"]) ";";
96

97 /* ==*/
98 /* =================== ASTRULES =========================*/
99 /* ==*/

100 // toString for ArcInvariant
101 ast MontiArcInvariant astextends
102 /mc.umlp.common._ast.UMLPNode =
103 method public String toString() {
104 return (this.getKind() != null ?
105 this.getKind() + " " : "") + "inv " +
106 this.getName();
107 };
108 // replacement of ASTCNode with UMLPNode
109 ast MontiArcTimingParadigm astextends
110 /mc.umlp.common._ast.UMLPNode;
111 ast MontiArcAutoInstantiate astextends
112 /mc.umlp.common._ast.UMLPNode;
113 ast MontiArcAutoConnect astextends
114 /mc.umlp.common._ast.UMLPNode;
115 }

Listing B.2: Common MontiCore grammar for MontiArc

59

60

List of Figures

1.1 Component type AdverseDrugReactionApp 3

1.3 Processing of messages in the simulation 8

2.1 MontiCore grammar hierarchy of the MontiArc language. . . 11

3.1 Namespaces and identifier declarations in MontiArc. 22

4.1 Semantic mapping of a modeling language to its semantic
domain . 37

4.2 The component LossyChannel (from the example in Sect. 1.1) 38

4.4 Semantic mapping of MontiArc and simplified MontiArc to
show correctness of AST transformations 43

61

62

Listings

1.2 The component type AdverseDrugReactionApp in tex-
tual syntax . 5

2.2 Component type definition production 14

2.3 Component head production 14

2.4 Parameter definition production 14

2.5 Component body production 15

2.6 Interface definition production 15

2.7 Port definition production . 15

2.8 Production for subcomponent declarations 15

2.9 Configuration parameter production 16

2.10 Production to explicitly name subcomponents with optional
simple connectors . 16

2.11 Simple connector production 16

2.12 Connector production . 17

2.13 Component body production in MontiArc 17

2.14 Invariant production in MontiArc 17

2.15 Autoconnect statement in MontiArc 18

2.16 Autoinstantiate statement in MontiArc 18

2.17 Production to choose a timing paradigm in MontiArc 18

3.2 B1: Violation of contxt condition U by using names more
then once in a namespace. 23

3.3 B2: Instance names of component definitions. 24

3.4 CO1: Qualified sources and targets of connectors. 24

3.5 CO2: Correct and invalid sources of simple connectors. 25

3.6 CO3: Using unqualified sources and targets in connectors. . . 26

63

3.7 R1: Unique receivers of connectors. 27

3.8 R2: Unique receivers of connectors. 27

3.9 R3: Qualified subcomponent types. 28

3.10 R4: Unqualified subcomponent types. 28

3.11 R5: Subcomponents in qualified connector parts. 29

3.12 R6: Ports in qualified connector parts. 30

3.13 R7: Sources of simple connectors. 30

3.14 R8: Type compatible connectors. 31

3.15 R9: Using generic component types as subcomponent types. . 32

3.16 R10: Using configurable component types as subcomponent
types. 32

3.17 R11: An inheritance cycle in MontiArc. 33

3.18 R12: Structural extension cycle. 33

3.19 R13: Structural extension cycle. 34

3.20 CV1 and CV2: Naming Conventions of MontiArc 34

3.21 CV5: Using all ports. 35

3.22 CV6: Using all ports of subcomponents. 36

4.3 The component BoardLightsControl reusing the com-
ponent TurnSignalController twice as frontSignal-
Controller and rearSignalController 41

A.1 Simplified common MontiCore grammar for architectural di-
agrams . 45

A.2 Simplified MontiCore grammar for MontiArc 49

B.1 Common MontiCore grammar for architectural diagrams . . . 51

B.2 Common MontiCore grammar for MontiArc 57

64

Bibliography

[BCR06] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe.
Semantics of UML – Towards a System Model for UML: The
Structural Data Model. Technical Report TUM-I0612, Institut
für Informatik, Technische Universität München, June 2006.

[BCR07a] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe.
Semantics of UML – Towards a System Model for UML: The
Control Model. Technical Report TUM-I0710, Institut für In-
formatik, Technische Universität München, February 2007.

[BCR07b] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe.
Semantics of UML – Towards a System Model for UML: The
State Machine Model. Technical Report TUM-I0711, Insti-
tut für Informatik, Technische Universität München, February
2007.

[BDD+93] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs,
Thomas Gritzner, and Rainer Weber. The Design of Dis-
tributed Systems - An Introduction to FOCUS. Technical re-
port, TUM-I9202, SFB-Bericht Nr. 342/2-2/92 A, 1993.

[BR07] Manfred Broy and Bernhard Rumpe. Modulare hierarchische
Modellierung als Grundlage der Software- und Systementwick-
lung. Informatik Spektrum, 30(1):3–18, 2007.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development
of Interactive Systems. Focus on Streams, Interfaces and Re-
finement. Springer Verlag Heidelberg, 2001.

[CGR08] Maŕıa V. Cengarle, Hans Grönniger, and Bernhard Rumpe.
System Model Semantics of Class Diagrams. Informatik-Bericht
2008-05, Technische Universität Braunschweig, 2008.

[CHS10] Dave Clarke, Michiel Helvensteijn, and Ina Schaefer. Abstract
Delta Modeling. In GPCE. Springer, 2010.

65

[GHK+07] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan
Kriebel, and Bernhard Rumpe. View-based modeling of func-
tion nets. In Proceedings of the Object-oriented Modelling
of Embedded Real-Time Systems (OMER4) Workshop, Pader-
born, October 2007.

[GHK+08a] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan
Kriebel, Lutz Rothhardt, and Bernhard Rumpe. Modelling
automotive function nets with views for features, variants, and
modes. In Proceedings of ERTS ’08, 2008.

[GHK+08b] Hans Grönniger, Jochen Hartmann, Holger Krahn, Stefan
Kriebel, Lutz Rothhardt, and Bernhard Rumpe. View-centric
modeling of automotive logical architectures. In Tagungsband
des Dagstuhl-Workshops MBEES: Modellbasierte Entwicklung
eingebetteter Systeme IV, 2008.

[GKL+07] Holger Giese, Gabor Karsai, Edward Lee, Bernhard Rumpe,
and Bernhard Schätz, editors. Model-Based Engineering
of Embedded Real-Time Systems, 4.11. - 9.11.2007, vol-
ume 07451 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2007.

[GKPR08] Hans Grönniger, Holger Krahn, Claas Pinkernell, and Bern-
hard Rumpe. Modeling Variants of Automotive Systems using
Views. In Proceedings of Workshop Modellbasierte Entwicklung
von eingebetteten Fahrzeugfunktionen (MBEFF), pages 76–89,
March 2008.

[GKR+06] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. MontiCore 1.0 - Ein Frame-
work zur Erstellung und Verarbeitung domänenspezifischer
Sprachen. Technical Report Informatik-Bericht 2006-04, Soft-
ware Systems Engineering Institute, Braunschweig University
of Technology, 2006.

[GKR+07] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Textbased Modeling. In 4th In-
ternational Workshop on Software Language Engineering, 2007.

[GKR+08] Hans Grönniger, Holger Krahn, Bernhard Rumpe, Martin
Schindler, and Steven Völkel. Monticore: a framework for
the development of textual domain specific languages. In
30th International Conference on Software Engineering (ICSE
2008), Leipzig, Germany, May 10-18, 2008, Companion Vol-
ume, pages 925–926, 2008.

66

[Grö10] Hans Grönniger. Systemmodell-basierte Definition objekt-
basierter Modellierungssprachen mit semantischen Variation-
spunkten. Aachener Informatik Berichte, Software Engineering.
Shaker Verlag, 2010.

[GRR09] Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe.
System model-based definition of modeling language semantics.
In FMOODS/FORTE, pages 152–166, 2009.

[GRSS12] Holger Giese, Bernhard Rumpe, Bernhard Schätz, and Janos
Sztipanovits. Science and Engineering of Cyber-Physical Sys-
tems (Dagstuhl Seminar 11441). Dagstuhl Reports, 1(11):1–22,
2012.

[HKR+11a] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe,
and Ina Schaefer. Delta-oriented Architectural Variability Us-
ing MontiCore. In 1st International Workshop on Software Ar-
chitecture Variability SAVA 2011, 2011.

[HKR+11b] Arne Haber, Thomas Kutz, Holger Rendel, Bernhard Rumpe,
and Ina Schaefer. Towards a Family-based Analysis of Appli-
cability Conditions in Architectural Delta Models. In VARY
2011: VARiability for You Workshop, 2011.

[HR04] David Harel and Bernhard Rumpe. Meaningful Modeling:
What’s the Semantics of “Semantics“? Computer, 37(10):64–
72, 2004.

[HRRS11] Arne Haber, Holger Rendel, Bernhard Rumpe, and Ina Schae-
fer. Delta Modeling for Software Architectures. In Tagungs-
band des Dagstuhl-Workshop MBEES: Modellbasierte Entwick-
lung eingebetteter Systeme VII, Munich, Germany, February
2011. fortiss GmbH.

[KKP+09] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard
Rumpe, Martin Schindler, and Steven Völkel. Design Guide-
lines for Domain Specific Languages. In Proceedings of the 9th
OOPSLA Workshop on Domain-Specific Modeling (DSM’09),
Sprinkle, J., Gray, J., Rossi, M., Tolvanen, J.-P., (eds.), 2009.

