
Modeling Robot and World Interfaces for Reusable Tasks

Robert Heim1, Pedram Mir Seyed Nazari1, Jan Oliver Ringert2, Bernhard Rumpe1, and Andreas Wortmann1
1Software Engineering, RWTH Aachen University

2School of Computer Science, Tel Aviv University, Israel

Abstract— Robotics applications involve robots that perform
tasks by interacting with specific worlds. Most applications are
intertwined with and tied to fixed robots and worlds. Changes
and evolution of a robot or world have an invasive and often
unpredictable impact on the application software.

We propose making the models of robots and worlds ex-
plicit in robotics applications and separate these by introduc-
ing application-specific and platform-independent interfaces.
This separation allows modular model-driven development of
robotics applications and enables the reuse and adaptation of
models and applications without need for invasive modifications.

We present a framework with a family of modeling
languages for conceptual, platform-independent applications,
tasks, robots, and worlds. The model-driven RoboTask frame-
work integrates these languages with a runtime architecture
to execute robotics tasks using a planner and mappings from
conceptual models to actual platforms. This enables a separa-
tion of domain concerns from software development concerns
and modification of applications without invasive impacts on
their separated constituents. We believe that the enabled reuse
and adaptation lead to more efficient development and higher
quality software for robotics applications.

I. INTRODUCTION

A robotics application is a system of robots performing
tasks within defined worlds. Even a simple application re-
quires the interaction of various software modules control-
ling and representing application logic, robots, and world.
Modifications of such applications lead to invasive changes
due to the tight coupling of tasks, robots, and world. This
intertwining impedes reuse and adaptation, and ultimately
increases cost and risk of developing robotics applications.

Current directions to increase the reuse of robotics appli-
cations are component-based software engineering (CBSE),
model-driven engineering (MDE), and combinations thereof.
CBSE aims to increase reuse of software components, which
provide stable interfaces to allow their exchange between
applications. Such components are exchanged as program-
ming language artifacts. Hence, they are platform-specific,
many requirements and dependencies are implicit, and reuse
is still hampered. MDE aims to increase abstraction and reuse
by making models the primary development artifacts. Such
models can be concise, platform-independent, and describe
concepts in terms of the solution domain. Code generators
transform models to platform-specific implementations. Cur-
rent approaches to MDE in robotics however do not enforce a

This research has partly received funding from the German Federal
Ministry for Education and Research under grant no. 01IM12008C. The
responsibility for the content of this publication is with the authors.

distinction between the domain-specific concepts of an appli-
cation, which consists of reusable tasks, robots, and worlds,
and their concrete implementations. Therefore, the resulting
applications are usually tightly coupled to functionality and
platforms and ultimately hardly reusable [1], [2].

We present the RoboTask framework and its modeling
languages for development and execution of reusable robot
tasks, robots, and worlds. Application models aggregate a
domain model (domain data types) the application operates
on, a robot model, and world model. The latter describe
properties and actions of robot and world on a conceptual
level. Tasks are expressed as sequences of goals, which
refer to domain, robot, and world models. Hence, they are
restricted in their expressiveness and independent of the
participating platforms1 and can be composed from goals
by non-technical users. The goal language allows for more
expressiveness and models are defined by technical staff.
Models of these languages represent a conceptual under-
standing of the application available for planning, without
a binding to concrete platforms.

From application and task models, code for a prede-
fined MontiArcAutomaton [3], [4] software architecture is
generated to map conceptual robot and world models to
platform code. At run-time, this architecture executes tasks
and translates their goals into PDDL [5] problems for an em-
bedded planner, which determines the sequences of actions
required to fulfill the passed goal. The sequences refer to
the conceptual robot and world model actions and mappings
ground these to the platforms. RoboTask

• enables reuse of robots and worlds with different tasks
and goals;

• separates concerns of users, who compose goals to
tasks, from concerns of domain experts, who describe
tasks decoupled from the executing systems, from con-
cerns of robot and world experts, who map robot and
world actions and properties to platforms and take care
of error conditions and safety features;

• liberates domain experts from describing how goals are
fulfilled: instead actions and properties are defined, and
actual task performance is delegated to a planner;

• allows partition of complex tasks into intermediate
goals, which reduces planning effort and increases be-
havior predictability.

