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Abstract—The field of deep learning has become more and
more pervasive in the last years as we have seen varieties of
problems being solved using neural processing techniques. Image
analysis and detection, control, speech recognition, translation are
only a few prominent examples tackled successfully by neural
networks. Thereby, the discipline imposes a completely new
problem solving paradigm requiring a rethinking of classical
software development methods. The high demand for deep
learning technology has led to a large amount of competing
frameworks mostly having a Python interface - a quasi standard
in the community. Although, existing tools often provide great
flexibility and high performance, they still lack to deliver a com-
pletely domain oriented problem view. Furthermore, using neural
networks as reusable building blocks with clear interfaces in
productive systems is still a challenge. In this work we propose a
domain specific modeling methodology tackling design, training,
and integration of deep neural networks. Thereby, we distinguish
between three main modeling concerns: architecture, training,
and data. We integrate our methodology in a component-based
modeling toolchain allowing one to employ and reuse neural
networks in large software architectures.

Index Terms—deep learning, neural networks, model-driven
software engineering

I. INTRODUCTION

Machine learning is becoming a more and more ubiquitous

technology in complex systems. In particular, high-tech disci-

plines such as autonomous driving, speech recognition, and the

like are powered by deep neural networks [1], [2]. The high

demand for deep learning technology has led to a multitude

of competing deep learning frameworks ranging from low-

level tensor-processing libraries ideal for experimentation and

research to high-level Application Programming Interfaces

(APIs) targeting application oriented developers.

When talking about a deep learning framework, we distin-

guish between its backend delivering the actual functionality

and its front-end providing access to this functionality for

the framework user. On the one hand, today’s deep learning

frameworks compete on the backend offering more features,

faster training, hardware parallelization support, etc. On the

other hand, the importance of the front-end visible to the users

may not be neglected. Practitioners, particularly in research

and rapid prototyping, tend to prefer easy-to-use languages

which lead to faster results. This is why languages such as

Python dominate the field of machine learning over C++,

although the latter is mostly superior in terms of performance

and energy consumption. Instead of dealing with low-level

constructs, a robotics expert wants a language representing

his or her domain as naturally as possible. Efforts have been
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made to facilitate access to deep learning technology, e.g.

by representing layered architectures as YAML or prototxt

descriptions or by providing high-level Python interfaces such

as Keras and Lasagne.

Solving problems using neural networks is fundamentally

different from classical software development and we believe

that neural processing systems are best approached using

appropriate Domain Specific Modeling Languages (DSMLs).

The first contribution of this paper comprises a platform-

independent declarative artificial neural network modeling
framework with an emphasis on modular and re-usable de-

sign. The second contribution is the seamless integration of the

proposed framework into the Component & Connector (C&C)

language family EmbeddedMontiArc resulting in a holistic
model-driven systems and software development tool for
the design of modular automotive, robotics, and cyber-
physical systems incorporating state-of-the art deep neural
networks as standard black-box components.

The proposed deep learning framework and further materials

including functional examples such as a direct perception-

based autonomous driving application [3] and a cifar-10

[4] classification example generated to executable MXNet

or Caffe2-based C++ code are provided at the paper-

accompanying website†.

II. RUNNING EXAMPLE

To give the reader an idea of the problems we would like

to address in this paper, we are going to introduce a simple

but easy-to-follow example.

Consider the C&C model in Fig. 1. The so called MNIST-
Calculator receives six images as its input, each representing

a hand-written digit (MNIST is a handwritten digit dataset

well-established in the machine leaning community and often

used for benchmarking learning algorithms [5]). The purpose

of our MNISTCalculator is to detect the correct digit in each

image, to compose the first and the last three digits into two

three-digit numbers and to output their sum.

Despite the simplicity of the task, the model reveals a series

of problems we need to deal with when incorporating machine

learning techniques, particularly, deep neural networks, into

production software.

First, we need to be able to use neural networks as modules

in well-established design methodologies and to seamlessly

integrate them with classical software components. In this

example we have embedded the MNISTDetector compo-

nent, depicted in violet, into a C&C architecture where other

†http://se-rwth.de/materials/deeplearning
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Fig. 1: C&C architecture of the MNIST Calculator example.

Neural components (MNISTDetector) are highlighted in light

violet.

components, depicted in white, are implemented as ”standard

code”. This has two implications: we need to be able to

package neural networks as self-contained components and,

furthermore, neural networks need to offer interfaces compat-

ible with classical component and port types, e.g. modeled

using a C&C language such as Simulink [6], LabView [7], or

EmbeddedMontiArc [8]. This means that we need to couple

a C&C modeling language with a deep learning modeling

framework.

Second, training neural networks is an expensive operation

and should be performed only when really needed. A customer

should not need to bother training an acquired software such

as our MNISTCalculator. Instead, we as the software

supplier want to deliver a well-trained out-of-the-box software

package and, moreover, be able to hide the training process of

the MNISTDetector network as our intellectual property.

Consequently, the training process must be a compile-time

issue at latest. This must be supported by a self-contained

methodology supporting neural networks.

Third, as we can see in our example, neural networks can

be employed at multiple positions of a software architecture.

Thereby, the different neural network instances can have the

same task (as it is the case in our example with each network

detecting the digit represented by an image) or be responsible

for completely different problems, e.g. one network dealing

with image recognition and another for control in an au-

tonomously driving vehicle. While the latter case is easy to

handle, the former requires methodological support: in our

example, all six MNISTDetector instances have the same

functionality operating on different data. In many classical

languages functionality reuse can be achieved at code level

using instantiation. However, being a compile-time task as

discussed above, network training must be orchestrated by an

intelligent compiler toolchain. Such a toolchain must detect all

occurrences of the MNISTDetector in our architecture and

manage the training process and weight sharing automatically

(the network should be trained only once). Moreover, if

the neural network used in MNISTDetector is stateless, the

compiler should create one flyweight instance of the network

to represent all six MNISTDetector instances [9] in order

to save loading six equal sets of parameters (it is not unusual

for deep networks to have millions of such parameters).