[Kra10] Holger Krahn. MontiCore: Agile Entwicklung von
domänenspezifischen Sprachen im Software-Engineering. Aach-
ener Informatik Berichte, Software Engineering. Shaker Verlag,
2010.

[KRV07a] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Efficient
Editor Generation for Compositional DSLs in Eclipse. In Pro-

67

ceedings of the 7th OOPSLA Workshop on Domain-Specific
Modeling 2007, 2007.

[KRV07b] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Integrated
Definition of Abstract and Concrete Syntax for Textual Lan-
guages. In Proceedings of Models 2007, pages 286–300, 2007.

[KRV08] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monti-
Core: Modular Development of Textual Domain Specific Lan-
guages. In Proceedings of Tools Europe, volume 11 of Lec-
ture Notes in Business Information Processing. Springer-Verlag
Berlin-Heidelberg, 2008.

[KRV10] Holger Krahn, Bernhard Rumpe, and Steven Völkel. Monti-
Core: a Framework for Compositional Development of Domain
Specific Languages. International Journal on Software Tools for
Technology Transfer (STTT), 12(5):353–372, September 2010.

[MPF09] Cem Mengi, Antonio Navarro Perez, and Christian Fuß. Mod-
ellierung variantenreicher Funktionsnetze im Automotive Soft-
ware Engineering. In Proceedings of the 7th Workshop Auto-
motive Software Engineering (ASE 09), INFORMATIK 2009,
2009.

[MT00] Nenad Medvidovic and Richard N. Taylor. A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering, 2000.

[PR97] Jan Philipps and Bernhard Rumpe. Refinement of Informa-
tion Flow Architectures. In Proceedings of Formal Engineering
Methods, 1997.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe And
Filter Architectures. In FM’99, LNCS 1708, pages 96–115,
1999.

[RR11] Jan Oliver Ringert and Bernhard Rumpe. A Little Synop-
sis on Streams, Stream Processing Functions, and State-Based
Stream Processing. International Journal of Software and In-
formatics, 5(1-2):29–53, July 2011.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter
objektorientierter Systeme. Doktorarbeit, Technische Univer-
sität München, 1996.

[Rum04a] Bernhard Rumpe. Agile Modellierung mit UML : Codegener-
ierung, Testfälle, Refactoring. Springer, 2004.

68

[Rum04b] Bernhard Rumpe. Modellierung mit UML. Springer, 2004.

[Sch12] Martin Schindler. Eine Werkzeuginfrastruktur zur Agilen En-
twicklung mit der UML/P. Aachener Informatik Berichte, Soft-
ware Engineering. Shaker Verlag, 2012.

[Völ11] Steven Völkel. Kompositionale Entwicklung
domänenspezifischer Sprachen. Aachener Informatik Berichte,
Software Engineering. Shaker Verlag, 2011.

[www12a] MontiArc website http://www.monticore.de/
languages/montiarc/, 2012.

[www12b] MontiCore website http://www.monticore.de, 2012.

69

http://www.monticore.de/languages/montiarc/
http://www.monticore.de/languages/montiarc/
http://www.monticore.de

70

Aachener Informatik-Berichte

This is the list of all technical reports since 1987. To obtain copies of reports

please consult

http://aib.informatik.rwth-aachen.de/

or send your request to:

Informatik-Bibliothek, RWTH Aachen, Ahornstr. 55, 52056 Aachen,

Email: biblio@informatik.rwth-aachen.de

1987-01 ∗ Fachgruppe Informatik: Jahresbericht 1986

1987-02 ∗ David de Frutos Escrig, Klaus Indermark: Equivalence Relations of Non-

Deterministic Ianov-Schemes

1987-03 ∗ Manfred Nagl: A Software Development Environment based on Graph

Technology

1987-04 ∗ Claus Lewerentz, Manfred Nagl, Bernhard Westfechtel: On Integration

Mechanisms within a Graph-Based Software Development Environment

1987-05 ∗ Reinhard Rinn: Über Eingabeanomalien bei verschiedenen Inferenzmod-

ellen

1987-06 ∗ Werner Damm, Gert Döhmen: Specifying Distributed Computer Archi-

tectures in AADL*

1987-07 ∗ Gregor Engels, Claus Lewerentz, Wilhelm Schäfer: Graph Grammar En-

gineering: A Software Specification Method

1987-08 ∗ Manfred Nagl: Set Theoretic Approaches to Graph Grammars

1987-09 ∗ Claus Lewerentz, Andreas Schürr: Experiences with a Database System

for Software Documents

1987-10 ∗ Herbert Klaeren, Klaus Indermark: A New Implementation Technique

for Recursive Function Definitions

1987-11 ∗ Rita Loogen: Design of a Parallel Programmable Graph Reduction Ma-

chine with Distributed Memory

1987-12 J. Börstler, U. Möncke, R. Wilhelm: Table compression for tree automata

1988-01 ∗ Gabriele Esser, Johannes Rückert, Frank Wagner Gesellschaftliche As-

pekte der Informatik

1988-02 ∗ Peter Martini, Otto Spaniol: Token-Passing in High-Speed Backbone

Networks for Campus-Wide Environments

1988-03 ∗ Thomas Welzel: Simulation of a Multiple Token Ring Backbone

1988-04 ∗ Peter Martini: Performance Comparison for HSLAN Media Access Pro-

tocols

1988-05 ∗ Peter Martini: Performance Analysis of Multiple Token Rings

1988-06 ∗ Andreas Mann, Johannes Rückert, Otto Spaniol: Datenfunknetze

1988-07 ∗ Andreas Mann, Johannes Rückert: Packet Radio Networks for Data Ex-

change

1988-08 ∗ Andreas Mann, Johannes Rückert: Concurrent Slot Assignment Protocol

for Packet Radio Networks

1988-09 ∗ W. Kremer, F. Reichert, J. Rückert, A. Mann: Entwurf einer Netzw-

erktopologie für ein Mobilfunknetz zur Unterstützung des öffentlichen

Straßenverkehrs

1988-10 ∗ Kai Jakobs: Towards User-Friendly Networking

1988-11 ∗ Kai Jakobs: The Directory - Evolution of a Standard

1988-12 ∗ Kai Jakobs: Directory Services in Distributed Systems - A Survey

1988-13 ∗ Martine Schümmer: RS-511, a Protocol for the Plant Floor

1988-14 ∗ U. Quernheim: Satellite Communication Protocols - A Performance

Comparison Considering On-Board Processing

1988-15 ∗ Peter Martini, Otto Spaniol, Thomas Welzel: File Transfer in High Speed

Token Ring Networks: Performance Evaluation by Approximate Analysis

and Simulation

1988-16 ∗ Fachgruppe Informatik: Jahresbericht 1987

1988-17 ∗ Wolfgang Thomas: Automata on Infinite Objects

1988-18 ∗ Michael Sonnenschein: On Petri Nets and Data Flow Graphs

1988-19 ∗ Heiko Vogler: Functional Distribution of the Contextual Analysis in

Block-Structured Programming Languages: A Case Study of Tree Trans-

ducers

1988-20 ∗ Thomas Welzel: Einsatz des Simulationswerkzeuges QNAP2 zur Leis-

tungsbewertung von Kommunikationsprotokollen

1988-21 ∗ Th. Janning, C. Lewerentz: Integrated Project Team Management in a

Software Development Environment

1988-22 ∗ Joost Engelfriet, Heiko Vogler: Modular Tree Transducers

1988-23 ∗ Wolfgang Thomas: Automata and Quantifier Hierarchies

1988-24 ∗ Uschi Heuter: Generalized Definite Tree Languages

1989-01 ∗ Fachgruppe Informatik: Jahresbericht 1988

1989-02 ∗ G. Esser, J. Rückert, F. Wagner (Hrsg.): Gesellschaftliche Aspekte der

Informatik

1989-03 ∗ Heiko Vogler: Bottom-Up Computation of Primitive Recursive Tree

Functions

1989-04 ∗ Andy Schürr: Introduction to PROGRESS, an Attribute Graph Gram-

mar Based Specification Language

1989-05 J. Börstler: Reuse and Software Development - Problems, Solutions, and

Bibliography (in German)

1989-06 ∗ Kai Jakobs: OSI - An Appropriate Basis for Group Communication?

1989-07 ∗ Kai Jakobs: ISO’s Directory Proposal - Evolution, Current Status and

Future Problems

1989-08 ∗ Bernhard Westfechtel: Extension of a Graph Storage for Software Doc-

uments with Primitives for Undo/Redo and Revision Control

1989-09 ∗ Peter Martini: High Speed Local Area Networks - A Tutorial

1989-10 ∗ P. Davids, Th. Welzel: Performance Analysis of DQDB Based on Simu-

lation

1989-11 ∗ Manfred Nagl (Ed.): Abstracts of Talks presented at the WG ’89 15th

International Workshop on Graphtheoretic Concepts in Computer Sci-

ence

1989-12 ∗ Peter Martini: The DQDB Protocol - Is it Playing the Game?