1In this context, “platform” may refer to robots or environment and
denotes the hardware and software necessary to provide the service of a
certain application.

[HMSNR+15] R. Heim, P. Mir Seyed Nazari, J. O. Ringert, B. Rumpe, A. Wortmann:
Modeling Robot and World Interfaces for Reusable Tasks.
In: Intelligent Robots and Systems Conference (IROS’15), pp. 1793–1798. IEEE, 2015.
www.se-rwth.de/publications

Section II illustrates the RoboTask modeling languages
and their usage. Afterwards, Sect. III describes the frame-
work and its code generation. Section IV highlights related
work, before Sect. V describes case studies and discusses
observations. Finally, Sect. VI concludes.

II. MODELING LANGUAGES AND CONCEPTS

RoboTask employs MDE to separate problem domain
solutions from their concrete platform-dependent execu-
tions. We describe the domain-specific languages to model
platform-independent concepts, such as domain types, and
robot and world interfaces. Furthermore, we introduce two
languages that allow modeling solutions as tasks and goals
based on the platform-independent models.

A. RoboTask Language Family

The language family of RoboTask consists of six modeling
languages: APPLICATION, ROBOT, WORLD, and UML/P
class diagrams (CDs) [6] describe platform-independent do-
main concepts, TASK and GOAL describe solutions.

Class diagrams describe domain types, which define com-
mon concepts of the application domain, e.g., properties of
rooms and items. Models of other languages use these types.
The ROBOT language allows definition of conceptual robot
types by specifying their platform-independent interfaces of
actions and properties. Actions describe capabilities of the
robot in terms of preconditions required for executing the
action and postconditions that are supposed to hold after its
execution. Both, pre- and postconditions may refer to prop-
erties (of robot and world) and domain data types. Properties
describe characteristics of the robot’s state. WORLD models
describe actions and properties of the world in the same way.
The APPLICATION language combines a robot and a world
that the robot operates in and thereby provides a platform
independent set-up to define solutions.

Models of the GOAL language are bound to a specific do-
main and consist of a name and an optional list of typed pa-
rameters. They describe desired states with Boolean expres-
sions over properties of robots and worlds, local variables,
and simple control structures (such as conditionals and loops)
similar to the logic programming language GOLOG [7].
Additionally, goals may reference other goals to combine
multiple goals to an overall goal. The TASK language is
developed to be used by non-technical users and thus only
allows to define solutions as sequences of references to
parametrized GOAL models. A task is considered finished if
each of its goals was fulfilled subsequently. Tasks and goals
are platform-independent, because they solely rely on robot
and world models. Hence, they can directly be reused on
different platforms, making solutions platform-independent.

B. Example

Consider a company producing transport service robots:
due to different requirements, the company fabricates mul-
tiple types of robots. Nonetheless, the concepts of provided
indoor transport services are similar: robots can move be-
tween rooms, which may be open or closed, and can pick

Item

«World»

ITSWorld

«Application»

ITSApplication

properties

actions

«uses»

«Task»

FetchItem

«Goal»

loadedAt

«has» CD
�

«Robot»

ITSRobot
«CD»

ITSDomain

«uses»

RoomRoom location()

Boolean loaded(Item i)

goTo(Room r)

pickUp(Item i)

unload(Item i)

«uses»

«uses»

«uses» openDoor(Room r)

Coordinate getPos()

Fig. 1. Models of the RoboTask modeling languages and their relations.