III. REQUIREMENTS

Based on experience and pains we endured in a series of

projects involving deep learning techniques, we have elicited a

set of requirements for a model-driven development methodol-

ogy of artificial intelligence (AI) systems in the embedded and

Cyber-Physical System (CPS) domains. These requirements

will help us assess the existing frameworks in section IV and

are the basis for our solution presented in Sections V, VI

and VII. We distinguish between requirements for the deep

learning language(s) and the integration methodology, denoted

as RL and RM, respectively.

(RL1) Appropriate domain representation: we expect

from a deep learning language or framework that it has an

intuitive representation of the domain concepts and is aware

of their semantics. Central concepts of the majority of today’s

network architectures are neuron layers and layer connections.

Such concepts should be offered by a deep learning languages

as first-level citizens and the developer should not be obliged
to construct them from lower level concepts.

(RL2) Domain specific pragmatics: Information on the

network structure should not be required to be made explicit

in unambiguous contexts. The framework should rather be

able to infer all missing information. Particularly, we expect

syntactic sugar facilitating layer stacking and layer indepen-
dence. Thereby, layer stacking denotes a repetition of the

same layer which is a current pattern in neural processing.

By layer independence we mean that a layer should be

instantiated independently of all other layers. For instance,

in many cases the number of neurons in a layer depends on

the output of the preceding layer. Although, this information

can be inferred automatically, many frameworks require it as

explicit parameters. Making the layer size explicit, however,

is a problem, as it needs to be updated manually whenever a

change occurs in one of the preceding layers.

(RL3) Reusability and modularity: Structural patterns can

be easily found in all kinds of neural networks and therefore

require an adequate modularity concept. In particular, we

expect means of layer composition enabling the developer

to group several layers to a new custom layer; network
parameterization for the adaptation of single layers but also

of whole networks to a specific problem without having to

change their internal structure.

(RL4) Separation of concerns: Deep network engineering

consists of three major concerns, namely the architecture
definition, where the structure of the network is defined;

network training, where the neuron weights are optimized

based on a given training set and which can include validation

and model-selection; the intended network execution in the

final system. A deep learning framework must separate these
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concerns clearly, e.g. the structural model must not contain

any information on the training as the right combination is

highly-dependent on the application.

(RM1) Neural component integrity: to be able to integrate

neural networks in complex robotics software, a neural net-

work needs to exhibit a standardized interface, possibly acces-

sible through a middleware such as Robot Operating System

(ROS) [10]. The interface should enable easy integration with

other components as well as integrity checks, e.g. making sure

that the neural network is compatible with the image format

provided by an upstream camera.

(RM2) AI awareness: the engineering methodology must

be aware of the neural network components present in the

system under development. It should know where to find

training data and when to train or re-train individual networks.

Unnecessary training needs to be avoided as far as possible.

(RM3) Platform independence: An AI framework should

be compatible with a variety of platforms to increase reusabil-

ity of neural networks and to broaden the spectrum of available

features. Since the domain is highly active, new algorithms and

features are added to the toolset of an AI engineer on a daily

basis. However, mostly new features are first implemented in

a small number of frameworks. The ability to exchange the

AI backend without considerable effort is therefore crucial.

IV. RELATED WORK

The steadily rising interest in neural signal processing has

led to a multitude of competing deep learning languages and

frameworks. In this section we want to discuss a selection of

available approaches to highlight the main differences as well

as their advantages and drawbacks. Table I summarizes the

most important facts. Note that as we are mainly interested in

the frameworks’ frontends, we refer to relevant literature for

performance benchmarks [11].

a) Theano: Theano [12] has a Python API but all com-

putationally expensive functions are implemented in C++ and

CUDA. Despite being mainly developed and used for deep

learning, it is rather a powerful general purpose framework

for the manipulation of symbolic mathematical expressions.

Theano represents math expressions as static computation

graphs and can compute gradients of mathematical expressions

through symbolic differentiation. A computation graph in

Theano is a bipartite directed acyclic graph (DAG). The nodes

of the DAG are either ”variable” or ”apply” nodes representing

data and mathematical operations, respectively. Variable nodes

have a static type (float32, int64, etc.) and usually appear

as tensors. Variable nodes can be graph inputs, graph outputs

and intermediate values. During the execution of a graph,

intermediate and output values are computed from provided

input values. The mathematical expressions in Theano can be

written in a syntax similar to the Python library numpy [13]. A

consequence of not being tailored to the deep learning domain

is that Theano lacks explicit domain concepts violating (RL1)
and (RL2). Neural networks have to be constructed from low

level operations which can be cumbersome and error-prone.

Debugging static computation graphs is difficult as Python

error messages are related to the instruction executing the

graph but are unaware of the construction code actually leading

to the problem. The lack of a C/C++ front-end as well as the

absence of deployment libraries make Theano rather unsuitable

for production systems.

b) Torch and PyTorch: Torch is a versatile numerical

computing framework and machine learning library with a

Lua front-end [14], [15]. It runs on the LuaJIT compiler

but has a C implementation under the hood. The framework

uses dynamic computation graphs offering several advantages

over their static counterparts used in Theano. Torch builds

and rebuilds these graphs while they are executed. Layers

of a network can be executed line by line eliminating the

discrepancy between construction and execution which we

observed in Theano. Dynamic graphs enable standard impera-

tive statements and control structures during the construction

and execution of the network. The network architecture can

be changed at runtime. The main disadvantage of dynamic

computation graphs, however, is that they cannot be optimized

in the same way as static graphs. Torch has a neural network

library (nn) able to build neural networks as arbitrary acyclic

computation graphs supporting automatic differentiation. A

network has a forward function computing the output for a

given input and a backward function calculating the gradient

for each parameter. A network can either be built sequentially

by adding one layer after another, or in a functional way by

setting the input of each layer explicitly. PyTorch is a Python

interface to Torch making it available for Python users.

c) TensorFlow: TensorFlow [16] follows the same gen-

eral approach as Theano using static computation graphs

allowing for symbolic differentiation of arbitrary math ex-

pressions. Therefore, it exhibits the same disadvantages as

Theano: bad error messages and a complex API. To overcome

these problems, TensorFlow is often used in conjunction with

the higher level library Keras [17] featuring a more domain

oriented, well-readable representation of layered networks.