1989-13 ∗ Martine Schümmer: CNC/DNC Communication with MAP

1989-14 ∗ Martine Schümmer: Local Area Networks for Manufactoring Environ-

ments with hard Real-Time Requirements

1989-15 ∗ M. Schümmer, Th. Welzel, P. Martini: Integration of Field Bus and

MAP Networks - Hierarchical Communication Systems in Production

Environments

1989-16 ∗ G. Vossen, K.-U. Witt: SUXESS: Towards a Sound Unification of Ex-

tensions of the Relational Data Model

1989-17 ∗ J. Derissen, P. Hruschka, M.v.d. Beeck, Th. Janning, M. Nagl: Integrat-

ing Structured Analysis and Information Modelling

1989-18 A. Maassen: Programming with Higher Order Functions

1989-19 ∗ Mario Rodriguez-Artalejo, Heiko Vogler: A Narrowing Machine for Syn-

tax Directed BABEL

1989-20 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Graph-based Implementation of a Functional Logic Language

1990-01 ∗ Fachgruppe Informatik: Jahresbericht 1989

1990-02 ∗ Vera Jansen, Andreas Potthoff, Wolfgang Thomas, Udo Wermuth: A

Short Guide to the AMORE System (Computing Automata, MOnoids

and Regular Expressions)

1990-03 ∗ Jerzy Skurczynski: On Three Hierarchies of Weak SkS Formulas

1990-04 R. Loogen: Stack-based Implementation of Narrowing

1990-05 H. Kuchen, A. Wagener: Comparison of Dynamic Load Balancing Strate-

gies

1990-06 ∗ Kai Jakobs, Frank Reichert: Directory Services for Mobile Communica-

tion

1990-07 ∗ Kai Jakobs: What’s Beyond the Interface - OSI Networks to Support

Cooperative Work

1990-08 ∗ Kai Jakobs: Directory Names and Schema - An Evaluation

1990-09 ∗ Ulrich Quernheim, Dieter Kreuer: Das CCITT - Signalisierungssystem

Nr. 7 auf Satellitenstrecken; Simulation der Zeichengabestrecke

1990-11 H. Kuchen, R. Loogen, J.J. Moreno Navarro, M. Rodriguez Artalejo:

Lazy Narrowing in a Graph Machine

1990-12 ∗ Kai Jakobs, Josef Kaltwasser, Frank Reichert, Otto Spaniol: Der Com-

puter fährt mit

1990-13 ∗ Rudolf Mathar, Andreas Mann: Analyzing a Distributed Slot Assign-

ment Protocol by Markov Chains

1990-14 A. Maassen: Compilerentwicklung in Miranda - ein Praktikum in funk-

tionaler Programmierung (written in german)

1990-15 ∗ Manfred Nagl, Andreas Schürr: A Specification Environment for Graph

Grammars

1990-16 A. Schürr: PROGRESS: A VHL-Language Based on Graph Grammars

1990-17 ∗ Marita Möller: Ein Ebenenmodell wissensbasierter Konsultationen - Un-

terstützung für Wissensakquisition und Erklärungsfähigkeit

1990-18 ∗ Eric Kowalewski: Entwurf und Interpretation einer Sprache zur Beschrei-

bung von Konsultationsphasen in Expertensystemen

1990-20 Y. Ortega Mallen, D. de Frutos Escrig: A Complete Proof System for

Timed Observations

1990-21 ∗ Manfred Nagl: Modelling of Software Architectures: Importance, No-

tions, Experiences

1990-22 H. Fassbender, H. Vogler: A Call-by-need Implementation of Syntax Di-

rected Functional Programming

1991-01 Guenther Geiler (ed.), Fachgruppe Informatik: Jahresbericht 1990

1991-03 B. Steffen, A. Ingolfsdottir: Characteristic Formulae for Processes with

Divergence

1991-04 M. Portz: A new class of cryptosystems based on interconnection net-

works

1991-05 H. Kuchen, G. Geiler: Distributed Applicative Arrays

1991-06 ∗ Ludwig Staiger: Kolmogorov Complexity and Hausdorff Dimension

1991-07 ∗ Ludwig Staiger: Syntactic Congruences for w-languages

1991-09 ∗ Eila Kuikka: A Proposal for a Syntax-Directed Text Processing System

1991-10 K. Gladitz, H. Fassbender, H. Vogler: Compiler-based Implementation

of Syntax-Directed Functional Programming

1991-11 R. Loogen, St. Winkler: Dynamic Detection of Determinism in Func-

tional Logic Languages

1991-12 ∗ K. Indermark, M. Rodriguez Artalejo (Eds.): Granada Workshop on the

Integration of Functional and Logic Programming

1991-13 ∗ Rolf Hager, Wolfgang Kremer: The Adaptive Priority Scheduler: A More

Fair Priority Service Discipline

1991-14 ∗ Andreas Fasbender, Wolfgang Kremer: A New Approximation Algorithm

for Tandem Networks with Priority Nodes

1991-15 J. Börstler, A. Zündorf: Revisiting extensions to Modula-2 to support

reusability

1991-16 J. Börstler, Th. Janning: Bridging the gap between Requirements Anal-

ysis and Design

1991-17 A. Zündorf, A. Schürr: Nondeterministic Control Structures for Graph

Rewriting Systems

1991-18 ∗ Matthias Jarke, John Mylopoulos, Joachim W. Schmidt, Yannis Vassil-

iou: DAIDA: An Environment for Evolving Information Systems

1991-19 M. Jeusfeld, M. Jarke: From Relational to Object-Oriented Integrity

Simplification

1991-20 G. Hogen, A. Kindler, R. Loogen: Automatic Parallelization of Lazy

Functional Programs

1991-21 ∗ Prof. Dr. rer. nat. Otto Spaniol: ODP (Open Distributed Processing):

Yet another Viewpoint

1991-22 H. Kuchen, F. Lücking, H. Stoltze: The Topology Description Language

TDL

1991-23 S. Graf, B. Steffen: Compositional Minimization of Finite State Systems

1991-24 R. Cleaveland, J. Parrow, B. Steffen: The Concurrency Workbench: A

Semantics Based Tool for the Verification of Concurrent Systems

1991-25 ∗ Rudolf Mathar, Jürgen Mattfeldt: Optimal Transmission Ranges for Mo-

bile Communication in Linear Multihop Packet Radio Networks

1991-26 M. Jeusfeld, M. Staudt: Query Optimization in Deductive Object Bases

1991-27 J. Knoop, B. Steffen: The Interprocedural Coincidence Theorem

1991-28 J. Knoop, B. Steffen: Unifying Strength Reduction and Semantic Code

Motion

1991-30 T. Margaria: First-Order theories for the verification of complex FSMs

1991-31 B. Steffen: Generating Data Flow Analysis Algorithms from Modal Spec-

ifications

1992-01 Stefan Eherer (ed.), Fachgruppe Informatik: Jahresbericht 1991

1992-02 ∗ Bernhard Westfechtel: Basismechanismen zur Datenverwaltung in struk-

turbezogenen Hypertextsystemen

1992-04 S. A. Smolka, B. Steffen: Priority as Extremal Probability

1992-05 ∗ Matthias Jarke, Carlos Maltzahn, Thomas Rose: Sharing Processes:

Team Coordination in Design Repositories

1992-06 O. Burkart, B. Steffen: Model Checking for Context-Free Processes

1992-07 ∗ Matthias Jarke, Klaus Pohl: Information Systems Quality and Quality

Information Systems

1992-08 ∗ Rudolf Mathar, Jürgen Mattfeldt: Analyzing Routing Strategy NFP in

Multihop Packet Radio Networks on a Line

1992-09 ∗ Alfons Kemper, Guido Moerkotte: Grundlagen objektorientierter Daten-

banksysteme

1992-10 Matthias Jarke, Manfred Jeusfeld, Andreas Miethsam, Michael Gocek:

Towards a logic-based reconstruction of software configuration manage-

ment

1992-11 Werner Hans: A Complete Indexing Scheme for WAM-based Abstract

Machines

1992-12 W. Hans, R. Loogen, St. Winkler: On the Interaction of Lazy Evaluation

and Backtracking

1992-13 ∗ Matthias Jarke, Thomas Rose: Specification Management with CAD

1992-14 Th. Noll, H. Vogler: Top-down Parsing with Simultaneous Evaluation on

Noncircular Attribute Grammars

1992-15 A. Schuerr, B. Westfechtel: Graphgrammatiken und Graphersetzungssys-

teme(written in german)

1992-16 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Forschungsprojekte

des Graduiertenkollegs Informatik und Technik

1992-17 M. Jarke (ed.): ConceptBase V3.1 User Manual

1992-18 ∗ Clarence A. Ellis, Matthias Jarke (Eds.): Distributed Cooperation in

Integrated Information Systems - Proceedings of the Third International

Workshop on Intelligent and Cooperative Information Systems

1992-19-00 H. Kuchen, R. Loogen (eds.): Proceedings of the 4th Int. Workshop on

the Parallel Implementation of Functional Languages

1992-19-01 G. Hogen, R. Loogen: PASTEL - A Parallel Stack-Based Implementation

of Eager Functional Programs with Lazy Data Structures (Extended

Abstract)

1992-19-02 H. Kuchen, K. Gladitz: Implementing Bags on a Shared Memory MIMD-

Machine

1992-19-03 C. Rathsack, S.B. Scholz: LISA - A Lazy Interpreter for a Full-Fledged

Lambda-Calculus

1992-19-04 T.A. Bratvold: Determining Useful Parallelism in Higher Order Func-

tions

1992-19-05 S. Kahrs: Polymorphic Type Checking by Interpretation of Code

1992-19-06 M. Chakravarty, M. Köhler: Equational Constraints, Residuation, and

the Parallel JUMP-Machine

1992-19-07 J. Seward: Polymorphic Strictness Analysis using Frontiers (Draft Ver-

sion)