Task

1 domain ITSDomain;
2

3 task FetchItem(Room src, Item i, Room dst){
4 loadedAt(src,i);
5 unloadedAt(dst,i);
6 }

Fig. 2. The task FetchItem must be instantiated with three parameters
and uses these to instantiate two goals. It is considered fulfilled if all goals
are fulfilled in the specified order.

up and deliver items. To increase reuse between different
contexts, a software engineer at the aforementioned com-
pany defines the indoor transport service (ITS) application,
which models those common concepts independent of the
specific robot and world used in different contexts. Figure 1
illustrates the concepts of applications on the example of the
ITSApplication, which combines the robot ITSRobot
and world ITSWorld and is used to integrate them during
generation of the software architecture. Robot and world
use the domain ITSDomain which provides common data
types (e.g., Room). The model ITSRobot requires any
robot usable with the ITSApplication to provide at
least the actions goTo, pickUp, and unload, as well
as the properties location and isLoaded. Similarly,
the ITSWorld defines that any world usable with this
application provides the action openDoor. Furthermore,
robot and world define pre- and postconditions of actions.
For instance, the robot’s action goTo(Room r) has the
effect that afterwards the robot’s location is in room r.

Based on this, consider a task FetchItem, which in-
structs the robot to enter a room, pick up the requested item,
and return to a destination. This task consists of the goal
sequence loadedAt, unloadedAt. The task model in
Fig. 2 references the required domain (l. 1) and defines the
task name with its parameters (l. 3). Afterwards, a sequence
of the two goals (ll. 4-5) follows. These define the conditions
for parts of this task to be fulfilled.

The goal loadedAt is illustrated in Fig. 3 and requires
an ITSRobot robot named rob (l. 2) as it checks the
properties location and isLoaded of the robot. The
model defines its domain (l. 1), the goal name and parameters
(l. 4), and Boolean expressions over properties of the robot

Goal

1 domain ITSDomain;
2 robot ITSRobot as rob;
3

4 goal loadedAt(Room r, Item i) {
5 rob.getLocation() == r;
6 rob.isLoaded(i);
7 }

Fig. 3. The goal loadedAt defines a Boolean condition over properties
of the ITSRobot robot named rob.

(ll. 5-6). Section III describes how concrete applications
implement robot and world models by binding their actions
and properties to concrete platforms.

C. Implementation of RoboTask Languages

We implemented the language family of RoboTask using
the MontiCore [8] language workbench. MontiCore gener-
ates components for parsing models and provides infrastruc-
ture for checking well-formedness rules via context condi-
tions [9], language integration [10], and code generation [11].
RoboTask uses language aggregation, embedding, and lan-
guage inheritance features of MontiCore to compose the
individual languages into an integrated language family [12].

Using UML/P CDs and the JAVA/P [11] modeling lan-
guage (as expression language for pre- and postconditions
of ROBOT and WORLD models, as well as for statements of
GOAL models) allows to reuse existing context conditions
checking and code generation infrastructures. Since a PDDL
planner relies on the pre- and postconditions, the expressions
are restricted to be transformable into PDDL. To this effect,
all languages are subject to various additional intra-language
context condition checks regarding validity of their models,
for example, that actions of a particular robot are named
uniquely. Aggregation into a language family allows to check
inter-language properties, e.g., whether robot properties ref-
erenced within goals are combined correctly into expressions,
which evaluate to Boolean values. The framework checks
completeness and type compatibility properties for all mod-
els.

MontiCore enables the a-posteriori integration of modeling
languages via symbol tables (ST) [12]. STs store entries that
encapsulate the “essence” of model elements and provide
these to the language integration mechanisms (e.g., ROBOT
models provide information about the contained actions to
other languages but hide their pre- and postconditions).
Thus, the MontiCore language integration framework allows
to exchange, e.g., the JAVA/P statements embedded into
GOAL models with statements of another modeling language
without invasive modifications. Furthermore, with STs, both
intra-language and inter-language constraints can be defined
easily using the context condition framework of MontiCore:
when MontiCore parses a model, it creates the ST and
performs manually implemented intra- and inter-language
condition checks. All languages of RoboTask are strongly
typed to allow type compatibility checks between models of
different languages.