Extensions such as the eager execution environment enable the

execution of operations in an imperative define-by-run style

similar to Torch.

d) Caffe & Caffe2: Caffe was developed by the Berkeley

Vision and Learning Center (BVLC) as a C++ framework

[18]. It focuses on the efficient implementation of Convo-

lutional Neural Networks (CNNs) and an easy out-of-the-

shelf deployment of pretrained models. Caffe was one of

the most popular deep learning frameworks especially in the

industry due to the fact that it was the first framework which

offered an easy way to share network architectures and trained

state-of-the-art networks. Caffe provides interfaces for C++,

Python, Matlab, as well as command line tools for training and

prediction. The network is defined as a prototxt file. Thereby,

four different model types are used, leveraging the separation

of concerns principle, cf. (RL4): a network description for

training, the network architecture for deployment, the hyper-

parameter configuration, as well as the stored dataset mean

which is computed automatically by Caffe for the sake of

dataset normalization. The training data can be stored in a
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high-performance database such as LevelDB [19], LMDB, or

HDF5 [20]. Caffe uses two descriptions for the same network

because the model for training contains additional information

like the name of the dataset, the initialization parameters

of each layer and the used loss function. Caffe focuses on

the domain as required by (RL1), but in contrast to Theano

and Torch it does not provide low-level math operations for

network construction. Thus, it is not possible to create new loss

functions or new layers without extending Caffe itself. One of

the main drawbacks is the verbosity of the prototxt data format

lacking to fulfill (RL2) and (RL3), making the construction

of large networks such as the ResNet [21] cumbersome and

difficult to read.

The successor, Caffe2, has abandoned the prototxt format

and relies on a Python interface. Furthermore, it refrains

from the layer-based modeling of Caffe and introduces the

concept of operators. The latter can represent complete layers

or low-level math operations making Caffe2 more of a general

purpose framework similar to Theano and Torch.

e) MXNet / Gluon: Similar to Theano and TensorFlow,

MXNet [22] supports static computation graphs and automatic

differentiation on symbolic functions. Additionally, the auto-
grad package enables automatic differentiation on NDArray
operation graphs using the define-by-run principle. MXNet

is available on all major operating systems and offers APIs

for multiple languages. It is possible to define custom loss

functions with symbolic expressions in MXNet, but widely

used ones are predefined and combined with the prediction

output in special optimized output layers. Thus, the model

looks the same for training and prediction. MXNet stores the

constructed and the trained network in two separate files: the

first one is a JSON description of the network architecture,

while the second one contains the weights of the model in

a binary format. For deployment MXNet offers a C++ based

prediction API providing functions to load an already trained

model and to apply it to a given input. MXNet offers the ability

to amalgamate the complete prediction library into a single

file including the necessary dependencies, which facilitates

the deployment in mobile and embedded systems. MXNet

comes up with two interfaces, the rather low-level Symbol

API and the newer Gluon frontend. The Symbol API can

only be used to build static computation graphs leading to the

same disadvantages as Theano and TensorFlow: obscure error

messages and a complex API. The newer Gluon API can be

used for both dynamic and static computation graphs without

having to write the same code twice. A user can debug the

network with its dynamic computation graph and hybridize it

into a static computation graph to speed up the execution and

export it later.

f) Keras: Keras [17] is a high level Python library

focusing more on deep learning concepts than the frameworks

listed above at the cost of flexibility. It does not provide an

own backend but can use Theano, TensorFlow, CNTK [23], or

MXNet instead, thereby fulfilling (RM3). Due to its domain

orientation and simplicity, Keras is one of the most popular

deep learning frameworks today. A network can be constructed

either as a sequential model by listing all layers of the network

or in a functional way, where the output of a model can

be passed as an argument to other layers. Keras saves the

architecture of a network either in a JSON or YAML file.

Weights are stored in an HDF5 database.

g) Matlab Neural Network Toolbox: Mathworks Matlab

is a matrix-based language focusing on engineering domains

[6] and providing deep learning functionality through its Neu-

ral Network Toolbox [24]. In Matlab a network is constructed

by listing layers sequentially in a vector. This list is then

transformed into a graph using the layergraph function.

The Neural Network Toolbox constructs a neural network as a

static directed acyclic graph of layers. To create non-sequential

architectures, additional layers can be added to the graph

with the addLayers function. Initially, added layers are not

connected to any node of the graph. New edges in the DAG

have to be explicitly created by calling the connectLayers
function, which expects the graph itself as well as the source

and target layers as its arguments. A complete network can

then be trained with the trainNetwork function by pro-

viding the data and training options.