1992-19-08 D. Gärtner, A. Kimms, W. Kluge: pi-Redˆ+ - A Compiling Graph-

Reduction System for a Full Fledged Lambda-Calculus

1992-19-09 D. Howe, G. Burn: Experiments with strict STG code

1992-19-10 J. Glauert: Parallel Implementation of Functional Languages Using

Small Processes

1992-19-11 M. Joy, T. Axford: A Parallel Graph Reduction Machine

1992-19-12 A. Bennett, P. Kelly: Simulation of Multicache Parallel Reduction

1992-19-13 K. Langendoen, D.J. Agterkamp: Cache Behaviour of Lazy Functional

Programs (Working Paper)

1992-19-14 K. Hammond, S. Peyton Jones: Profiling scheduling strategies on the

GRIP parallel reducer

1992-19-15 S. Mintchev: Using Strictness Information in the STG-machine

1992-19-16 D. Rushall: An Attribute Grammar Evaluator in Haskell

1992-19-17 J. Wild, H. Glaser, P. Hartel: Statistics on storage management in a lazy

functional language implementation

1992-19-18 W.S. Martins: Parallel Implementations of Functional Languages

1992-19-19 D. Lester: Distributed Garbage Collection of Cyclic Structures (Draft

version)

1992-19-20 J.C. Glas, R.F.H. Hofman, W.G. Vree: Parallelization of Branch-and-

Bound Algorithms in a Functional Programming Environment

1992-19-21 S. Hwang, D. Rushall: The nu-STG machine: a parallelized Spineless

Tagless Graph Reduction Machine in a distributed memory architecture

(Draft version)

1992-19-22 G. Burn, D. Le Metayer: Cps-Translation and the Correctness of Opti-

mising Compilers

1992-19-23 S.L. Peyton Jones, P. Wadler: Imperative functional programming (Brief

summary)

1992-19-24 W. Damm, F. Liu, Th. Peikenkamp: Evaluation and Parallelization of

Functions in Functional + Logic Languages (abstract)

1992-19-25 M. Kesseler: Communication Issues Regarding Parallel Functional Graph

Rewriting

1992-19-26 Th. Peikenkamp: Charakterizing and representing neededness in func-

tional loginc languages (abstract)

1992-19-27 H. Doerr: Monitoring with Graph-Grammars as formal operational Mod-

els

1992-19-28 J. van Groningen: Some implementation aspects of Concurrent Clean on

distributed memory architectures

1992-19-29 G. Ostheimer: Load Bounding for Implicit Parallelism (abstract)

1992-20 H. Kuchen, F.J. Lopez Fraguas, J.J. Moreno Navarro, M. Rodriguez

Artalejo: Implementing Disequality in a Lazy Functional Logic Language

1992-21 H. Kuchen, F.J. Lopez Fraguas: Result Directed Computing in a Func-

tional Logic Language

1992-22 H. Kuchen, J.J. Moreno Navarro, M.V. Hermenegildo: Independent

AND-Parallel Narrowing

1992-23 T. Margaria, B. Steffen: Distinguishing Formulas for Free

1992-24 K. Pohl: The Three Dimensions of Requirements Engineering

1992-25 ∗ R. Stainov: A Dynamic Configuration Facility for Multimedia Commu-

nications

1992-26 ∗ Michael von der Beeck: Integration of Structured Analysis and Timed

Statecharts for Real-Time and Concurrency Specification

1992-27 W. Hans, St. Winkler: Aliasing and Groundness Analysis of Logic Pro-

grams through Abstract Interpretation and its Safety

1992-28 ∗ Gerhard Steinke, Matthias Jarke: Support for Security Modeling in In-

formation Systems Design

1992-29 B. Schinzel: Warum Frauenforschung in Naturwissenschaft und Technik

1992-30 A. Kemper, G. Moerkotte, K. Peithner: Object-Orientation Axiomatised

by Dynamic Logic

1992-32 ∗ Bernd Heinrichs, Kai Jakobs: Timer Handling in High-Performance

Transport Systems

1992-33 ∗ B. Heinrichs, K. Jakobs, K. Lenßen, W. Reinhardt, A. Spinner: Euro-

Bridge: Communication Services for Multimedia Applications

1992-34 C. Gerlhof, A. Kemper, Ch. Kilger, G. Moerkotte: Partition-Based Clus-

tering in Object Bases: From Theory to Practice

1992-35 J. Börstler: Feature-Oriented Classification and Reuse in IPSEN

1992-36 M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, Y. Vassiliou: Theories Un-

derlying Requirements Engineering: An Overview of NATURE at Gen-

esis

1992-37 ∗ K. Pohl, M. Jarke: Quality Information Systems: Repository Support for

Evolving Process Models

1992-38 A. Zuendorf: Implementation of the imperative / rule based language

PROGRES

1992-39 P. Koch: Intelligentes Backtracking bei der Auswertung funktional-

logischer Programme

1992-40 ∗ Rudolf Mathar, Jürgen Mattfeldt: Channel Assignment in Cellular Radio

Networks

1992-41 ∗ Gerhard Friedrich, Wolfgang Neidl: Constructive Utility in Model-Based

Diagnosis Repair Systems

1992-42 ∗ P. S. Chen, R. Hennicker, M. Jarke: On the Retrieval of Reusable Soft-

ware Components

1992-43 W. Hans, St.Winkler: Abstract Interpretation of Functional Logic Lan-

guages

1992-44 N. Kiesel, A. Schuerr, B. Westfechtel: Design and Evaluation of GRAS,

a Graph-Oriented Database System for Engineering Applications

1993-01 ∗ Fachgruppe Informatik: Jahresbericht 1992

1993-02 ∗ Patrick Shicheng Chen: On Inference Rules of Logic-Based Information

Retrieval Systems

1993-03 G. Hogen, R. Loogen: A New Stack Technique for the Management of

Runtime Structures in Distributed Environments

1993-05 A. Zündorf: A Heuristic for the Subgraph Isomorphism Problem in Ex-

ecuting PROGRES

1993-06 A. Kemper, D. Kossmann: Adaptable Pointer Swizzling Strategies in

Object Bases: Design, Realization, and Quantitative Analysis

1993-07 ∗ Graduiertenkolleg Informatik und Technik (Hrsg.): Graduiertenkolleg In-

formatik und Technik

1993-08 ∗ Matthias Berger: k-Coloring Vertices using a Neural Network with Con-

vergence to Valid Solutions

1993-09 M. Buchheit, M. Jeusfeld, W. Nutt, M. Staudt: Subsumption between

Queries to Object-Oriented Databases

1993-10 O. Burkart, B. Steffen: Pushdown Processes: Parallel Composition and

Model Checking

1993-11 ∗ R. Große-Wienker, O. Hermanns, D. Menzenbach, A. Pollacks, S. Repet-

zki, J. Schwartz, K. Sonnenschein, B. Westfechtel: Das SUKITS-Projekt:

A-posteriori-Integration heterogener CIM-Anwendungssysteme

1993-12 ∗ Rudolf Mathar, Jürgen Mattfeldt: On the Distribution of Cumulated

Interference Power in Rayleigh Fading Channels

1993-13 O. Maler, L. Staiger: On Syntactic Congruences for omega-languages

1993-14 M. Jarke, St. Eherer, R. Gallersdoerfer, M. Jeusfeld, M. Staudt: Con-

ceptBase - A Deductive Object Base Manager

1993-15 M. Staudt, H.W. Nissen, M.A. Jeusfeld: Query by Class, Rule and Con-

cept

1993-16 ∗ M. Jarke, K. Pohl, St. Jacobs et al.: Requirements Engineering: An In-

tegrated View of Representation Process and Domain

1993-17 ∗ M. Jarke, K. Pohl: Establishing Vision in Context: Towards a Model of

Requirements Processes

1993-18 W. Hans, H. Kuchen, St. Winkler: Full Indexing for Lazy Narrowing

1993-19 W. Hans, J.J. Ruz, F. Saenz, St. Winkler: A VHDL Specification of a

Shared Memory Parallel Machine for Babel

1993-20 ∗ K. Finke, M. Jarke, P. Szczurko, R. Soltysiak: Quality Management for

Expert Systems in Process Control

1993-21 M. Jarke, M.A. Jeusfeld, P. Szczurko: Three Aspects of Intelligent Co-

operation in the Quality Cycle

1994-01 Margit Generet, Sven Martin (eds.), Fachgruppe Informatik: Jahres-

bericht 1993

1994-02 M. Lefering: Development of Incremental Integration Tools Using Formal

Specifications

1994-03 ∗ P. Constantopoulos, M. Jarke, J. Mylopoulos, Y. Vassiliou: The Software

Information Base: A Server for Reuse

1994-04 ∗ Rolf Hager, Rudolf Mathar, Jürgen Mattfeldt: Intelligent Cruise Control

and Reliable Communication of Mobile Stations

1994-05 ∗ Rolf Hager, Peter Hermesmann, Michael Portz: Feasibility of Authenti-

cation Procedures within Advanced Transport Telematics

1994-06 ∗ Claudia Popien, Bernd Meyer, Axel Kuepper: A Formal Approach to

Service Import in ODP Trader Federations

1994-07 P. Peters, P. Szczurko: Integrating Models of Quality Management Meth-

ods by an Object-Oriented Repository

1994-08 ∗ Manfred Nagl, Bernhard Westfechtel: A Universal Component for the

Administration in Distributed and Integrated Development Environ-

ments

1994-09 ∗ Patrick Horster, Holger Petersen: Signatur- und Authentifikationsver-

fahren auf der Basis des diskreten Logarithmusproblems

1994-11 A. Schürr: PROGRES, A Visual Language and Environment for PRO-

gramming with Graph REwrite Systems

1994-12 A. Schürr: Specification of Graph Translators with Triple Graph Gram-

mars

1994-13 A. Schürr: Logic Based Programmed Structure Rewriting Systems

1994-14 L. Staiger: Codes, Simplifying Words, and Open Set Condition

1994-15 ∗ Bernhard Westfechtel: A Graph-Based System for Managing Configura-

tions of Engineering Design Documents

1994-16 P. Klein: Designing Software with Modula-3

1994-17 I. Litovsky, L. Staiger: Finite acceptance of infinite words

1994-18 G. Hogen, R. Loogen: Parallel Functional Implementations: Graphbased

vs. Stackbased Reduction

1994-19 M. Jeusfeld, U. Johnen: An Executable Meta Model for Re-Engineering

of Database Schemas

1994-20 ∗ R. Gallersdörfer, M. Jarke, K. Klabunde: Intelligent Networks as a Data