With these languages, the RoboTask framework generates
parts of the run-time system required to operationalize robot
and world models. The next section explains how RoboTask
models are transformed into platform-specific program code.

III. USING THE ROBOTASK FRAMEWORK

Although task, robot, and world models conceptually
allow for planning, they have to be transformed into appro-
priate PDDL problems first. Furthermore, the resulting plans,
sequences of actions, need to be translated to platform calls
to perform tasks in the real world. The RoboTask framework
takes care of both. We first introduce the RoboTask devel-
opment methodology before we describe the framework.

A. RoboTask Development Methodology

With RoboTask, we aim for a clear separation of concerns
between (i) users, who know what the robot is supposed
to do and define tasks accordingly, (ii) domain experts,
who understand software development, know the domain
concepts, and can express these concepts using CDs, actions,
and properties, and (iii) robotics experts, who know how to
map action and properties onto the platforms.

To this end, the domain expert (cf. Fig. 4) begins devel-
opment with definition of the domain model. This model
captures the complete domain from a conceptual perspective
and hence describes the types available and how these can be
used. The ITSDomain, for instance, describes rooms with
coordinates. Based on this, the domain expert models both
robot and world with their respective actions and properties.
Domain model, robot, and world may be defined iteratively
and until these are considered conceptually complete. Af-
terwards, the domain expert also describes the goals that
can be fulfilled with this application. As goals refer to
robot and world properties, development of goals requires
understanding of CDs, Boolean expressions, and control
structures. Hence, we do not consider their definition within
concerns of the user. The user only may refer to goals to
compose tasks. Following a descriptive approach liberates
domain experts from defining how robot and world fulfill
goals and leaves this effort for the planner.

Parallel to development of goals, robot expert and world
expert develop mappings from robot model and world model
to the specific platforms by implementing the interfaces
generated for these. This implementation also acts a glue
code between domain concepts (e.g., Room) and platforms.
As MontiArcAutomaton allows development, integration,
and composition [13] of code generators with minimal effort,
RoboTask generally enables robot expert and world expert
to use the programming language of their choice.

B. The RoboTask Framework

The RoboTask framework (cf. Fig. 4) parses models of
tasks and goals that refer to robots, worlds, and domain
models, and models of applications, which refer to the avail-
able robot and world. Together with a MontiArcAutomaton
software architecture model [3], [4], RoboTask transforms
these into an executable system that employs Metric-FF [14]

task, goal, robot,
application, world, and

domain models

RoboTask

language integration

& code generation

software
architecture

model

domain
expert

robot
expert

*

models

user

world
expert

environment: hardware,

frameworks, UIs

handcrafted

robot impl.

generated

comp.

handcrafted

world impl.

run-time system

A

DR W

T G

Fig. 4. The RoboTask framework parses models of tasks, goals, robots,
world, applications, and a software architecture to transform these into an
executable high-level robot task execution framework interfacing the Metric-
FF planner and platforms.

to solve tasks. To this effect, the robot expert and world
expert are responsible for adding handcrafted implementa-
tions of the conceptual robot and world models that interface
the respective platform and exchanges messages via the
MontiArcAutomaton run-time system.

In the MontiArcAutomaton Component & Connec-
tor (C&C) [15] software architecture, components encapsu-
late functionality as black boxes with stable interfaces of
directed typed ports. Unidirectional connectors connect ports
and are the only means for component interaction. Compo-
nents are either composed, and their behavior emerges from
the composition of the behaviors of their sub-components,
or they are atomic, and their behavior is defined with a
behavior modeling language or a target platform-specific
implementation. The software architecture depicted in Fig. 5
(simplified) contains a task manager component TaskMGR
to process coordination, planning, and execution of incoming
tasks models, a Planner component to interface Metric-FF
for actual planning, a component RExecuter to execute ac-
tions on the robot, and a component RResolver to retrieve
values of robot properties. Please note that the description
omits similar components for execution of actions of the
world, retrieving the world’s properties, and extension points.