The toolbox supports all kinds of feed-forward and cer-

tain types of recurrent or dynamic neural networks. It also

offers pretrained state-of-the-art networks for easy reuse. For

training, it is possible to use the GPU-coder of Matlab to

run the computationally expensive process on one or multiple

GPUs. However, the Neural Network Toolbox does not offer

symbolic differentiation. To define a custom layer or loss

function, it is necessary to implement both the forward and

the backward functions for the gradient. Neural networks

can be encapsulated into Simulink [6] components making

them suitable for component-based system design according to

(RM1). However, the neural network code can be mixed with

other unrelated code leading to dirty components. Hence, there

is no AI awareness as required by (RM2), i.e. the Simulink

architecture does not know how and when to train its networks

automatically. This needs to be declared by the developer

explicitly.

Although, the presented frameworks cover our requirements

at least partially, the realizations tend to be too complex and

require a lot of boilerplate code. Lacking separation of con-
cerns leads to network descriptions being mixed with training

parameters and file system access code for loading weights.

Layer stacking and composition can mostly be realized using

the host language, e.g. Python. The developer needs to take

care of the neural networks present in a large system and to

decide when to train and to retrain them. The most domain

specific deep learning frontend is provided by Caffe. However,

it suffers from a lack of modularity and reusability concepts

leading to massive amounts of code needed to define practical

network architectures.

For an objective comparison, we gathered implementations

of the well-known ResNet152 CNN for image classification

at our additional materials website†. The ResNet152 is a

representative of the family of residual networks tackling the

issue of vanishing gradients during training of very deep
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TABLE I: Comparison of established deep learning frameworks and languages,
√

: yes, P: partially, -: no, *: depending on
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√

-

Torch - -
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-
√
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√ √

-
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-
√

Python -
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-
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√
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architectures by introducing residual blocks [21]. Most frame-

works require several hundreds of lines of code to model

ResNet152. In the following chapter we introduce a deep

learning language family enabling us to express the very same

network architecture in no more than 33 lines of code.

V. MONTIANNA

In this paper we introduce a holistic deep learning modeling

framework called MontiAnna. An overview of the MontiAnna

framework is given in Fig. 2.

A. Modeling Languages

First, we identify three concerns which can and should be

modeled independently to ensure a high degree of re-usability

and maintainability keeping the models clean and concise.

a) Network architecture: The first thing coming to mind

when designing a neural network is its actual architecture

consisting of neurons, mostly organized as layers, and connec-

tions between the neurons defining the data flows. Moreover,

we need to be able to assign specific tasks to some neuron

layers, e.g. making them use a particular activation function or

share weights according to some appropriate neural patterns,

as is often done in image recognition. We will cover modeling

network architectures in section VI in detail.

b) Network training: Having even the best network ar-

chitecture for a specific task is meaningless if it is not trained

appropriately. Network training is a composition of optimiza-

tion algorithms which needs to be modeled and parameterized

itself. Defining the training separated from the network ar-

chitecture keeps the models concise and exchangeable. The

developer can adapt the training procedure without touching

the architecture or combine existing architectures and training

models without changing the models at all.

c) Dataset model: Finally, to train a network the com-

piler requires information about where to find the training

data and how to load it. There are various ways to store and

read training datasets, some prominent technologies being high

performance databases such as HDF5, LevelDB, and LMDB

[25], [26]. Furthermore, the dataset needs to be subdivided

into training and test data; we might want to use only parts of

the data or even skip training if the dataset has already been

learned. Loading a dataset or switching from one database

type to another requires specific boilerplate code to be written

by a deep learning engineer in languages like Python. In our

generative framework, we concentrate information regarding

the datasets in a declarative dataset model. This model is not

to be confused with a data model capturing types and their

relations, e.g. as a UML class diagram.

B. Model composition

Although the three modeling sub-domains are orthogonal,

only together they represent a neural processing system.

Therefore, we need to merge them into a single composed

model before we can generate the actual application code. The

resulting composed model serves as a basis for consistency

checks, but also complex context conditions. For instance,

we need to check whether the data contained in the specified

dataset fits the given network architecture.

The training model must fit the architecture as well: consider

the loss function we want to use during training in order to

evaluate how well our network performs. Being a training

aspect, the loss function is defined in the training model.

However, certain loss functions are designed for specific kinds

of network output. For instance, cross-entropy, an information

theoretic loss function, is designed to measure the distance

between two probability distribution. It is therefore mainly

used in classification networks where each of the possible
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classes is assigned a certain probability. This means that the

network output must be a valid probability vector summing to

one. This is usually ensured by applying a specific scaling

function, e.g. the softmax function to the network output,

by adding a softmax layer as the last layer of the network

architecture. Hence, we have an inter-model check verifying

that the training algorithm used makes sense when paired with

the underlying architecture.

The composed model is a data structure which is assembled

from the abstract syntax trees (ASTs) and symbol tables of the

respective (parsed) partial models providing an infrastructure

to navigate from the elements of one model to those of

the others, e.g. from the AST node representing the training

algorithm to the symbol representing the output layer of the

architecture. This is realized using the language aggregation

mechanism of the MontiCore language workbench [27]. Once

the composed model is assembled and validated, it is passed

to the actual code generator.

C. Generated Artifacts

The intention of this work is a better modeling language

support for deep learning engineers. Instead of coming up with

an own backend, we decided to take the generative approach

transforming our (composed) models to the well-established

frameworks discussed in section IV. The compiler layer has

a clear and abstract API making the concrete compiler easily

exchangeable. This enables us to steadily extend our backend

support (currently we have implementations targeting the

MXNet Symbol API, Gluon, TensorFlow and Caffe2). The

task of the code generator comprises further checks of the

composed model, ensuring that the chosen backend supports

all required functionality. This is particularly convenient if

backends are maintained with different effort or if a backend

supports exclusive functionality which cannot be provided in

other backends. For instance, Google has recently released

an implementation of MorphNet, a regularization technique

which can be used to shrink neural networks to fulfill resource

constraints, based on the TensorFlow framework [28], [29].