Intensive Application (INDIA)

1994-21 M. Mohnen: Proving the Correctness of the Static Link Technique Using

Evolving Algebras

1994-22 H. Fernau, L. Staiger: Valuations and Unambiguity of Languages, with

Applications to Fractal Geometry

1994-24 ∗ M. Jarke, K. Pohl, R. Dömges, St. Jacobs, H. W. Nissen: Requirements

Information Management: The NATURE Approach

1994-25 ∗ M. Jarke, K. Pohl, C. Rolland, J.-R. Schmitt: Experience-Based Method

Evaluation and Improvement: A Process Modeling Approach

1994-26 ∗ St. Jacobs, St. Kethers: Improving Communication and Decision Making

within Quality Function Deployment

1994-27 ∗ M. Jarke, H. W. Nissen, K. Pohl: Tool Integration in Evolving Informa-

tion Systems Environments

1994-28 O. Burkart, D. Caucal, B. Steffen: An Elementary Bisimulation Decision

Procedure for Arbitrary Context-Free Processes

1995-01 ∗ Fachgruppe Informatik: Jahresbericht 1994

1995-02 Andy Schürr, Andreas J. Winter, Albert Zündorf: Graph Grammar En-

gineering with PROGRES

1995-03 Ludwig Staiger: A Tight Upper Bound on Kolmogorov Complexity by

Hausdorff Dimension and Uniformly Optimal Prediction

1995-04 Birgitta König-Ries, Sven Helmer, Guido Moerkotte: An experimental

study on the complexity of left-deep join ordering problems for cyclic

queries

1995-05 Sophie Cluet, Guido Moerkotte: Efficient Evaluation of Aggregates on

Bulk Types

1995-06 Sophie Cluet, Guido Moerkotte: Nested Queries in Object Bases

1995-07 Sophie Cluet, Guido Moerkotte: Query Optimization Techniques Ex-

ploiting Class Hierarchies

1995-08 Markus Mohnen: Efficient Compile-Time Garbage Collection for Arbi-

trary Data Structures

1995-09 Markus Mohnen: Functional Specification of Imperative Programs: An

Alternative Point of View of Functional Languages

1995-10 Rainer Gallersdörfer, Matthias Nicola: Improving Performance in Repli-

cated Databases through Relaxed Coherency

1995-11 ∗ M.Staudt, K.von Thadden: Subsumption Checking in Knowledge Bases

1995-12 ∗ G.V.Zemanek, H.W.Nissen, H.Hubert, M.Jarke: Requirements Analy-

sis from Multiple Perspectives: Experiences with Conceptual Modeling

Technology

1995-13 ∗ M.Staudt, M.Jarke: Incremental Maintenance of Externally Materialized

Views

1995-14 ∗ P.Peters, P.Szczurko, M.Jeusfeld: Oriented Information Management:

Conceptual Models at Work

1995-15 ∗ Matthias Jarke, Sudha Ram (Hrsg.): WITS 95 Proceedings of the 5th

Annual Workshop on Information Technologies and Systems

1995-16 ∗ W.Hans, St.Winkler, F.Saenz: Distributed Execution in Functional Logic

Programming

1996-01 ∗ Jahresbericht 1995

1996-02 Michael Hanus, Christian Prehofer: Higher-Order Narrowing with Defi-

nitional Trees

1996-03 ∗ W.Scheufele, G.Moerkotte: Optimal Ordering of Selections and Joins in

Acyclic Queries with Expensive Predicates

1996-04 Klaus Pohl: PRO-ART: Enabling Requirements Pre-Traceability

1996-05 Klaus Pohl: Requirements Engineering: An Overview

1996-06 ∗ M.Jarke, W.Marquardt: Design and Evaluation of Computer–Aided Pro-

cess Modelling Tools

1996-07 Olaf Chitil: The Sigma-Semantics: A Comprehensive Semantics for Func-

tional Programs

1996-08 ∗ S.Sripada: On Entropy and the Limitations of the Second Law of Ther-

modynamics

1996-09 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP96 - Fifth

International Conference on Algebraic and Logic Programming

1996-09-0 Michael Hanus (Ed.): Proceedings of the Poster Session of ALP 96 -

Fifth International Conference on Algebraic and Logic Programming:

Introduction and table of contents

1996-09-1 Ilies Alouini: An Implementation of Conditional Concurrent Rewriting

on Distributed Memory Machines

1996-09-2 Olivier Danvy, Karoline Malmkjær: On the Idempotence of the CPS

Transformation

1996-09-3 Vı́ctor M. Guĺıas, José L. Freire: Concurrent Programming in Haskell

1996-09-4 Sébastien Limet, Pierre Réty: On Decidability of Unifiability Modulo

Rewrite Systems

1996-09-5 Alexandre Tessier: Declarative Debugging in Constraint Logic Program-

ming

1996-10 Reidar Conradi, Bernhard Westfechtel: Version Models for Software Con-

figuration Management

1996-11 ∗ C.Weise, D.Lenzkes: A Fast Decision Algorithm for Timed Refinement

1996-12 ∗ R.Dömges, K.Pohl, M.Jarke, B.Lohmann, W.Marquardt: PRO-

ART/CE* — An Environment for Managing the Evolution of Chemical

Process Simulation Models

1996-13 ∗ K.Pohl, R.Klamma, K.Weidenhaupt, R.Dömges, P.Haumer, M.Jarke: A

Framework for Process-Integrated Tools

1996-14 ∗ R.Gallersdörfer, K.Klabunde, A.Stolz, M.Eßmajor: INDIA — Intelligent

Networks as a Data Intensive Application, Final Project Report, June

1996

1996-15 ∗ H.Schimpe, M.Staudt: VAREX: An Environment for Validating and Re-

fining Rule Bases

1996-16 ∗ M.Jarke, M.Gebhardt, S.Jacobs, H.Nissen: Conflict Analysis Across Het-

erogeneous Viewpoints: Formalization and Visualization

1996-17 Manfred A. Jeusfeld, Tung X. Bui: Decision Support Components on the

Internet

1996-18 Manfred A. Jeusfeld, Mike Papazoglou: Information Brokering: Design,

Search and Transformation

1996-19 ∗ P.Peters, M.Jarke: Simulating the impact of information flows in net-

worked organizations

1996-20 Matthias Jarke, Peter Peters, Manfred A. Jeusfeld: Model-driven plan-

ning and design of cooperative information systems

1996-21 ∗ G.de Michelis, E.Dubois, M.Jarke, F.Matthes, J.Mylopoulos, K.Pohl,

J.Schmidt, C.Woo, E.Yu: Cooperative information systems: a manifesto

1996-22 ∗ S.Jacobs, M.Gebhardt, S.Kethers, W.Rzasa: Filling HTML forms simul-

taneously: CoWeb architecture and functionality

1996-23 ∗ M.Gebhardt, S.Jacobs: Conflict Management in Design

1997-01 Michael Hanus, Frank Zartmann (eds.): Jahresbericht 1996

1997-02 Johannes Faassen: Using full parallel Boltzmann Machines for Optimiza-

tion

1997-03 Andreas Winter, Andy Schürr: Modules and Updatable Graph Views for

PROgrammed Graph REwriting Systems

1997-04 Markus Mohnen, Stefan Tobies: Implementing Context Patterns in the

Glasgow Haskell Compiler

1997-05 ∗ S.Gruner: Schemakorrespondenzaxiome unterstützen die paargramma-

tische Spezifikation inkrementeller Integrationswerkzeuge

1997-06 Matthias Nicola, Matthias Jarke: Design and Evaluation of Wireless

Health Care Information Systems in Developing Countries

1997-07 Petra Hofstedt: Taskparallele Skelette für irregulär strukturierte Prob-

leme in deklarativen Sprachen

1997-08 Dorothea Blostein, Andy Schürr: Computing with Graphs and Graph

Rewriting

1997-09 Carl-Arndt Krapp, Bernhard Westfechtel: Feedback Handling in Dy-

namic Task Nets

1997-10 Matthias Nicola, Matthias Jarke: Integrating Replication and Commu-

nication in Performance Models of Distributed Databases

1997-11 ∗ R. Klamma, P. Peters, M. Jarke: Workflow Support for Failure Manage-

ment in Federated Organizations

1997-13 Markus Mohnen: Optimising the Memory Management of Higher-Order

Functional Programs

1997-14 Roland Baumann: Client/Server Distribution in a Structure-Oriented

Database Management System

1997-15 George Botorog: High-Level Parallel Programming and the Efficient Im-

plementation of Numerical Algorithms

1998-01 ∗ Fachgruppe Informatik: Jahresbericht 1997

1998-02 Stefan Gruner, Manfred Nagel, Andy Schürr: Fine-grained and

Structure-Oriented Document Integration Tools are Needed for Devel-

opment Processes

1998-03 Stefan Gruner: Einige Anmerkungen zur graphgrammatischen Spezifika-

tion von Integrationswerkzeugen nach Westfechtel, Janning, Lefering und

Schürr

1998-04 ∗ O. Kubitz: Mobile Robots in Dynamic Environments

1998-05 Martin Leucker, Stephan Tobies: Truth - A Verification Platform for

Distributed Systems

1998-06 ∗ Matthias Oliver Berger: DECT in the Factory of the Future

1998-07 M. Arnold, M. Erdmann, M. Glinz, P. Haumer, R. Knoll, B. Paech, K.

