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ABSTRACT
Innovations in Cyber-Physical System (CPS) are driven by function-

alities and features. Mechanical Engineering, on the other hand, is

mainly concerned with the physical product architecture, i.e., the hi-
erarchical arrangement of physical components and assemblies that

forms the product, which is not explicitly linked to these functions.

A holistic model-driven engineering approach for CPS, therefore,

needs to bridge the gap between functions and the physical product

architecture to enable agile development driven by automation. In

the theoretical field of mechanical design methodology, functional

architectures describe the functionality of the system under devel-

opment as a hierarchical structure. However, in practice, these are

typically not considered let alone modeled. Existing approaches

utilizing mechanical functional architectures, however, do not for-

malize the relation between the functional architecture and the

geometric design. Therefore, we conceived a meta-model that de-

fines modeling-languages for modeling functional architectures of

mechanical systems and physical solutions, i.e., interconnections
of physical effects and geometries, as refinements of the functional

components. We have encoded the meta-model as a SysML pro-

file and applied it within an interdisciplinary, industrial project to

model an automotive coolant pump. Our contribution signposts

the potential of functional structures to not only bridge the gap

between function and geometry in mechanics but also to integrate

the heterogeneous domains participating in CPS engineering.

CCS CONCEPTS
• Cyber-Physical Systems; • Functions in Mechanical Engi-
neering; • Functional Architectures; • SysML-Profile;

KEYWORDS
Systems Engineering, Cyber-Physical Systems, Functional Archi-

tecture, Mechanical Design Methodology SysML, SysML-Profile,

Product Development Process
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1 INTRODUCTION
CPS are characterized by the interaction of mechanical, electronic,

and software systems [1, 10, 42]. Social and technological chal-

lenges [7, 17] as well as the customer’s demand for more func-

tionalities and a shorter time-to-market, raise the complexity of

engineering such systems [14, 29, 40].

In Mechanical Engineering (ME), engineers integrate the physi-

cal components of a product, into assemblies such that geometric

constraints, e.g., regarding design space, mounting, and mainte-

nance are satisfied [40]. Further design requirements, such as life-

time requirements, or energy efficiency, contribute to the complex-

ity of mechanical systems. We refer to the hierarchical arrangement

of physical components and assemblies that forms the product as

the (physical) product architecture. Mechanical systems fulfill cer-

tain functionalities through physical effects acting between compo-

nents and assemblies of the physical product. Thus, there is a strong

correlation between physical effects and the product architecture.

Engineers control the impact of physical effects by manipulating

the geometric shape of components or their material, as the effects

themselves are set by laws of nature [40]. As a result, mechani-

cal engineers tend to directly design the geometry of components

based on given requirements, without explicating the functionality

to implement. Therefore, the geometric and physical integration

of components into mechanical products has been optimized and

the physical product architecture has become the element that

structures the development activities in ME [40].

This raises a gap between the functional CPS requirements [14,

29] and the physical product architecture as the physical compo-

nents are not directly linked to the functions or features they imple-

ment. Therefore, reusing existing implementations in other systems

is hardly possible and functional testing occurs late in the Product

Development Process (PDP), i.e., when changes are cost-intensive.

In Software Engineering (SE), the problem-implementation gap

arises whenever the solution to a problem is described at a lower

level of abstraction than the problem itself [17]. Model-Driven

Engineering (MDE) aims to enable developers to focus on their

respective domains by abstracting from the complexities of the
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implementation platform [17]. The application of abstraction, sep-

aration of concerns, and architectural modeling [8] have shown

to reduce this gap effectively [8, 17]. A software architecture de-

scribes the functions of the software system under development

as a hierarchy of interacting, i.e., message-exchanging, functional

components [9]. Among others, formal modeling based on domain-

specific adjustable Architecture Description Languages [13, 35, 36]

enables verification at early design stages, reuse, and supports au-

tomation to enhance agile development in the software domain.

The problem-implementation gap present in automotive soft-

ware engineering [14, 17, 29] resembles the gap between functional

requirements and the product architecture in ME: Functional re-

quirements imposed upon the product are stated by the customer,

typically in natural language at a high level of abstraction [29].

Geometric models, such as e.g., Computer-Aided Design (CAD)

models, describe the assemblies and components at a level of detail

that reaches from the engine as a whole to the screws holding it

together. Thus, the product architecture which is part of the me-

chanical solution domain is described at a lower level of abstraction

(the level of screws) than the functional requirements which belong

to the mechanical problem domain.