To add MorphNet support to our framework, we first need to

make it available in the syntax, i.e. at modeling level. Second,

we need to adapt the code generators to map models using

MorphNet to executable code. This functionality however can

only be provided by a TensorFlow backend, i.e. through a

TensorFlow generator. This means in turn that the modeling

languages are completely decoupled from the compiler in

terms of features.

Once, it is ensured that the composed model can be mapped

to the solution space of the chosen backend, model instan-

tiation and training artifacts are generated. As we aim at a

fully model-driven solution, our goal is to avoid any hand-

written general purpose language (GPL) code. Therefore, the

compiler generates three main types of artifacts, which we are

going to discuss in the following paragraphs. Additionally, the

generator produces CMake build files to facilitate integration

and assembly of the generated software.

a) Network Creator: The so called NetworkCreator
is an intermediate product, which contains the program creat-

ing the network of the modeled neural architecture using the

chosen backend framework, e.g. MXNet.

b) Network Trainer: Once the modeled network is cre-

ated by the NetworkCreator, it is trained by another

generated program: the NetworkTrainer. The variability

of this artifact is mainly governed by the training and the

dataset model introduced above. It receives the network object

created by the NetworkCreator and performs the training.

The result is a serialized representation of the trained network,

which can be loaded in an application to be used for its actual

purpose, e.g. prediction.

However, network training is not always necessary. After

each training, the framework stores a meta-data file including

the creation date and the hash value of the database used in

the repository of the respective model. Whenever generation

of the model is requested, the generator checks if a trained

network artifact is available. If yes, it checks whether the

database used has changed by comparing its actual meta-data

with the stored meta-data file. If this is not the case and the

model artifacts have not changed either, the generation of the

NetworkCreator and NetworkTrainer are skipped and

the network API reuses the old serialized network. This is

a basis for regarding neural network artifacts as versionable

archives, which can be deployed and reused as dependencies

in build management systems such as Maven.

c) Network API: Eventually, we would like to integrate

the obtained neural network into a software architecture as a

module or a library, not worrying about its internal structure

or about how it was trained. The network API artifacts are

generated C++ code consisting of an execution interface as

well as an implementation to load and run the trained network.

Interestingly, although our generator toolchain is supposed

to produce compiled native code, it is still easier to create

and train the networks in Python. Python APIs are often

much better documented and in some cases provide more

functionality than their C++ counterparts. Hence, for our sup-

ported backends, network creation and training are performed

in Python while the network API is a C++ artifact, which

is embedded directly into the target architecture such as the

MNISTCalculator.

VI. NEURAL ARCHITECTURE MODELING

A. Convolutional neural networks

We introduce the main concepts of our neural architecture

modeling language using CNNs, a class of neural networks

widely-used for a variety of image processing problems [30].

CNNs are relatively easy to understand, as they mostly have

a simple feed-forward, layer-based structure.

Consider our hands-on example modeling the ResNet152

[21] in Fig. 3. The header of the network is defined in

L.1 using the architecture keyword followed by the

network’s name and a list of parameters, each including a

default value. The network can be adapted easily to alternative

color spaces or input sizes by changing these parameters.
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Fig. 2: Layers of the MontiAnna framework representing the

modeling languages, compiler toolchain, and the resulting

artifacts.

L.2 and L.3 define a strictly typed interface, i.e. the input

and the output of the network, respectively, facilitating its

integration into a software architecture later on. We employ the

abstract, math oriented type system presented in [31] featuring

the primitive types Z, Q, C, B to represent integers, rational,

complex, and Boolean values, respectively. The AI engineer

does not need to care about the actual implementation of

the data types which, by the way, may differ depending on

the deep learning backend, the system architecture, or the

operating system. The language automatically chooses an ap-

propriate mapping for the developer and deals with numerical

inaccuracies. To further restrict the type, the developer can

define a range as well as the dimensionality. Our image
input is declared as a third order tensor with the dimensions

channels, height, and width inspired by LaTeX syntax.

Furthermore, each entry of the tensor is restricted to the values

between 0 and 255 as is typical for color values.

The network architecture is constructed in L.4-18 from

neuron layers, which, according to (RL1), are the main

building blocks or the so called first-level citizens in our

language. MontiAnna differentiates between two kinds of layer

types: predefined and custom layer types. Predefined layer

types are atomic elements provided by the language. In our

example you can find the predefined layer types Pooling,

Convolution, FullyConnected, etc., which are indis-

pensable in the CNN domain. On the other hand, custom layer

types can be defined using the def keyword enabling the

composition and reuse of networks or parts thereof, cf. (RL3).
The network is assembled using connect operators defining

the data flow between the layers. The architecture can be

regarded as a single expression which is a major difference

compared to the frameworks discussed in section IV. Most

frameworks either create connections by listing layers in a

sequential order (e.g. Keras, Matlab) or create them explicitly

by declaring names (e.g. Matlab, Caffe) or variables (e.g.

Keras, TensorFlow, MXNet) as inputs. We employ two data

flow operators, namely the serial connection -> and the par-
allelization operator | to assemble the neural network. Using

a layer type name as an operand in the network expression

creates an anonymous layer instance of this layer type.

In a serial connection a -> b the output stream of the

left operand is fed into the right operand as its input. All

purely sequential architectures, e.g. the LeNet [32], can be

constructed using the serial connection operator exclusively.

Note that it is also the most frequent connect operator in our

ResNet152 example.