Pohl, J. Ryser, R. Studer, K. Weidenhaupt: Survey on the Scenario Use

in Twelve Selected Industrial Projects

1998-09 ∗ Th. Lehmann: Geometrische Ausrichtung medizinischer Bilder am

Beispiel intraoraler Radiographien

1998-10 ∗ M. Nicola, M. Jarke: Performance Modeling of Distributed and Repli-

cated Databases

1998-11 ∗ Ansgar Schleicher, Bernhard Westfechtel, Dirk Jäger: Modeling Dynamic

Software Processes in UML

1998-12 ∗ W. Appelt, M. Jarke: Interoperable Tools for Cooperation Support using

the World Wide Web

1998-13 Klaus Indermark: Semantik rekursiver Funktionsdefinitionen mit Strik-

theitsinformation

1999-01 ∗ Jahresbericht 1998

1999-02 ∗ F. Huch: Verifcation of Erlang Programs using Abstract Interpretation

and Model Checking — Extended Version

1999-03 ∗ R. Gallersdörfer, M. Jarke, M. Nicola: The ADR Replication Manager

1999-04 Maŕıa Alpuente, Michael Hanus, Salvador Lucas, Germán Vidal: Spe-

cialization of Functional Logic Programs Based on Needed Narrowing

1999-05 ∗ W. Thomas (Ed.): DLT 99 - Developments in Language Theory Fourth

International Conference

1999-06 ∗ Kai Jakobs, Klaus-Dieter Kleefeld: Informationssysteme für die ange-

wandte historische Geographie

1999-07 Thomas Wilke: CTL+ is exponentially more succinct than CTL

1999-08 Oliver Matz: Dot-Depth and Monadic Quantifier Alternation over Pic-

tures

2000-01 ∗ Jahresbericht 1999

2000-02 Jens Vöge, Marcin Jurdzinski A Discrete Strategy Improvement Algo-

rithm for Solving Parity Games

2000-03 D. Jäger, A. Schleicher, B. Westfechtel: UPGRADE: A Framework for

Building Graph-Based Software Engineering Tools

2000-04 Andreas Becks, Stefan Sklorz, Matthias Jarke: Exploring the Semantic

Structure of Technical Document Collections: A Cooperative Systems

Approach

2000-05 Mareike Schoop: Cooperative Document Management

2000-06 Mareike Schoop, Christoph Quix (eds.): Proceedings of the Fifth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2000-07 ∗ Markus Mohnen, Pieter Koopman (Eds.): Proceedings of the 12th Inter-

national Workshop of Functional Languages

2000-08 Thomas Arts, Thomas Noll: Verifying Generic Erlang Client-Server Im-

plementations

2001-01 ∗ Jahresbericht 2000

2001-02 Benedikt Bollig, Martin Leucker: Deciding LTL over Mazurkiewicz

Traces

2001-03 Thierry Cachat: The power of one-letter rational languages

2001-04 Benedikt Bollig, Martin Leucker, Michael Weber: Local Parallel Model

Checking for the Alternation Free mu-Calculus

2001-05 Benedikt Bollig, Martin Leucker, Thomas Noll: Regular MSC Languages

2001-06 Achim Blumensath: Prefix-Recognisable Graphs and Monadic Second-

Order Logic

2001-07 Martin Grohe, Stefan Wöhrle: An Existential Locality Theorem

2001-08 Mareike Schoop, James Taylor (eds.): Proceedings of the Sixth Interna-

tional Workshop on the Language-Action Perspective on Communication

Modelling

2001-09 Thomas Arts, Jürgen Giesl: A collection of examples for termination of

term rewriting using dependency pairs

2001-10 Achim Blumensath: Axiomatising Tree-interpretable Structures

2001-11 Klaus Indermark, Thomas Noll (eds.): Kolloquium Programmier-

sprachen und Grundlagen der Programmierung

2002-01 ∗ Jahresbericht 2001

2002-02 Jürgen Giesl, Aart Middeldorp: Transformation Techniques for Context-

Sensitive Rewrite Systems

2002-03 Benedikt Bollig, Martin Leucker, Thomas Noll: Generalised Regular

MSC Languages

2002-04 Jürgen Giesl, Aart Middeldorp: Innermost Termination of Context-

Sensitive Rewriting

2002-05 Horst Lichter, Thomas von der Maßen, Thomas Weiler: Modelling Re-

quirements and Architectures for Software Product Lines

2002-06 Henry N. Adorna: 3-Party Message Complexity is Better than 2-Party

Ones for Proving Lower Bounds on the Size of Minimal Nondeterministic

Finite Automata

2002-07 Jörg Dahmen: Invariant Image Object Recognition using Gaussian Mix-

ture Densities

2002-08 Markus Mohnen: An Open Framework for Data-Flow Analysis in Java

2002-09 Markus Mohnen: Interfaces with Default Implementations in Java

2002-10 Martin Leucker: Logics for Mazurkiewicz traces

2002-11 Jürgen Giesl, Hans Zantema: Liveness in Rewriting

2003-01 ∗ Jahresbericht 2002

2003-02 Jürgen Giesl, René Thiemann: Size-Change Termination for Term

Rewriting

2003-03 Jürgen Giesl, Deepak Kapur: Deciding Inductive Validity of Equations

2003-04 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Improving Dependency Pairs

2003-05 Christof Löding, Philipp Rohde: Solving the Sabotage Game is PSPACE-

hard

2003-06 Franz Josef Och: Statistical Machine Translation: From Single-Word

Models to Alignment Templates

2003-07 Horst Lichter, Thomas von der Maßen, Alexander Nyßen, Thomas

Weiler: Vergleich von Ansätzen zur Feature Modellierung bei der Soft-

wareproduktlinienentwicklung

2003-08 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp, Stephan Falke:

Mechanizing Dependency Pairs

2004-01 ∗ Fachgruppe Informatik: Jahresbericht 2003

2004-02 Benedikt Bollig, Martin Leucker: Message-Passing Automata are expres-

sively equivalent to EMSO logic

2004-03 Delia Kesner, Femke van Raamsdonk, Joe Wells (eds.): HOR 2004 – 2nd

International Workshop on Higher-Order Rewriting

2004-04 Slim Abdennadher, Christophe Ringeissen (eds.): RULE 04 – Fifth In-

ternational Workshop on Rule-Based Programming

2004-05 Herbert Kuchen (ed.): WFLP 04 – 13th International Workshop on Func-

tional and (Constraint) Logic Programming

2004-06 Sergio Antoy, Yoshihito Toyama (eds.): WRS 04 – 4th International

Workshop on Reduction Strategies in Rewriting and Programming

2004-07 Michael Codish, Aart Middeldorp (eds.): WST 04 – 7th International

Workshop on Termination

2004-08 Klaus Indermark, Thomas Noll: Algebraic Correctness Proofs for Com-

piling Recursive Function Definitions with Strictness Information

2004-09 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Param-

eterized Power Domination Complexity

2004-10 Zinaida Benenson, Felix C. Gärtner, Dogan Kesdogan: Secure Multi-

Party Computation with Security Modules

2005-01 ∗ Fachgruppe Informatik: Jahresbericht 2004

2005-02 Maximillian Dornseif, Felix C. Gärtner, Thorsten Holz, Martin Mink: An

Offensive Approach to Teaching Information Security: “Aachen Summer

School Applied IT Security”

2005-03 Jürgen Giesl, René Thiemann, Peter Schneider-Kamp: Proving and Dis-

proving Termination of Higher-Order Functions

2005-04 Daniel Mölle, Stefan Richter, Peter Rossmanith: A Faster Algorithm for

the Steiner Tree Problem

2005-05 Fabien Pouget, Thorsten Holz: A Pointillist Approach for Comparing

Honeypots

2005-06 Simon Fischer, Berthold Vöcking: Adaptive Routing with Stale Informa-

tion

2005-07 Felix C. Freiling, Thorsten Holz, Georg Wicherski: Botnet Tracking: Ex-

ploring a Root-Cause Methodology to Prevent Distributed Denial-of-

Service Attacks

2005-08 Joachim Kneis, Peter Rossmanith: A New Satisfiability Algorithm With

Applications To Max-Cut

2005-09 Klaus Kursawe, Felix C. Freiling: Byzantine Fault Tolerance on General

Hybrid Adversary Structures

2005-10 Benedikt Bollig: Automata and Logics for Message Sequence Charts

2005-11 Simon Fischer, Berthold Vöcking: A Counterexample to the Fully Mixed

Nash Equilibrium Conjecture

2005-12 Neeraj Mittal, Felix Freiling, S. Venkatesan, Lucia Draque Penso: Ef-

ficient Reductions for Wait-Free Termination Detection in Faulty Dis-

tributed Systems

2005-13 Carole Delporte-Gallet, Hugues Fauconnier, Felix C. Freiling: Revisiting

Failure Detection and Consensus in Omission Failure Environments

2005-14 Felix C. Freiling, Sukumar Ghosh: Code Stabilization

2005-15 Uwe Naumann: The Complexity of Derivative Computation

2005-16 Uwe Naumann: Syntax-Directed Derivative Code (Part I: Tangent-

Linear Code)