Mechanical design theory considers functional structures, i.e.,
a hierarchical decomposition of the required system functionality,

as a means to systematize the design process in ME [28, 40]. Once

formalized as models, functional structures have the potential to

not only narrow the gap between functional requirements and the

physical product architecture, but also to bridge the gap between

the latter and the software architecture. Hence, the contributions

of this paper are

(1) a meta-model for functional architectures of CPS from an

ME point of view based on [28, 40];

(2) a demonstration of how to encode the meta-model as a

SysML profile, that enables mechanical engineers to model

these architectures in a way that fosters reuse and early

exploration of innovative solutions; and

(3) an example from industry modeling an automotive coolant

pump using the profile which emerged as part of an inter-

disciplinary project to demonstrate the profile’s usage and

possible benefits.

The contributions aim to signpost the potential of functional ar-

chitectures not only to systematize the PDP through reuse and

automation enabled by formal models but also to enhance collab-

oration of experts from heterogeneous domains in a holistic CPS

engineering approach.

The rest of this paper is structured as follows: Section 2 intro-

duces a running example. Section 3 provides preliminaries regard-

ing the SysML elements extended or reused in in the proposed

SysML profile. Section 4 gives insight into functional architectures

in mechanical design theory from a language engineering point

of view and constitutes the concepts in a meta-model. Section 5

encodes this meta-model as a SysML profile. Section 6 illustrates the

results from using the profile for engineering an automotive elec-

trical coolant pump within our project. Section 7 discusses related

work and the findings before Section 8 concludes.

Engine

Fuel

Pmech

Exhaust Gas

Ptherm

Ptherm

Combustion

Cooling Medium

Electrical

Coolant Pump

Cooler

Cooling

System

Figure 1: Diagrammatic illustration of an automotive com-
bustion engine with a cooling system.

2 RUNNING EXAMPLE
To illustrate domain and language concepts, we use the following

running example from automotive engineering throughout the pa-

per: For propulsion, automotive systems contain a drive system. The

main functionality of the drive system is to convert input energy

into mechanical energy and to transfer the mechanical energy onto

the road, where it causes the vehicle to move. Speaking in terms

of components, the engine performs the former, while the drive

train and the wheels perform the latter task. Combustion drives,

for instance, convert the chemical energy held by fuel into mechan-

ical energy. Electric drives, on the other hand, convert electrical to

mechanical energy.

Figure 1 shows the principle set up of a combustion engine dia-

grammatically. The physical effect that makes combustion engines

serve their purpose is the combustion of the fuel that is injected

into the engine’s cylinders. The combustion converts a portion of

the chemical energy held by the fuel into thermal energy which

causes the pressure in the combustion chamber to increase. The

released exhaust gas holds the rest of the chemical energy. The

increasing pressure acts on the surface of the engine’s piston as

mechanical energy (𝑃𝑚𝑒𝑐ℎ) causing the piston to move. However,

the thermal energy (𝑃𝑡ℎ𝑒𝑟𝑚) is released as heat which causes the

engine’s temperature to increase. Once a maximum temperature is

reached, the engine overheats and stops functioning. To prevent

the engine from overheating, it has to be cooled, i.e., the thermal

energy released as heat has to be dissipated. Often, water cooling

systems, as sketched at the bottom of Figure 1, take on this task.

Driven by an electric motor, a cooling medium circulates between

the combustion engine and a cooler. By the law of convection [50],

the circulating cooling medium absorbs the combustion heat at

the engine. The cooler releases the heat absorbed by the cooling

medium to the surrounding air. Keeping the cooling medium circu-

lating is required for absorbing the heat, as otherwise convection

would not take place. Thus, a cooling medium pump is a necessary

component of the cooling system.
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Figure 2: Top: SysML Block Definition Diagram (BDD) of the
functional architecture of the running example. Bottom: In-
ternal Block Diagram (IBD) of GenerateVolumeFlow. For de-
tails on stereotypes and contents see Sections 4 to 6.

3 PRELIMINARIES
The SysML profile introduced in Section 5.2 is tailored for ME and

provides a language for explicating the functional structure of a

mechanical system, which is understood as a reusable basis of the

PDP in [40], in a model. This section briefly summarizes the SysML

elements that are extended or reused in the profile.

SysML is a general-purpose modeling language family for sys-

tems engineering [33] that reuses and extends a subset of the Unified

Modeling Language (UML) 2.5 [32] to represent aspects of system

software and hardware in an integrated way [25]. To this end, it

comprises four behavior modeling languages, four structure model-

ing languages, and requirement diagrams. The structure modeling

languages comprise BDDs that describe the structure, interfaces,

and properties of blocks. IBDs provide a means to describe the in-

ternal structure of a block. Figure 2 shows examples for a BDD and

an IBD comprising most of the SysML modeling elements reused

or specialized in the profile presented in Section 5:

Blocks extend UML classes and are used to model system decom-

position, system interaction, and various system properties such as

values [33]. The properties of blocks are organized in compartments.