The parallelization operator | splits the operands into

separate groups having the same input but not connected to

each other. This operator can be applied successively to create

multiple parallel groups and a group can also be empty to

implement a skip connection. The parallelization operator has

a lower precedence than the serial connection. Therefore, it is

necessary to use parenthesis to be able to combine the outputs

of these groups. Let m be a layer type, then the expression

(m()|m()->m()|m())-> creates three parallel groups which

are combined in a parallelization block. The language restricts

the number of outputs of each group to be zero or one. The

number of output streams of a group can only be zero in the

unusual case where the network has multiple output ports and

one of those ports is used in the parallelization block. The

output of the whole parallelization block is the combined list

of the outputs of each group. This list of data streams can

then be reduced to a single stream either by using one of the

two available merge layers Concatenate and Add or the

selection layer. The selection layer is denoted by [index]
and selects the stream corresponding to the given index from

the stream list.

Since it is common for deep nets to repeat the same

layer multiple times, we introduce the concept of structural
arguments to leverage (RL2), allowing one to pass a connect

operator as an argument to any layer with an integer assigned

to it denoting the number of repetitions for this layer. In L.10

the resLayer is repeated seven times by passing -> = 7 to

its interface. Similar to the sequential operator, the paralleliza-

tion operator can be used as a structural argument, as well.

Structural arguments contribute heavily to the compactness

and the readability of the network.

To make our ResNet152 model modular and easy to read we

define the two custom layers conv and resLayer in L.20-23

and L.24-33, respectively. Note how resLayer applies the

parallelization operator in L.29 to realize residual connections

in an elegant way. A further structural argument available

in MontiAnna and used in the two custom layers is the

conditional argument ?, cf. L.23 and L.30. If set to false,

the layer is removed from the network. In our example, it is

used to skip the Relu layer in the third and fourth instance of

the conv layer in the resLayer definition. Furthermore, it

is a convenient way to express variability in a neural network.

This is particularly convenient for automated experimentation

when a large number of different layer combinations needs

to be tested. Note that to comply with (RL2) all layers in

our model are independent of each other, i.e. the developer

does not have to specify the dimensions for each layer. The

framework computes them automatically.
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1 architecture ResNet152(N1 channels=3, N1 height=224,
↪→ N1 width=224, N1 classes=1000){

2 def input Z(0:255)ˆ{channels, height, width} image;
3 def output Q(0:1)ˆ{classes} predictions;
4 image ->
5 conv(kernel=7, channels=64, stride=2) ->
6 Pooling(pool_type="max", kernel=(3,3), stride=(2,2))

↪→ ->
7 resLayer(channels=64, addSkipConv=true) ->
8 resLayer(channels=64, ->=2) ->
9 resLayer(channels=128, stride=2, addSkipConv=true) ->

10 resLayer(channels=128, ->=7) ->
11 resLayer(channels=256, stride=2, addSkipConv=true) ->
12 resLayer(channels=256, ->=35) ->
13 resLayer(channels=512, stride=2, addSkipConv=true) ->
14 resLayer(channels=512, ->=2) ->
15 GlobalPooling(pool_type="avg") ->
16 FullyConnected(units=classes) ->
17 Softmax() ->
18 predictions;
19

20 def conv(channels, kernel=1, stride=1, act=true){
21 Convolution(kernel=(kernel,kernel),channels=channels,

↪→ stride=(stride,stride)) ->
22 BatchNorm() ->
23 Relu(?=act);}
24 def resLayer(channels, stride=1, addSkipConv=false){
25 (
26 conv(kernel=1, channels=channels, stride=stride) ->
27 conv(kernel=3, channels=channels) ->
28 conv(kernel=1, channels=4*channels, act=false)
29 |
30 conv(channels=4*channels, stride=stride, act=false, ?

↪→ = addSkipConv)
31 ) ->
32 Add() ->
33 Relu(); }}

Fig. 3: MontiAnna architecture model of the ResNet152 ar-

chitecture

A further means of layer stacking contributing to model

compactness and readability and supporting (RL2) is provided

by argument sequences (not used in our ResNet152 example).

Argument sequences can be passed in square brackets instead

of regular layer arguments to declare that a layer should be

repeated for each value in the sequence. Thereby, the data flow

operators connecting the resulting layer stack are part of this

sequence, e.g. a) [1->2->3->4], b) [true | false],

c) [1 | 3->2], d) [ |2->3], e) [1->..->4]. Note that

e) is defined as a range and is semantically equivalent to a). A

parallel group can be empty as shown in d), realizing a skip

connection. Argument sequences can be combined with single

valued arguments. The latter are equivalent to an argument

sequence containing the same value for each layer in the stack.

B. Recurrent architectures

If we think of a layered neural network as a graph where

each layer is a node and the edges represent the directed data

flows between the layers, our architecture modeling language

is DAG complete, i.e. it can express any directed graph having

no paths starting and ending at the same node. This is sufficient

to cover most practical neural network architectures as long

as they have no recurrent structures.

However, as soon as we need our neural network to deal

with data sequences such as speech or text, we have to

introduce a new type of neurons able to memorize the past.

Some prominent recurrent cell-types are the so called long

short-term memory (LSTM) and gated recurrent unit (GRU)

cells [33], [34]. These cells differ from standard neurons as

used in Fig. 3 by an inner state which is maintained and

adapted over multiple processing steps as well as a more

complex interface. The latter has two reasons: first, the neuron

is more complex and we might need to access different parts,

e.g. its inner state. Second a network architecture based on

recurrent units has temporal dependencies. For instance, we

might want neuron A to receive the output of neuron B with

a delay of two time steps.

To illustrate the main recurrent neural network (RNN)

concepts, we analyze the basic machine translation encoder-

decoder model based on [35]. Given a sequence in the source

language, we want to generate the best fitting sequence in the

target language. The model has two LSTMs, one of which

is the encoder, while the other one acts as decoder. The

encoder processes the source sequence to create an interme-

diate representation. The decoder then uses this intermediate

representation to generate the target sequence word by word.