2005-17 Uwe Naumann: Syntax-directed Derivative Code (Part II: Intraprocedu-

ral Adjoint Code)

2005-18 Thomas von der Maßen, Klaus Müller, John MacGregor, Eva Geis-

berger, Jörg Dörr, Frank Houdek, Harbhajan Singh, Holger Wußmann,

Hans-Veit Bacher, Barbara Paech: Einsatz von Features im Software-

Entwicklungsprozess - Abschlußbericht des GI-Arbeitskreises “Features”

2005-19 Uwe Naumann, Andre Vehreschild: Tangent-Linear Code by Augmented

LL-Parsers

2005-20 Felix C. Freiling, Martin Mink: Bericht über den Workshop zur Ausbil-

dung im Bereich IT-Sicherheit Hochschulausbildung, berufliche Weiter-

bildung, Zertifizierung von Ausbildungsangeboten am 11. und 12. Au-

gust 2005 in Köln organisiert von RWTH Aachen in Kooperation mit

BITKOM, BSI, DLR und Gesellschaft fuer Informatik (GI) e.V.

2005-21 Thomas Noll, Stefan Rieger: Optimization of Straight-Line Code Revis-

ited

2005-22 Felix Freiling, Maurice Herlihy, Lucia Draque Penso: Optimal Random-

ized Fair Exchange with Secret Shared Coins

2005-23 Heiner Ackermann, Alantha Newman, Heiko Röglin, Berthold Vöcking:

Decision Making Based on Approximate and Smoothed Pareto Curves

2005-24 Alexander Becher, Zinaida Benenson, Maximillian Dornseif: Tampering

with Motes: Real-World Physical Attacks on Wireless Sensor Networks

2006-01 ∗ Fachgruppe Informatik: Jahresbericht 2005

2006-02 Michael Weber: Parallel Algorithms for Verification of Large Systems

2006-03 Michael Maier, Uwe Naumann: Intraprocedural Adjoint Code Generated

by the Differentiation-Enabled NAGWare Fortran Compiler

2006-04 Ebadollah Varnik, Uwe Naumann, Andrew Lyons: Toward Low Static

Memory Jacobian Accumulation

2006-05 Uwe Naumann, Jean Utke, Patrick Heimbach, Chris Hill, Derya Ozyurt,

Carl Wunsch, Mike Fagan, Nathan Tallent, Michelle Strout: Adjoint

Code by Source Transformation with OpenAD/F

2006-06 Joachim Kneis, Daniel Mölle, Stefan Richter, Peter Rossmanith: Divide-

and-Color

2006-07 Thomas Colcombet, Christof Löding: Transforming structures by set in-

terpretations

2006-08 Uwe Naumann, Yuxiao Hu: Optimal Vertex Elimination in Single-

Expression-Use Graphs

2006-09 Tingting Han, Joost-Pieter Katoen: Counterexamples in Probabilistic

Model Checking

2006-10 Mesut Günes, Alexander Zimmermann, Martin Wenig, Jan Ritzerfeld,

Ulrich Meis: From Simulations to Testbeds - Architecture of the Hybrid

MCG-Mesh Testbed

2006-11 Bastian Schlich, Michael Rohrbach, Michael Weber, Stefan Kowalewski:

Model Checking Software for Microcontrollers

2006-12 Benedikt Bollig, Joost-Pieter Katoen, Carsten Kern, Martin Leucker:

Replaying Play in and Play out: Synthesis of Design Models from Sce-

narios by Learning

2006-13 Wong Karianto, Christof Löding: Unranked Tree Automata with Sibling

Equalities and Disequalities

2006-14 Danilo Beuche, Andreas Birk, Heinrich Dreier, Andreas Fleischmann,

Heidi Galle, Gerald Heller, Dirk Janzen, Isabel John, Ramin Tavakoli

Kolagari, Thomas von der Maßen, Andreas Wolfram: Report of the GI

Work Group “Requirements Management Tools for Product Line Engi-

neering”

2006-15 Sebastian Ullrich, Jakob T. Valvoda, Torsten Kuhlen: Utilizing optical

sensors from mice for new input devices

2006-16 Rafael Ballagas, Jan Borchers: Selexels: a Conceptual Framework for

Pointing Devices with Low Expressiveness

2006-17 Eric Lee, Henning Kiel, Jan Borchers: Scrolling Through Time: Improv-

ing Interfaces for Searching and Navigating Continuous Audio Timelines

2007-01 ∗ Fachgruppe Informatik: Jahresbericht 2006

2007-02 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, and Harald Zankl: SAT Solving for Termination Anal-

ysis with Polynomial Interpretations

2007-03 Jürgen Giesl, René Thiemann, Stephan Swiderski, and Peter Schneider-

Kamp: Proving Termination by Bounded Increase

2007-04 Jan Buchholz, Eric Lee, Jonathan Klein, and Jan Borchers: coJIVE: A

System to Support Collaborative Jazz Improvisation

2007-05 Uwe Naumann: On Optimal DAG Reversal

2007-06 Joost-Pieter Katoen, Thomas Noll, and Stefan Rieger: Verifying Con-

current List-Manipulating Programs by LTL Model Checking

2007-07 Alexander Nyßen, Horst Lichter: MeDUSA - MethoD for UML2-based

Design of Embedded Software Applications

2007-08 Falk Salewski and Stefan Kowalewski: Achieving Highly Reliable Em-

bedded Software: An empirical evaluation of different approaches

2007-09 Tina Kraußer, Heiko Mantel, and Henning Sudbrock: A Probabilistic

Justification of the Combining Calculus under the Uniform Scheduler

Assumption

2007-10 Martin Neuhäußer, Joost-Pieter Katoen: Bisimulation and Logical

Preservation for Continuous-Time Markov Decision Processes

2007-11 Klaus Wehrle (editor): 6. Fachgespräch Sensornetzwerke

2007-12 Uwe Naumann: An L-Attributed Grammar for Adjoint Code

2007-13 Uwe Naumann, Michael Maier, Jan Riehme, and Bruce Christianson:

Second-Order Adjoints by Source Code Manipulation of Numerical Pro-

grams

2007-14 Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch: OpenAD/F: A Modular,

Open-Source Tool for Automatic Differentiation of Fortran Codes

2007-15 Volker Stolz: Temporal assertions for sequential and concurrent programs

2007-16 Sadeq Ali Makram, Mesut Güneç, Martin Wenig, Alexander Zimmer-

mann: Adaptive Channel Assignment to Support QoS and Load Balanc-

ing for Wireless Mesh Networks

2007-17 René Thiemann: The DP Framework for Proving Termination of Term

Rewriting

2007-18 Uwe Naumann: Call Tree Reversal is NP-Complete

2007-19 Jan Riehme, Andrea Walther, Jörg Stiller, Uwe Naumann: Adjoints for

Time-Dependent Optimal Control

2007-20 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, and Verena Wolf:

Three-Valued Abstraction for Probabilistic Systems

2007-21 Tingting Han, Joost-Pieter Katoen, and Alexandru Mereacre: Compo-

sitional Modeling and Minimization of Time-Inhomogeneous Markov

Chains

2007-22 Heiner Ackermann, Paul W. Goldberg, Vahab S. Mirrokni, Heiko Röglin,

and Berthold Vöcking: Uncoordinated Two-Sided Markets

2008-01 ∗ Fachgruppe Informatik: Jahresbericht 2007/2008

2008-02 Henrik Bohnenkamp, Marielle Stoelinga: Quantitative Testing

2008-03 Carsten Fuhs, Jürgen Giesl, Aart Middeldorp, Peter Schneider-Kamp,

René Thiemann, Harald Zankl: Maximal Termination

2008-04 Uwe Naumann, Jan Riehme: Sensitivity Analysis in Sisyphe with the

AD-Enabled NAGWare Fortran Compiler

2008-05 Frank G. Radmacher: An Automata Theoretic Approach to the Theory

of Rational Tree Relations

2008-06 Uwe Naumann, Laurent Hascoet, Chris Hill, Paul Hovland, Jan Riehme,

Jean Utke: A Framework for Proving Correctness of Adjoint Message

Passing Programs

2008-07 Alexander Nyßen, Horst Lichter: The MeDUSA Reference Manual, Sec-

ond Edition

2008-08 George B. Mertzios, Stavros D. Nikolopoulos: The λ-cluster Problem on

Parameterized Interval Graphs

2008-09 George B. Mertzios, Walter Unger: An optimal algorithm for the k-fixed-

endpoint path cover on proper interval graphs

2008-10 George B. Mertzios, Walter Unger: Preemptive Scheduling of Equal-

Length Jobs in Polynomial Time

2008-11 George B. Mertzios: Fast Convergence of Routing Games with Splittable

Flows

2008-12 Joost-Pieter Katoen, Daniel Klink, Martin Leucker, Verena Wolf: Ab-

straction for stochastic systems by Erlang’s method of stages

2008-13 Beatriz Alarcón, Fabian Emmes, Carsten Fuhs, Jürgen Giesl, Raúl

Gutiérrez, Salvador Lucas, Peter Schneider-Kamp, René Thiemann: Im-

proving Context-Sensitive Dependency Pairs

2008-14 Bastian Schlich: Model Checking of Software for Microcontrollers

2008-15 Joachim Kneis, Alexander Langer, Peter Rossmanith: A New Algorithm

for Finding Trees with Many Leaves

2008-16 Hendrik vom Lehn, Elias Weingärtner and Klaus Wehrle: Comparing

recent network simulators: A performance evaluation study

2008-17 Peter Schneider-Kamp: Static Termination Analysis for Prolog using

Term Rewriting and SAT Solving

2008-18 Falk Salewski: Empirical Evaluations of Safety-Critical Embedded Sys-

tems

2008-19 Dirk Wilking: Empirical Studies for the Application of Agile Methods to

Embedded Systems

2009-01 ∗ Fachgruppe Informatik: Jahresbericht 2009

2009-02 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Quantitative Model Checking of Continuous-Time Markov Chains