The values-compartment lists a block’s ValueProperties, which are

ValueTypes having composite aggregation, e.g., numPoles of the

block BiotSavart. PartProperties, listed in the parts-compartment,

are blocks that have composite aggregation [33], e.g., leverArm of

BiotSavart. ConstraintBlocks are specific blocks used to integrate

engineering analyses, e.g., reliability, but also to specify physical

constraints as mathematical expressions [33]. ConstraintProperties
of a block are ConstraintBlocks having composite aggregation, e.g.,

voltage of SynchronousDriving in Figure 2. ConstraintParame-
ters are the ValueProperties of ConstraintBlocks and represent the

variables of such expressions. ProxyPorts make features or internal

parts of a block available for other components, but do not repre-

sent separate parts of the system nor exhibit behavior or comprise

internal parts [33]. They are properties of a block typed by Inter-
faceBlocks and identified by the stereotype «proxy», e.g., p_el of
the block ConvertEnergyElToMech typed by the InterfaceBlock

ElEnergy_in. InterfaceBlocks specify the elements that flow be-

tween a block and its environment through FlowProperties with
direction in, out or, inout [33]. Section 5 gives more details on

InterfaceBlocks and their usage. An internal structure, i.e., the inter-
connection of a composition of blocks, is modeled by an IBD that

belongs to the composed block. The bottom of Figure 2 shows an

IBD that models the functional structure of the running example

introduced in Section 2. The IBD shows the interaction between the

PartProperties of the block GenerateVolumeFlow through Connec-
tors between the ProxyPorts of the PartProperties. In IBDs, Proxy-

Ports, typed by InterfaceBlocks that have FlowProperties of only

one direction which is not inout, hold an arrow showing this

unique direction. For example, p_el typed by the InterfaceBlock

ElEnergy_in in the IBD in Figure 2, has only FlowProperties of di-

rection in. Parametric diagrams are restricted IBDs that show only

the usage of ConstraintBlocks. BindingConnectors are connectors
that specify the equality of the numeric values of the properties at

both ends and hold the stereotype «equal» [33]. Being defined on

UML [32], SysML offers infrastructure to create profiles by defining

stereotypes as extensions of meta-classes or as sub-stereotypes [33].

4 A META-MODEL FOR FUNCTIONAL
ARCHITECTURES OF CPS

Ongoing research in ME deals with narrowing the gap between

functional requirements and the product architecture. Proclaimed

methods differ in terms of terminology and details. Prevalently,

these methods describe the product’s function as a functional struc-
ture and use descriptions of physical effects as links to geometric

components [40, 54]. Design catalogs [28, 44, 53] document recur-

ring elements, such as functions, physical effects, or geometries

to enable their systematic variation and rational reuse. In practice,

however, mechanical engineers rarely explicate functional struc-

tures or utilize design catalogs during development. Mostly, the

link between function and geometrical component is kept in the

engineer’s mind. Formalizing the knowledge from design catalogs

and linking the information to detailed models describing physical

effects and geometry provides the basis for systematic reuse in an

MDE approach. A modeling language that enables to model func-

tions, solutions, geometry and physical effects, where models of

solutions comprise the latter two serves this purpose. The formal na-

ture of the modeling language establishes systematic relationships

between models of functions and solutions, as well as geometry

and physical effect. Models in this language can be (re)used to, e.g.,
investigate different solutions for products at early development

stages by varying solutions to functions. This section summarizes

and extends the concepts of [28, 40] and presents a formalizing

meta-model [48] which provides the conceptual basis for defining

such modeling languages.
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Figure 3: Meta-model that describes the types of functional
flows. The shaded classes mark extensions to [28, 40].

4.1 Functional Structures
Mechanical design theory gives a definition of function based on

the concept that a system or a part of it can be delimited by a

boundary, through which physical quantities can enter and leave

the system as functional flows [40]. The function of the delimited

system transforms the incoming functional flows to the outgoing

flows. Therein, functional flows are classified as flows of signal,
energy andmaterial [40, 52]. In the running example (see Section 2),

the main function of the pump is to “apply fluid with mechanical

energy”. The function applies the incoming cooling medium flow

with mechanical energy (P𝑚𝑒𝑐ℎ), such that the cooling medium

leaving the system boundary is accelerated. The function of a me-

chanical system breaks down into several sub-functions linked

by functional flows [40]. Functions are referred to as elementary
functions if the transformation of flows they represent does not

physically decompose further [28]. The following section captures

and extends these concepts in the meta-models shown in Figure 3

and 4 from a language engineering point of view. The shaded classes

mark extensions of [28, 40] to enable the formalization.

Functional Interfaces: To capture kinds of functional flows, our
meta-model uses a concept of channel types. In an object-oriented

fashion [47, 48], channel types specify the type of a functional flow

by means of attributes and constraints. The channel types energy,
signal, and material flow [28, 40] comprise attributes representing

the characteristics of physical flows of energy or material and of

logical signal flows. A material flow may additionally reference a

material representing the physical material that is flowing in detail,

e.g., [31]. Material engineering is out of the scope of this paper

and we consider materials solely as types specified by attributes

and constraints. Here, constraints are mathematical expressions

and represent (physical) dependencies between the attributes of a

channel type or a material.