From this architecture model MontiArcAutomaton gen-
erates platform-specific code (bottom part of Fig. 5) that
employs the delegator pattern and the factory pattern to facil-
itate exchange of component behavior descriptions: concrete
components, such as RExecuter, implement the interface
IComponent, which defines that components are invoked
using the method compute. Component RExecuter del-
egates calls to this method to a member that implements
the interface IBehavior and is produced by the fac-
tory REBehaviorFactory. This factory produces in-
stances of the actual component behavior implementation
RExecuterBehavior (the “handcrafted robot implemen-
tation” depicted in Fig. 4) that implement IBehavior. This
enables to treat both generated and handcrafted component
behavior implementations uniformly and to exchange these at
run-time. RoboTask extends this with an interface generated
from the robot model and different generation of the behavior
factory. In this example, an interface IMoveableRobot

TaskMGR PlannerGoal

Plan

RResolverRExecuter

QueryProperties

Task

ActionResult

«Robot»

MovableRobot

Room location()

Bool loaded(Item i)

goTo(Room r)

pickUp(Item i)

unload(Item i)

compute()

real product

compute()

Room location()

Bool loaded(Item i)

goTo(Room r)

pickUp(Item i)

unload(Item i)

«interface»

IMovableRobot

compute()

Room location()

Bool loaded(Item i)

goTo(Room r)

pickUp(Item i)

unload(Item i)

RExecuterBehavior

delegate product

code generation
software architecture

model

robot
type

model

robot
expert

domain
expert

generated code handcrafted mapping

IMovableRobot create()

REBehaviorFactory

«interface»

IComponent
«interface»

IBehavior

compute()

RExecuter

compute()

Fig. 5. Code generation mechanisms employed by RoboTask to ground
actions and properties in the participating platforms.

is generated that extends the signature of IBehavior
with methods representing the actions and properties of
the robot model. Furthermore, RoboTask updates the
factory REBehaviorFactory to produce instances of
IMoveableRobot instead of IBehavior. This enables
the robot expert, responsible for providing an implementation
of the robot model MovableRobot, to develop component
behavior implementing IMoveableRobot with proper
methods. The same applies to world models.

This framework enables modeling of robot tasks that rely
on conceptual robots and worlds instead of actual platforms
and thus facilitates a separation of concerns. Interfacing
Metric-FF and binding actions and properties to powerful
robot platforms enables reuse of domain tasks and goals with
different robots and worlds with minimal effort.

IV. RELATED WORK

RoboTask employs MDE to enable platform-independent
description of domain and robot expertise. As such, it is
related to other applications of MDE to robotics.

MDE has been successfully applied to different aspects of
robotics applications [16]. Current robotics MDE research
aims to reduce the complexity of imperative or event-driven
programming [17], [18], [19], [20], to describe kinematics,
or geometric relations [21], [22], or to model software archi-
tectures for robotic systems [2], [3], [23], [24], [25], [26].
These approaches have in common that they target language
and tool users from the solution domains, i.e., software
developers. Languages and tools for problem domain users
tend to be technical [27], [28], [29] and, for instance, impose
understanding of automata to these users.

Currently, there is few related work on modeling platform-
independent, reusable, and plannable robotics applications.
We assume this is due to the inherent complexity of robotics
applications: even simple applications require the participa-
tion of experts from multiple fields, such as computer vision

or path planning. Thus, applications are developed with small
regard for reusability [2], [30].