Against Timed Automata Specifications

2009-03 Alexander Nyßen: Model-Based Construction of Embedded

Real-Time Software - A Methodology for Small Devices

2009-05 George B. Mertzios, Ignasi Sau, Shmuel Zaks: A New Intersection Model

and Improved Algorithms for Tolerance Graphs

2009-06 George B. Mertzios, Ignasi Sau, Shmuel Zaks: The Recognition of Tol-

erance and Bounded Tolerance Graphs is NP-complete

2009-07 Joachim Kneis, Alexander Langer, Peter Rossmanith: Derandomizing

Non-uniform Color-Coding I

2009-08 Joachim Kneis, Alexander Langer: Satellites and Mirrors for Solving In-

dependent Set on Sparse Graphs

2009-09 Michael Nett: Implementation of an Automated Proof for an Algorithm

Solving the Maximum Independent Set Problem

2009-10 Felix Reidl, Fernando Sánchez Villaamil: Automatic Verification of the

Correctness of the Upper Bound of a Maximum Independent Set Algo-

rithm

2009-11 Kyriaki Ioannidou, George B. Mertzios, Stavros D. Nikolopoulos: The

Longest Path Problem is Polynomial on Interval Graphs

2009-12 Martin Neuhäußer, Lijun Zhang: Time-Bounded Reachability in

Continuous-Time Markov Decision Processes

2009-13 Martin Zimmermann: Time-optimal Winning Strategies for Poset Games

2009-14 Ralf Huuck, Gerwin Klein, Bastian Schlich (eds.): Doctoral Symposium

on Systems Software Verification (DS SSV’09)

2009-15 Joost-Pieter Katoen, Daniel Klink, Martin Neuhäußer: Compositional

Abstraction for Stochastic Systems

2009-16 George B. Mertzios, Derek G. Corneil: Vertex Splitting and the Recog-

nition of Trapezoid Graphs

2009-17 Carsten Kern: Learning Communicating and Nondeterministic Au-

tomata

2009-18 Paul Hänsch, Michaela Slaats, Wolfgang Thomas: Parametrized Regular

Infinite Games and Higher-Order Pushdown Strategies

2010-01 ∗ Fachgruppe Informatik: Jahresbericht 2010

2010-02 Daniel Neider, Christof Löding: Learning Visibly One-Counter Au-

tomata in Polynomial Time

2010-03 Holger Krahn: MontiCore: Agile Entwicklung von domänenspezifischen

Sprachen im Software-Engineering

2010-04 René Wörzberger: Management dynamischer Geschäftsprozesse auf Ba-

sis statischer Prozessmanagementsysteme

2010-05 Daniel Retkowitz: Softwareunterstützung für adaptive eHome-Systeme

2010-06 Taolue Chen, Tingting Han, Joost-Pieter Katoen, Alexandru Mereacre:

Computing maximum reachability probabilities in Markovian timed au-

tomata

2010-07 George B. Mertzios: A New Intersection Model for Multitolerance

Graphs, Hierarchy, and Efficient Algorithms

2010-08 Carsten Otto, Marc Brockschmidt, Christian von Essen, Jürgen Giesl:

Automated Termination Analysis of Java Bytecode by Term Rewriting

2010-09 George B. Mertzios, Shmuel Zaks: The Structure of the Intersection of

Tolerance and Cocomparability Graphs

2010-10 Peter Schneider-Kamp, Jürgen Giesl, Thomas Ströder, Alexander Sere-

brenik, René Thiemann: Automated Termination Analysis for Logic Pro-

grams with Cut

2010-11 Martin Zimmermann: Parametric LTL Games

2010-12 Thomas Ströder, Peter Schneider-Kamp, Jürgen Giesl: Dependency

Triples for Improving Termination Analysis of Logic Programs with Cut

2010-13 Ashraf Armoush: Design Patterns for Safety-Critical Embedded Systems

2010-14 Michael Codish, Carsten Fuhs, Jürgen Giesl, Peter Schneider-Kamp:

Lazy Abstraction for Size-Change Termination

2010-15 Marc Brockschmidt, Carsten Otto, Christian von Essen, Jürgen Giesl:

Termination Graphs for Java Bytecode

2010-16 Christian Berger: Automating Acceptance Tests for Sensor- and

Actuator-based Systems on the Example of Autonomous Vehicles

2010-17 Hans Grönniger: Systemmodell-basierte Definition objektbasierter Mod-

ellierungssprachen mit semantischen Variationspunkten

2010-18 Ibrahim Armaç: Personalisierte eHomes: Mobilität, Privatsphäre und

Sicherheit

2010-19 Felix Reidl: Experimental Evaluation of an Independent Set Algorithm

2010-20 Wladimir Fridman, Christof Löding, Martin Zimmermann: Degrees of

Lookahead in Context-free Infinite Games

2011-01 ∗ Fachgruppe Informatik: Jahresbericht 2011

2011-02 Marc Brockschmidt, Carsten Otto, Jürgen Giesl: Modular Termination

Proofs of Recursive Java Bytecode Programs by Term Rewriting

2011-03 Lars Noschinski, Fabian Emmes, Jürgen Giesl: A Dependency Pair

Framework for Innermost Complexity Analysis of Term Rewrite Systems

2011-04 Christina Jansen, Jonathan Heinen, Joost-Pieter Katoen, Thomas Noll:

A Local Greibach Normal Form for Hyperedge Replacement Grammars

2011-07 Shahar Maoz, Jan Oliver Ringert, Bernhard Rumpe: An Operational

Semantics for Activity Diagrams using SMV

2011-08 Thomas Ströder, Fabian Emmes, Peter Schneider-Kamp, Jürgen Giesl,

Carsten Fuhs: A Linear Operational Semantics for Termination and

Complexity Analysis of ISO Prolog

2011-09 Markus Beckers, Johannes Lotz, Viktor Mosenkis, Uwe Naumann (Edi-

tors): Fifth SIAM Workshop on Combinatorial Scientific Computing

2011-10 Markus Beckers, Viktor Mosenkis, Michael Maier, Uwe Naumann: Ad-

joint Subgradient Calculation for McCormick Relaxations

2011-11 Nils Jansen, Erika Ábrahám, Jens Katelaan, Ralf Wimmer, Joost-Pieter

Katoen, Bernd Becker: Hierarchical Counterexamples for Discrete-Time

Markov Chains

2011-12 Ingo Felscher, Wolfgang Thomas: On Compositional Failure Detection

in Structured Transition Systems

2011-13 Michael Förster, Uwe Naumann, Jean Utke: Toward Adjoint OpenMP

2011-14 Daniel Neider, Roman Rabinovich, Martin Zimmermann: Solving Muller

Games via Safety Games

2011-16 Niloofar Safiran, Uwe Naumann: Toward Adjoint OpenFOAM

2011-18 Kamal Barakat: Introducing Timers to pi-Calculus

2011-19 Marc Brockschmidt, Thomas Ströder, Carsten Otto, Jürgen Giesl: Au-

tomated Detection of Non-Termination and NullPointerExceptions for

Java Bytecode

2011-24 Callum Corbett, Uwe Naumann, Alexander Mitsos: Demonstration of a

Branch-and-Bound Algorithm for Global Optimization using McCormick

Relaxations

2011-25 Callum Corbett, Michael Maier, Markus Beckers, Uwe Naumann, Amin

Ghobeity, Alexander Mitsos: Compiler-Generated Subgradient Code for

McCormick Relaxations

2011-26 Hongfei Fu: The Complexity of Deciding a Behavioural Pseudometric on

Probabilistic Automata

2012-01 ∗ Fachgruppe Informatik: Annual Report 2012

2012-02 Thomas Heer: Controlling Development Processes

∗ These reports are only available as a printed version.

Please contact biblio@informatik.rwth-aachen.de to obtain copies.

	Table of Contents
	Introduction
	MontiArc ADL
	MontiArc Syntax at a Glance
	Communication of MontiArc Components

	MontiArc Language
	Architecture Diagram – Basic Elements
	MontiArc Elements
	Architecture Diagram Grammar Walk-Through
	MontiArc Grammar Walk-Through

	MontiArc Context Conditions
	Basic Conditions
	Connections
	Referential Integrity
	Conventions

	Semantics
	A Semantic Domain for MontiArc
	A Semantic Mapping for MontiArc
	Semantic Mapping Applications

	Simplified Grammars for Humand Reading
	Readable Architectural Diagrams Grammar
	Readable MontiArc Grammar

	Complete Grammars for Parsing
	Architectural Diagrams Grammar
	MontiArc Grammar

	List of Figures
	Listings
	Bibliography