The attributes of channel types have a basic type specifying the

data type of the attribute. The dynamicity specifies how an attribute

changes its value during system runtime. For example, theory on

software functions often considers signals to change discretely [11].

Attributes that represent physical characteristics belong to either

an energy, or material flow channel type or to a material. These

attributes typically represent static, i.e., fixed, characteristics of the
physical entity, such as e.g., the specific heat capacity of a material,

or they represent characteristics that change continuously at system
runtime, e.g., the temperature of a physical part.

1..*

MM Functions

1

type
Channel

1

Functional

Interface

*

Physical

Function

Architecture Function

Elementary

Effect

Elementary

Geometry

geometry

1

«Enumeration»

Direction

in

out

1

effect

ChannelType
dir

1 **

*

Figure 4: Meta-model of architectures. The shaded classes
are extensions of [28, 40].

Functional Architectures: Describing system functions as a de-

composed hierarchy is common to ME [28, 40] and SE [8, 17].

Therein, the functional composition of the sub-functions specifies

the behavior of the decomposed function [11, 40]. Each function has
an interface comprising a set of typed channels with an unambigu-

ous direction, that is either in or out (cf. Figure 4). The meta-model,

utilizes the composite pattern [19] to capture an architecture as
a hierarchical composition of functions. The meta-model defines

modeling languages for ME, thus, the leaves of a functional architec-

ture are physical functions, which capture the elementary functions

of [28]. The abstract elementary effect and elementary geometry
bridge the gap between the physical function and its principle solu-

tions since their implementations represent effects and geometries

suited to realize the physical function. As detailed in Section 4.2,

specifying an interaction of a physical effect and a quantitative

geometry adds a behavior to the physical function. Extending the

meta-model to capture functional architectures across domains, is

possible by integrating description techniques for the behavior of

leaf-functions from other domains: Software and control engineer-

ing, for example, often utilize various kinds, of automata to specify

functional behavior, e.g., [1, 13, 42, 47].

4.2 Effect Catalogs and Principle Solutions
ME created design catalogs to rationalize the PDP by storing proven

solutions for recurring design tasks [22, 40]. Various design catalogs

exist in ME, e.g., for machine elements [44] or mechanic connec-

tions [45]. A popular contribution focuses on physical effects to

support engineering solutions that realize a functional structure

within the PDP [27, 28, 40]. The catalog comprises 350 physical

effects that are mapped to the elementary function they are suited

to fulfill [28]. For the conversion of electrical to mechanical energy

in the running example (see Section 2), the effect catalog lists, e.g.,
the Biot-Savart effect (cf. Figure 11). Principle solutions characterize
how a physical effect, given a qualitative geometry with certain

material properties [40], fulfills a physical function, i.e., the leaf of
a functional structure. The principle solution of the physical func-

tion “apply fluid with mechanical energy” in the running example

(see Section 2) could, for example, specify that the selected effect

should be implemented with the principle geometry of a rotating

wheel mounted within the cylinder through which the fluid flows,

to which Section 5.3 provides further details.
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Figure 5: Meta-model of solutions. The shaded classes are
extensions to [28, 40].

Meta-model of Solutions. Figure 5 shows the meta-model for prin-

ciple solutions of physical functions. To enable systematic design of

principle solutions to physical functions, the former must be consis-
tent to the latter. That is, the specification of the function must be

fulfilled by the solution. Therefore, we consider a principle solution
to refine a physical function (cf. Figure 4) by selecting a principle
effect and a principle geometry. To support the idea of [28], that

elementary functions point to the physical effects suited to realize

them, principle effects implement the abstract elementary effect of

the physical function. Similarly, suitable principle geometries imple-

ment the elementary geometry of the respective physical function.

Models of physical functions, principle effects, and principle geome-

tries thereby become reusable. The implementation relation from

the elementary geometry and elementary effect to their principle

counterparts formalizes the mapping between elementary function

and physical effect proposed in [28].

Physical phenomena are described as mathematical formulas

over geometric and dynamic variables, captured by the constraints

a principle effect is composed of in the meta-model in Figure 5. The

lever effect, for example, requires a lever arm to be mounted on

a pivot. Putting force on the longer end of the lever arm, by the

lever effect, causes a larger force to occur at the other end. The

mathematical formula relates the strength of both forces to the

lengths of the lever emanating from the pivot. Principle solutions

describe how such phenomena can be utilized to fulfill a physi-

cal function by relating attributes of the principle effect and the

principle geometry through constraints. A physical effect often

comprises an interaction of multiple physical laws. Principle effects

model physical effects by specifying this interaction as a network

of constraints, where each constraint represents a physical law. A

principle solution relates the attributes of the principle effect to

the attributes of the principle geometry and the attributes of the

channel types of the incoming and outgoing channels. The prin-

ciple effect, thereby, mathematically describes the transformation

of the incoming flows to the outgoing flows, i.e., the behavior of
the physical function, dependent on the chosen principle geometry.