Plannable robotics applications usually consist of an (un-
typed) knowledge base containing symbols and rules for both
robot and world, and a software system interacting with this
knowledge base (cf. [2], [31]). This requires that domain
experts are knowledge representation experts as well and
prohibits the separation of concerns required between domain
experts modeling the application type and software engineers
implementing these as applications for concrete robots and
worlds (cf. [32], [33])

Similar approaches to platform-independent robot pro-
gramming are [34] and [35]. In [34], tasks are sequences
of actions, which require “resource components” [34]. Tasks
reference abstract concepts and concrete robots implement
these. For each robot, domain experts have to develop a
new XML-based DSL with proper code generators. Thus,
this approach requires the domain expert to have “profound
knowledge in programming a certain robot respective robot
class” [34], which we aim to avoid. With RoboTask, the do-
main expert only needs to comprehend the domain model and
the robot and world models. The framework presented in [35]
describes “processes” imperatively as graphs of actions,
which are supposed to be defined by non-technical users.
Its run-time system translates actions to robot capabilities
and takes care of execution.

V. CASE STUDY AND DISCUSSION

We have evaluated the RoboTask modeling languages
and framework with two case studies representing logistics
applications. Students performed these case studies and their
reports lead to various improvements on languages and
framework.

A. Logistics Case Studies

The logistics applications comprised of between 1 and 3
tasks, with between 1 and 4 goals and used between 2 and 8
actions and queries to fulfill tasks. We performed the logistics
case studies on two Festo Robotino2 robots operated with
SmartSoft [2] and ROS [36], respectively.

The developers of the first case study reported that model-
ing simple logistics tasks was straightforward, but describing
more complex tasks required effort due to the lack of GOAL
expressiveness. The integration of conditionals and loop
statements into GOAL is due to this feedback. Furthermore,
the first version of RoboTask included additional languages
that required definition of further abstraction layers. The
case study revealed that these layers introduced unnecessary
complexity and thus were removed. Thereby, RoboTask
gained a better separation of concerns. Developers also
reported that handcrafting the translation from action and
properties to platform code enabled to realize capabilities not
directly provided by the platform: for instance, they mapped
the action pickUp (cf. Fig. 1) to user interaction on the
Robotinos.

2Festo Robotino website: http://www.festo-didactic.com/
int-en/news/the-new-robotino.htm

uses SmartSoft

middleware

uses ROS

middleware

Fig. 6. Robotino robots used in the logistics case studies with with
SmartSoft [2] and ROS [36].

B. Discussion

Current tasks can be perceived as a reduced view on goals,
as goals may express the requirement, i.e., that a sequence
of goals needs to be fulfilled, as well. We will investigate
whether this suffices and whether the TASK language should
be extended with more advanced features in the future.

A major benefit of the RoboTask modeling languages to
be developed as MontiCore languages is that development
of language variants using language inheritance or language
embedding is straightforward [10], [12], which might lead
to a family of RoboTask languages for users of different
technical expertise. We currently also investigate whether it
is necessary and feasible to bridge the discrepancy between
the typed RoboTask modeling languages and the untyped
Metric-FF PDDL input and how to deal with incomplete
knowledge.

VI. CONCLUSION

We presented the RoboTask framework to decouple the
modeling of robotic tasks from specific robots and worlds.
RoboTask therefore introduces applications that use com-
mon domain types, robots, and worlds. Domain experts
can provide these models with little software engineering
knowledge. Robot and world experts realize robot and world
models via mappings to platform code. Using these models,
a C&C software architecture, and the realizations of robot
and world models, RoboTask generates an executable system.
This system reads tasks, which comprise of goals provided
by the domain expert, and executes these with help of the
Metric-FF planer.

This separation between domain expert knowledge, robot
and world expert knowledge, and software engineering
knowledge embodied in the framework, allows modular
development of robotics applications without invasive appli-
cation changes caused by the inevitable needs for adaptation
and evolution. Also decoupling conceptual capabilities and

http://www.festo-didactic.com/int-en/news/the-new-robotino.htm
http://www.festo-didactic.com/int-en/news/the-new-robotino.htm

requirements from actual platforms increases reuse of do-
main concepts with different platforms. First case studies
have pointed out benefits and issues of RoboTask, therefore
further evaluation is ongoing in multiple projects.

REFERENCES

[1] M. Hägele, N. Blümlein, and O. Kleine, “Wirtschaftlichkeitsanalysen
neuartiger Servicerobotik- Anwendungen und ihre Bedeutung für die
Robotik-Entwicklung,” BMBF, Tech. Rep., 2011.