To connect both LSTMs, the decoder’s inner state is initialized

with the last encoder’s inner state. In Fig. 4 the unrolled
network is depicted, i.e. the LSTM cells are replicated for

each timestep. Each replication is represented by a rectangle

with the corresponding time included for the decoder part. We

use start and end of sequence symbols (<SOS> and <EOS>)

to let the LSTMs know where the start and the end of the

sequences are. In our example we input the source sequence

”Ich bin” in German to obtain the target sequence ”I am” in

English.

To be able to model recurrent networks we need to introduce

new modeling constructs. The model in Fig. 5 is an implemen-

tation of the previously described machine translation model in

MontiAnna. While the header remains structurally unchanged,

we encounter the new layer keyword in L.5 and L.11. In our

CNN example, layer instances are anonymous, as each layer

instance is used exactly once. However, when working with

RNNs, we might need to access a layer’s state, input, or output

multiple times. Using the layer keyword, followed by the

layer type (LSTM in this example) and a name, defines a named

layer instance without adding it to the network. The name can

then be used instead of the layer type to add the instance to

a network expression, cf. L.9 and L.14 (note that in L.14 we

access a specific part of the neuron, namely the neuron’s inner

state, using the dot operator).

Note that in contrast to Fig. 3, where the whole network

is defined as one single expression, we have four network ex-

pressions in our RNN model, each terminated by a semicolon.

The first subnetwork defined in L.7-9 is the encoder part.

The internal fixed-size representation of the source sentence is

saved in the inner state of the encoder LSTM, cf. L.8-9. Later,

it is input into the inner state of the decoder LSTM in L.14.

The most interesting subnetwork is given in L.16-23. It

is preceded by a timed<t> modifier meaning that this

subnetwork has temporal interdependencies based on the time

variable t. The time variable does not carry an actual value,

but is used to describe temporal relationships. Inputs, outputs,

and layer attributes can now be accessed with a temporal
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t = 1 t = 2 t = 3

Ich bin <EOS>

<SOS> I am <EOS>
Encoder

Decoder

Fig. 4: RNN encoder-decoder model example

1 architecture RNNencdec<N1 max_length=50, N1
↪→ vocabulary_size=30000, N1 hidden_size=1000>{

2 def input Qˆ{max_length, vocabulary_size} source;
3 def output Qˆ{max_length, vocabulary_size} target;
4

5 layer LSTM(units=hidden_size) encoder;
6

7 source ->
8 Embedding(units=hidden_size) ->
9 encoder;

10

11 layer LSTM(units=hidden_size) decoder;
12

13 1 -> OneHot() -> target[0];
14 encoder.state -> decoder.state;
15

16 timed<t> GreedySearch(size=max_length) {
17 target[t-1] ->
18 Embedding(units=hidden_size)
19 decoder ->
20 FullyConnected(units=vocabulary_size) ->
21 Softmax() ->
22 target[t]
23 }; }

Fig. 5: RNN encoder-decoder model implementation

argument, cf. L.17 and L.22. Here, we model the network

output of the last timestep, denoted by target[t-1], to

be input into the Embedding layer. The temporal argument

enables a concise modeling of temporal interdependencies,

which the developer needs to take care of manually in classical

GPL-based deep learning frameworks.

Now, if the output of the network depends on the past of

target, how can we compute it for the first timestep? This is

solved using subnetworks defining invariants such as the one

given in L.13. Here, target[0] is initialized statically with

a so called one-hot vector representing the <SOS> symbol.

The final network architecture is assembled from the partial

network expressions starting from the input layer (source)

based on the respective interfacing layers.

C. The training model

So far, we have been looking at the neural architecture

modeling language. However, as mentioned in section V,

the best architecture is useless if not trained adequately. To

comply with the separation of concerns requirement (RL4), we

provide a dedicated training language allowing the developer

to define the training hyper-parameters, set the error function,

etc. In contrast to JSON and similar data formats, our training

language only allows a predefined set of parameters and

checks their data types and integrity. When a configuration

model is applied to a network model, the compiler checks,

whether the two fit together using the composed model (cf.

section V). For instance, a network with an unlimited output

cannot be trained with a cross-entropy error function designed

1 training MNISTDetector{
2 num_epoch:1,
3 batch_size:64,
4 normalize:true,
5 optimizer:adam{
6 learning_rate:0.01,
7 learning_rate_decay:0.8,
8 weight_decay:0.01 }}

Fig. 6: Training model for the MNIST example

to compare probability distributions. The training file used to

train our MNISTDetector network is depicted in Fig. 6.

It fixes the number of epochs to be trained as well as the

batch size to process. Furthermore, it specifies the optimization

algorithm to be set to Adam [36], which in turn requires its

own nested hyper-parameters: the learning rate, its decay, and

the weight decay. Other optimizers might require a completely

different or an overlapping set of hyper-parameters.

VII. INTEGRATION OF NEURAL MODULES

Until now we have understood how to model and train a

single neural network. However, for a software or a systems

engineer, a neural network is just a building block in a large

architecture as we have seen in our MNISTCalculator example.

The design of complex systems requires elaborate engineering

means dealing with their complexity, but also supporting

product line engineering, evolution, as well as thorough verifi-

cation and testing. Therefore, we need to embed the presented

framework into a software engineering methodology.

Due to its architecture-centric, data-flow oriented divide and

conquer approach, C&C modeling has been an established

paradigm in engineering domains such as automotive, automa-

tion, and avionics for many years. Our aim is a methodology

supporting the integration of neural networks as standard-

ized components in C&C models. This is partially achieved

by Matlab/Simulink by including neural network code into

the Matlab implementation of custom Simulink components.

However, there is no clear notion of what a neural network in

Matlab is. Hence, it might be contaminated by code related to

other tasks. This leads to bad encapsulation of neural networks

and impurified interfaces. An emerging problem is that the

superordinate Simulink model is not aware of the presence

of the neural network and has thus no means to deal with it

accordingly, e.g. to retrain it automatically.