The meta-model considers principle geometries as compositions

of geometric elements which are types characterized by attributes

and constraints between these attributes. The fixed attributes of a

geometric element represent static characteristics, e.g., dimensions,

continuous attributes specify dynamic characteristics, e.g., velocity,
and constraints specify dependencies between these attributes, e.g.,
that the volume is the product of the dimensions. ME practition-

ers typically rely on simulation languages to model constraints or

physical effects [2, 6, 21, 41, 55], which are tailored particularly for

modeling differential equations, and respective tooling often comes

with powerful solvers. For geometry, CAD models are the typical

choice of the domain experts. Languages encoding the meta-model

may integrate such models.

Solutions implement architectures and redefine the inherited

physical functions or architectures to principle solutions or solu-

tions, respectively. A solution’s components, i.e., (principle) solu-
tions, are interconnected by functional flows as inherited from the

architecture. Constraints of a solution express the mathematical

dependencies between the attributes of its components.

5 MODELING MECHANICAL FUNCTIONS
AND SOLUTIONS IN SYSML

The previous section conceived an expressive meta-model which

formalizes and extends the concepts of mechanical design the-

ory [28, 40] from a language engineering point of view. The ex-

tension of [28, 40] includes, e.g., the notion of channel types, the

systematic mapping of principle solutions to elementary functions

as well as the relation between functions and solutions. The latter

provides the foundation to systematically define domain-specific

modeling languages for the ME domain which enable to model

the functional architecture of a mechanical system. In the follow-

ing, we propose SysML for Functional Mechanical Architectures

(SysML4FMArch), a SysML profile which gives a concrete syntax

that encodes the meta-model by specifying suitable stereotypes and

relations between them.

5.1 Functional Interface
Functions interact by means of signal, material or energy flows [40],

which our meta-model captures as channel types. To this effect,

SysML4FMArch specifies the stereotypes «Signal», «Energy», and

«MaterialFlow», as well as «Material» and «Attribute» which en-

code the respective elements of the meta-model (cf. Figure 3). At-
tributes are specific ValueTypes with a property of the enumer-

ation type «Dynamicity» which encodes the respective element

of the meta-model and indicates how the numeric value of the

modeled attribute changes during runtime. The abstract channel

type of the meta-model does not have a respective stereotype in

SysML4FMArch to assure that functional flows are always classi-

fied. The attributes of channel types or materials are represented

as «Attribute»-typed ValueProperties. Constraints between these

attributes are modeled by ConstraintBlocks and BindingConnec-

tors [33] .

The examples in Figure 6 illustrate this in the BDD and the

parametric diagram at the bottom left: A flow of fluid is represented

by a «MaterialFlow»-block with three attributes. One is of the real

number type Pressure and specifies the unit Pascal as well as the
«Dynamicity» cont, which indicates, that ValueProperties typed by

Pressure change their value continuously during system runtime.
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flow properties
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Figure 6: Top: SysML4FMArch’s encoding of themeta-model
in Figure 3. Bottom: Examples for channel types modeled in
SysML4FMArch.
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+isAbstract : Boolean = true
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Figure 7: SysML encoding of functions as defined by the
meta-model in Figure 4.

The ConstraintBlock HydraulicPower, shown at the bottom left,

models the physical relationship between the attributes of Fluid.
Channels of functional interfaces are represented by Proxy-

Ports [33]. SysML4FMArch requires the InterfaceBlocks typing

these ProxyPorts to have FlowProperties of unambiguous direction,

i.e., the usage of direction inout or specifying FlowProperties of

multiple directions is not allowed. The bottom right of Figure 6

shows examples for InterfaceBlocks to be used for typing Proxy-

Ports. Note that Fluid and MechEnergy are models of the physical

entities and not of flows of information about these entities.

5.2 Functions
Figure 7 shows how SysML4FMArch encodes the notions of archi-

tecture, function, physical function, elementary effect and elemen-

tary geometry, that were introduced in Section 4.1.

Architectures and physical functions are encoded as stereotyped

blocks (see Figure 7). Since the profile is intended for users with a

background in ME, physical functions are encoded by the stereo-

type «ElementaryFunction» to convey the terminology of [28, 40].