[2] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven Software Devel-
opment in Robotics : Communication Patterns as Key for a Robotics
Component Model,” in Introduction to Modern Robotics. iConcept
Press, 2011.

[3] J. O. Ringert, B. Rumpe, and A. Wortmann, “From Software Architec-
ture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems,” in Software Engineering 2013 Workshopband, ser.
LNI, Stefan Wagner and Horst Lichter, Ed., vol. 215. GI, Köllen
Druck+Verlag GmbH, Bonn, 2013, pp. 155–170.

[4] ——, Architecture and Behavior Modeling of Cyber-Physical Systems
with MontiArcAutomaton, ser. Aachener Informatik-Berichte, Software
Engineering. Shaker Verlag, 2014, no. 20.

[5] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “PDDL—The Planning Domain
Definition Language,” Yale Center for Computational Vision and
Control, Tech. Rep., 1998.

[6] B. Rumpe, Modellierung mit UML. Springer, 2004.
[7] H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl,

“GOLOG: A Logic Programming Language for Dynamic Domains,”
Journal of Logic Programming, vol. 31, no. 1-3, pp. 59–83, 1997.

[8] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for
compositional development of domain specific languages,” in Inter-
national Journal on Software Tools for Technology Transfer (STTT),
vol. 12, 2010, pp. 353 – 372.

[9] S. Völkel, Kompositionale Entwicklung domänenspezifischer
Sprachen, ser. Aachener Informatik-Berichte, Software Engineering
Band 9. 2011. Shaker Verlag, 2011.

[10] M. Look, A. Navarro Perez, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “Black-box Integration of Heterogeneous Modeling Languages
for Cyber-Physical Systems,” in Proceedings of the 1st Workshop on
the Globalization of Modeling Languages (GEMOC), 2013.

[11] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, ser. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012.

[12] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Voelkel, and A. Wortmann, “Integration of Heterogeneous Modeling
Languages via Extensible and Composable Language Components,”
in Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development, 2015.

[13] J. O. Ringert, B. Rumpe, and A. Wortmann, “Multi-Platform Genera-
tive Development of Component & Connector Systems using Model
and Code Libraries,” in 1st International Workshop on Model-Driven
Engineering for Component-Based Systems (ModComp 2014), 2014.

[14] J. Hoffmann, “Extending FF to Numerical State Variables,” in Pro-
ceedings of the 15th European Conference on Artificial Intelligence,
July 2002.

[15] N. Medvidovic and R. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Transactions on Software Engineering, 2000.

[16] A. Ramaswamy, B. Monsuez, and A. Tapus, “Model-driven Software
Development Approaches in Robotics Research,” in Proceedings of
the 6th International Workshop on Modeling in Software Engineering,
2014.

[17] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-
engineering the KUKA Robot Language,” in First International Work-
shop on Domain-Specific Languages and Models for ROBotic Systems,
2010.

[18] J.-C. Baillie, A. Demaille, Q. Hocquet, and M. Nottale, “Events!
(Reactivity in urbiscript),” in First International Workshop on Domain-
Specific Languages and Models for ROBotic Systems, Oct. 2010.

[19] A. Angerer, R. Smirra, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “A Graphical Language for Real-Time Critical Robot Com-
mands,” in Proceedings of the Third International Workshop on
Domain-Specific Languages and Models for Robotic Systems (DSLRob
2012), 2012.

[20] J. Baumgartl, T. Buchmann, and D. Henrich, “Towards Easy Robot
Programming: Using DSLs, Code Generators and Software Product
Lines,” 8th International Conference on Software Paradigm Trends
(ICSOFT-PT’13), 2013.

[21] U. P. Schultz, D. J. Christensen, and K. Stoy, “A domain-specific
language for programming self-reconfigurable robots,” in Workshop
on Automatic Program Generation for Embedded Systems, 2007, pp.
28–36.