To achieve a higher level of AI awareness in the system

architecture, cf. (RM2), we embed MontiAnna into the textual

C&C language family EmbeddedMontiArc [8], [31], [37]. An

architecture like the one of our MNISTCalculator example

depicted in Fig. 1 can be defined in EmbeddedMontiArc

textually.

The behavior of atomic EmbeddedMontiArc components,

i.e. components which are not decomposed into smaller sub-

components, is usually defined in MontiMath, a matrix-based

imperative language with a strict and static type-system. Mon-

tiMath is designed to implement math-heavy algorithms of an

intelligent system such as planners, controller, etc. However,

it is not well-suited to describe and train deep neural network

architectures. We close this gap by adding MontiAnna as a
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second, alternative behavior language for EmbeddedMontiArc

components by means of the language composition features of

the MontiCore language workbench [27]. For the implemen-

tation of an atomic EmbeddedMontiArc component, we allow

the developer to choose between MontiMath and MontiAnna.

Hence, MontiAnna neural networks cannot be intertwined with

unrelated general purpose operations enabling a clean neural

network encapsulation as required by (RM1) (in contrast to

Matlab/Simulink, where a neural network is ordinary code).

The resulting composed language family is aware of the

deep learning components present in a C&C architecture, since

the EmbeddedMontiArc compiler can check the implementa-

tion language of each component. Hence, it is able to govern

the life-cycle of deep learning components in accordance

with (RM2). This facilitates the integration of tasks such as

training and cross-validation into a model-driven development

process, e.g. SMARDT [38], using the code generator tool-

chain introduced in section V.

This brings us back to the dataset model which we have

introduced in section V without discussing it in detail. It

turns out that such a model is most powerful if attached to

a whole system architecture, i.e. a C&C model, instead of a

single neural network. The model contains a set of entries,

each of which holds either a component type or a component

instance name and the path to the corresponding training

and test data. Optionally, the database type can be specified

(otherwise, the backend generator chooses its default, e.g.

LMDB for Caffe2 and HDF5 for MXNet). We model this

information using a tagging language, which enables us to

append additional information to model elements of another

modeling language. The same technique was employed to

enrich EmbeddedMontiArc ports with middleware information

or to manifest extra-functional properties [39], [40].

If an entry contains the name of a concrete component

instance, we have a one-to-one mapping of a training data set

to a network. However, if the entry is related to a component

type, the compiler will use the given training data to train

a network once and to copy it to all component instances of

the given type in our EmbeddedMontiArc architecture, similar

to a prototype pattern [9]. If the network is stateless, one

central flyweight network instance is created and reused by all
components of the corresponding type. This comes in handy in

our MNISTCalculator example. We have a model containing

six digit detectors. However, as all six detectors are instances

of the same type and, what is more, the convolutional neural

network is stateless, the compiler performs network training

only once and instantiates only one network at runtime. Fur-

thermore, as already mentioned, a training is only performed

during the compilation process if neither the data referenced

by the dataset model nor the MontiAnna models have changed.

VIII. DISCUSSION

As the main contribution, we have presented a novel holistic

modeling framework integrating artificial neural networks as

components into software architectures and allowing software

architects to deal with these networks as standard components.

Furthermore, the stand-alone deep learning DSML shifts the

focus from GPL elements to domain concepts. Splitting the

three concerns network architecture, training, and dataset is

also a novel approach enhancing the modularity and reusability

of deep learning code. Such a separation of concerns needs to

be enforce actively by the development team if a GPL is used.

The syntax of the proposed network architecture description

language resembles the layer-based structure of networks

written in high-level frameworks such as Keras. However,

introducing a declarative facility for connecting neuron states

of different points in time facilitates the handling of recurrent

network architectures. In today’s frameworks the developer

needs to keep track of temporally changing neuron states

manually if she needs to reuse them in later steps.

A component-based dataset model lets the compiler in-

tegrate the training process into the compilation procedure.

Expensive re-training is skipped if training artifacts haven’t

changed. Learned parameters can be deployed in an artifact

repository and reused as dependencies in other projects.

A further advantage of integrating neural network design

into a C&C methodology is an arsenal of available tools [41].

Examples include component-based product lines engineering

supporting the creation and management of variants of intelli-

gent systems, model evolution and the execution of backward-

compatibility checks when the AI platform is updated [42] as

well as the definition of extra-functional properties [40].

To demonstrate the presented methodology in a more

technical context, we developed a direct perception based

autonomous vehicle [3] as a C&C architecture in Embedded-

MontiArc. The deep net predicting the affordance indicators

was defined and trained in MontiAnna while MontiMath was

used for the controller and filter design. The model was

enriched by ROS tags in order to automatically generate ROS

middleware code enabling us to integrate the system with Open

Racing Car Simulator (TORCS) [43]. The complete model, a

video tutorial demonstrating the generative process, and the

final result are available at our website†.

IX. CONCLUSION AND FUTURE WORK

Despite the growing interest in deep learning, our analysis

showed that the domain lacks mature language support and

methodologies to integrate neural networks in large productive

systems. We tackle these issues by proposing a deep learning

modeling language family focusing on the main domain con-

cepts while providing means for modularity and extensibility.

The solution covers a variety of architectural neural network

styles and provides a C++ generator supporting multiple deep

learning backends. Furthermore, the framework is embedded

into a C&C architecture description language allowing soft-

ware architects to seamlessly integrate deep learning technol-

ogy into large systems. Ongoing and future work includes the

development of further backend code generators to support

more platforms, the steady addition of latest developments, but

also the integration of analysis tools. The latter must provide

backend-independent quality assessment mechanisms for the

experimentation phase.
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