SysML4FMArch provides the «Function»-stereotype that encodes

«profile»

Solutions

«stereotype»

Functions::

Architecture

«stereotype»

Solution

«stereotype»

PrincipleSolution

«stereotype»

PrincipleGeometry

«stereotype»

PrincipleEffect

«stereotype»

Functions::Function
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Functions::ElementaryGeometry

«stereotype»

SysML::ConstraintBlocks::
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«stereotype»

EffectElement

«stereotype»

GeometricElement

«stereotype»

SysML::Blocks::

Block

«stereotype»

ChannelTypes:: 

Material

0..1material

activeSurface * * physicalLaw

*

joint

0..1

effectgeometry

0..1

*

* *
*

*

«stereotype»

ChannelTypes::Attribute
* *

*

Figure 8: SysML4FMArch encoding of solutions (cf. Figure 5).

the notion of function which is abstract in the meta-model. This

enables black-box use of functions and allows to postpone specify-

ing a behavior, as it may not be known at early development stages

whether the function has to be further decomposed.

To illustrate this, consider the example «Architecture» shown

in Figure 2. The IBD at the bottom shows the internal structure

of the «Architecture» GenerateVolumeFlow which comprises two

PartProperties of «ElementaryFunction»-type, i.e., moveFluid and

elToMech as well as the «Architecture» setVRot.
The physical functions described in [28] can be digitized by

storing respective «ElementaryFunction»-blocks in a SysML Mod-

elLibrary [33]. The general specifications of [28] often need to be

refined to integrate them as part of an architecture. Utilizing a

specialization of an «ElementaryFunction» allows to refine the

function’s interface while preserving consistency.

Elementary Effects and Elementary Geometries: A physical func-

tion can be realized by selecting a physical effect from a finite list [28,

40]. The interconnection of a physical effect and geometry can be in-

terpreted as the behavior of a physical function. Thus, physical func-

tions comprise an elementary geometry and an elementary effect

in the meta-model (cf. Section 4.1). SysML4FMArch encodes these

elements by abstract blocks with respective stereotypes (cf. Fig-
ure 7). The abstract «ElementaryGeometry» and «ElementaryEf-

fect» serve as placeholders for the «PrincipleEffect» and «Princi-

pleGeometry». The latter are implementations of their elementary

counterparts that can be selected when creating a «PrincipleSolu-

tion» that specializes an «ElementaryFunction» (see Section 5.3).

The example at the top of Figure 2 illustrates this: The «PrincipleSo-

lution» SynchronousDriving specializes ConvertEnergyElToMech
which redefines the elementary effect and elementary geometry to

their implementations BioSavart and RotorStator, respectively.

5.3 Solution Architectures
To specify a principle solution for a physical function in an archi-

tecture, the engineer chooses implementations of the elementary

geometry and elementary effect owned by the physical function

and specifies the constraints between the values of both compo-

nents. Figure 8 shows the encoding of the meta-model in Figure 5

in SysML4FMArch which is detailed in the following paragraphs.
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«EffectElement»

hydro : HydrodynamicEffect

{p,Q = pressField(w, nW, oDW, iDW,wW, cW, oDC)}

Q : VolumeFlowRate

p : PressurenW : Length
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q : 

VolumeFlowRate

w : RotVelocity
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par [PrincipleEffect] Hydrodynamics

w :

RotationalVelocity
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«equal»

«equal»

«equal»

«equal»

«equal»
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Figure 9: Principle effect representing the cause for turbu-
lences in flowing fluids, modeled in SysML4FMArch.

Effect Elements and Geometric Elements: SysML4FMArch rep-

resents geometric elements as blocks with the stereotype «Geo-

metricElement», comprising ValueProperties typed by «Attribute»-

ValueTypes. Constraints between attributes of geometric elements

are modeled, either as BindingConnectors in case of equalities or

as regular ConstraintBlocks in case of more complex mathematical

relationships. Effect elements, i.e., physical laws or relations be-
tween attributes of principle effects, are modeled as specific SysML

ConstraintBlocks with the «EffectElement»-stereotype. Their Val-

ueProperties are typed by «Attribute»-ValueTypes and represent

the attributes of the constraint (cf. Figure 8). An «EffectElement»

may link to a simulation model, which can be realized e.g., as pro-
posed in [25]. In SysML4FMArch, the variables of the simulation

are represented by the ConstraintProperties of «EffectElements».

The attributes of a geometric element are modeled by the Value-

Properties of a «GeometricElement».

Principle Geometry and Principle Effect: Principle geometries

comprise the active surfaces between which physical effects come

into action. In analogy to the meta-model, a «PrincipleGeometry»

therefore comprises «GeometricElement»-PartProperties, each rep-

resenting an active surface. Since a principle effect is an interaction

of physical laws, a «PrincipleEffect» in SysML4FMArch comprises

ConstraintProperties typed by an «EffectElement». BindingCon-

nectors connect the «Attribute»-ValueProperties of a «PrincipleEf-

fect» to attributes of its «EffectElement»-ConstraintProperties and,

thereby represent equality of the numeric values of the ValueProp-

erties at the connector’s ends.