[22] M. Frigerio, J. Buchli, and D. G. Caldwell, “A Domain Specific
Language for kinematic models and fast implementations of robot
dynamics algorithms,” in Proceedings of the Second International
Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2011), 2011.

[23] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “RobotML,
a Domain-Specific Language to Design, Simulate and Deploy Robotic
Applications,” in Simulation, Modeling, and Programming for Au-
tonomous Robots, 2012.

[24] A. Nordmann and S. Wrede, “A Domain-Specific Language for Rich
Motor Skill Architectures,” in Proceedings of the Third International
Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2012), 2012.

[25] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraet-
zschmar, L. Gherardi, and D. Brugali, “The BRICS component model:
a model-based development paradigm for complex robotics software
systems,” in Proceedings of the 28th Annual ACM Symposium on
Applied Computing, 2013.

[26] D. Stampfer and C. Schlegel, “Dynamic state charts: composition and
coordination of complex robot behavior and reuse of action plots,”
Intelligent Service Robotics, vol. 7, no. 2, pp. 53–65, 2014.

[27] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A New Skill Based Robot Programming Language Using UML/P
Statecharts,” in Proceedings of the 2013 IEEE International Confer-
ence on Robotics and Automation (ICRA), Karlsruhe, Germany, 2013.

[28] Vanthienen, Dominick and Klotzbuecher, Markus and De˜Laet, Tinne
and De˜Schutter, Joris and Bruyninckx, Herman, “Rapid application
development of constrained-based task modelling and execution using
Domain Specific Languages,” in Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013.

[29] D. Vanthienen, M. Klotzbuecher, and H. Bruyninckx, “The 5c-based
architectural composition pattern: lessons learned from re-developing
the itasc framework for constraint-based robot programming,” JOSER:
Journal of Software Engineering for Robotics, 2014.

[30] D. Brugali, A. Brooks, A. Cowley, C. Côté, A. Domı́nguez-Brito,
D. Létourneau, F. Michaud, and C. Schlegel, “Trends in Component-
Based Robotics,” in Software Engineering for Experimental Robotics,
ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, vol. 30, ch. 8.

[31] S. Schiffer, A. Wortmann, and G. Lakemeyer, “Self-Maintenance for
Autonomous Robots controlled by ReadyLog,” in 7th IARP Workshop
on Technical Challenges for Dependable Robots in Human Environ-
ments, F. Ingrand and J. Guiochet, Eds., 2010, pp. 101–107.

[32] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun,
“Towards robotic assistants in nursing homes: Challenges and results,”
Robotics and Autonomous Systems, vol. 42, no. 3, pp. 271–281, 2003.

[33] J. Diprose, B. Plimmer, B. MacDonald, and J. Hosking, “How people
naturally describe robot behaviour,” in Australasian Conference on
Robotics and Automation (ACRA), Victoria University of Wellington,
New Zealand, 2012, p. 9.

[34] M. Reckhaus, N. Hochgeschwender, P. G. Ploeger, G. K. Kraet-
zschmar, and S. Augustin, “A Platform-independent Programming En-
vironment for Robot Control,” in Proceedings of the 1st International
Workshop on Domain-Specific Languages and models for ROBotic
systems (DSLrob’10), 2011.

[35] Andersen, Rasmus Hasle and Solund, Thomas and Hallam, John, “Def-
inition and Initial Case-Based Evaluation of Hardware-Independent
Robot Skills for Industrial Robotic Co-Workers,” in ISR/Robotik 2014;
41st International Symposium on Robotics; Proceedings of. VDE,
2014, pp. 1–7.

[36] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA Workshop on Open Source Software,
2009.

	Introduction
	Modeling Languages and Concepts
	RoboTask Language Family
	Example
	Implementation of RoboTask Languages

	Using the RoboTask Framework
	RoboTask Development Methodology
	The RoboTask Framework

	Related Work
	Case Study and Discussion
	Logistics Case Studies
	Discussion

	Conclusion
	References