To illustrate this, consider the principle effect modeled in Fig-

ure 9. The equation 𝑝 · 𝑄 = 𝑀 · 𝜔 (1) describes the physical law

that causes turbulences, i.e., a rotational velocity, within a flowing

fluid [43]. Here, 𝑝 is the fluid’s pressure, 𝑄 is the volume flow rate,

𝜔 is the rotational velocity, and𝑀 is a momentum imposed by a me-

chanical energy. Thus, the «PrincipleEffect» Hydrodynamics has
«Attributes» of respective types which all specify the «Dynamicity»

cont (e.g., Figure 6 shows the definition of Pressure). The momen-

tum strongly depends on the geometric setup, through which the

fluid is flowing. In the context of the running example (cf. Section 2),
we assume that the fluid flows through a tubular pipe with a length

of oCylWidth and a diameter of oCylDia. In the pipe, the fluid flows
through a paddlewheel with nW paddles, an outer diameter of oWDia,
an inner diameter of iWDia, and a width of wWidth. These Value-
Properties of Hydrodynamics represent geometric variables of fix

IBD [PrincipleSolution] HydrodynamicPump

«PrincipleEffect»

effect : Hydrodynamics

outerCylDia: Length

wheelWidth : Length

numWingsWheel : Integer

innerWheelDia : Length

outerWheelDia: Length
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«ProxyPort»
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{direction : in}
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{p = p_in + dP}
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Figure 10: Model of a possible principle solution to realize
the elementary function ApplyFluidWithMechanicalEnergy.

kind, as these attributes are assumed to not change their value at

system runtime. The «EffectElement» HydrodynamicEffect links

to a simulation model that calculates a difference p between pres-

sures of the incoming and the outgoing fluid, and a volume flow

rate q according to Equation (1). BindingConnectors between the

ConstraintParameters of the ConstraintProperty hydro model the

physical relationships between the attributes of the principle ef-

fect as stated by the physical law modeled by the «EffectElement»

HydrodynamicEffect.

Solutions and Principle Solutions: A principle solution inherits

the functional interface, the elementary geometry and the elemen-

tary effect from the physical function it fulfills. By redefining the

latter two to concrete implementations, i.e., principle effect and

principle geometry, the engineer creates a solution to realize the

functionality [28]. The interaction of the principle effect and the

principle geometry specifies the behavior of the principle solu-

tion. Figure 8 shows how SysML4FMArch encodes this: Principle

solutions are represented by blocks with the respective stereo-

type composed of parts typed by a «PrincipleGeometry» and a

«PrincipleEffect» (cf. Figure 8). A «PrincipleSolution» must spe-

cialize an «ElementaryFunction» and may redefine the inherited

«ElementaryGeometry» and «ElementaryEffect» to a «Principle-

Geometry» and a «PrincipleEffect», respectively. The selection

of either one may be delayed, indicated by the multiplicity 0..1.
SysML4FMArch uses BindingConnectors to specify the constraints

between attributes of principle geometries and principle effects

as well as the function’s interface. Effectively, this models the be-

havior of the function by specifying how the function changes the

attributes in the representations of the flows that enter or leave the

function through its interface. The physical interaction of principle
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geometry and principle effect are represented by BindingConnec-

tors between the «EffectElement»-ConstraintProperties and the

«GeometricElement»-PartProperties of a «PrincipleSolution». The

constraints between ValueProperties of a «Solution» and the con-

tained «PrincipleSolution» components are modeled equivalently.

Figure 10 shows an IBD of HydrodynamicPump, which special-

izes the «ElementaryFunction» ApplyFluidWithMechEnergy and
inherits its interface. Hydrodynamics specializes the «Elementary-

Effect» of ApplyFuidlWithMechEnergy (both specialization re-

lations are not shown in Figure 10). A simulation linked to the

«EffectElement» modeling Equation (1) assumes the fluid to flow

through a tubular pipe comprising a paddlewheel. The «Princi-

pleGeometry» WheelCyl specializes the «ElementaryGeometry»

of ApplyFluidWithMechEnergy and has PartProperties of type

PumpWheel and Cylinder. These represent a pair of active sur-

faces possible to enforce the represented effect, and assign the

attributes of the effect to distinguishable geometric shapes. The

pressure of the outgoing fluid is determined as the sum of the pres-

sure of the incoming fluid and the pressure difference which results

from the hydrodynamic effect acting on the fluid, which is mod-

eled by the «EffectElement» PressureDifference. The rotational
velocity, power, and torque imposed by the incoming mechanical

energy must obey the law of energy conservation modeled by the

«EffectElement» RotationalPower.

6 MODELING EXAMPLE: AUTOMOTIVE
ELECTRICAL COOLANT PUMP

This section presents an extract from the results of an interdisci-

plinary industrial project, involving researchers from SE and ME as

well as practitioners from the automotive industry. In the project,

we have applied SysML4FMArch to model the cooling system for

an automotive combustion engine drive train (cf. Section 2). This

section presents and explains the SysML4FMArch models of the

coolant pump, a part of the cooling system, in detail.

6.1 Architecture of the Electric Coolant Pump
The coolant pump’smain functionality is to keep the coolingmedium

flowing which is physically necessary for it to absorb the heat from

the engine’s cylinders. The IBD of the «Architecture» GenerateVol-
umeFlow in Figure 2 shows the decomposition of this functionality.

The architecture has ProxyPorts representing three incoming flows,

i.e., cm_inwhich represents an incoming coolingmedium, an electri-

cal energy pEl, and a signal flowControl, as well as cm_outwhich
represents the outgoing flow of the cooling medium. Figure 6 shows

the InterfaceBlocks for typing the ProxyPorts representing the func-

tional flows of fluid. The other InterfaceBlocks have FlowProperties

typed by a «Signal» ControlSignal which is defined similar to

Fluid but specifies the unit m/s and the AttributeKind discrete,
and by an«Energy» ElEnergywhich represents electrical energy by
means of a real number, the unit Watt, and the AttributeKind cont.
The flow flowControl represents an information flow (changing

its value discretely at runtime) telling how fast the outgoing fluid

has to flow, in order to absorb enough heat from the engine, which

enters the function SetRotationalVelocity. The latter is modeled

as «Architecture» that calculates a necessary amount of electrical

energy. The outgoing signal flow enters an actuator function which

«EffectElement»

biotSavart : BiotSavartLaw

{F = B * i * l * N}

i : Current

l : Length F : Force 
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magneticField : Magnetism

{B =  field(nP, rotW, mu_r, rotDia, statDia)}
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Figure 11: The Biot-Savart effect is an interaction of physi-
cal laws: Magnetism, the LeverEffect and the BiotSavartLaw.
The figure shows a model of this principle effect to be used
in principle solutions of ConvertEnergyElToMech .

outputs a flow of electrical energy (pEl_out). The «Elementary-

Function» ConvertEnergyElToMech represents a physical function
that converts the flow of electrical energy into a flow of mechani-

cal energy p_mech_out. The physical function represented by the

«ElementaryFunction» ApplyFluidWithMechEnergy impinges this

mechanical energy p_mech upon the incoming fluid cm_in and re-

sulting in the outgoing flow fluid_out.

6.2 Solution-Models
The «Architecture» GenerateVolumeFlow comprises two «Elemen-

taryFunctions» for which [28] lists physical effects suitable to real-

ize their functionality. In the solution of this architecture consid-

ered here, the hydrodynamic effect provides the acceleration of the

fluid specified by ApplyFluidWithMechEnergy. Figure 9 shows the
SysML4FMArch-model of the principle solution using the hydrody-

namic effect which was explained previously in Section 5.3. This

section details a principle solution to convert electrical to mechani-

cal energy using the Biot-Savart-Effect [24]. This principle solution
realizes the elementary function ConvertEnergyElToMech in our

running example (cf. Figure 2).

Principle Solution to Convert Electrical to Mechanical Energy: The
BDD in Figure 12 shows the «PrincipleEffect» BiotSavart which

specializes the «ElementaryEffect» EE_ConvEnElToMech. The prin-
ciple effect is an interaction of multiple physical laws, therefore,

BiotSavart comprises three «EffectElements», i.e., Magnetism,
BiotSavartLaw and LeverEffect, connected by BindingConnec-

tors which represents the following: An electromagnetic coil (stator)

is positioned within a magnetic field 𝐵. The magnetic field is cre-

ated by a permanent-magnet (rotor), that is placed at a distance 𝑟

to a rotation axis such that it may rotate around the stator. Once a

voltage implies a current 𝑖 in the conductor, the Lorentz-force starts

acting on the rotor. Due to the lever-effect, a mechanical torque𝑀

occurs around the rotation axis, causing the rotor to rotate. The

rotation reflects the existence of mechanical energy. The physical

laws are (1) 𝐵 = 𝜇0 · 𝜇𝑟 ·𝐻 , (2)𝑀 = 𝐹 ·𝑟 , and (3) 𝐹 = 𝐵 · 𝑖 ·𝑙 ·𝑁 , where
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Figure 12: Principle solution of ConvertEnergyElToMech us-
ing the «PrincipleEffect» BiotSavart, which represents the
electric drive of the cooling pump.

𝜇0 is the vacuum permeability, 𝜇𝑟 is the permeability of the rotor,

and 𝐻 is the magnetic field strength induced by the rotor. Further,

𝑙 is the length and 𝑁 the number of windings of the stator. If losses

are not considered, electrical input power is equal to mechanical

output power (see, e.g., [24] for details).
Figure 11 shows a SysML4FMArch-model of this principle ef-

fect: The magnetic field strength 𝐻 depends on the number of

poles numPoles and the diameter of the rotor as well as the di-

ameter of the conductor. By means similar to [25], the «EffectEle-

ment» Magnetism links to a simulation model that calculates the

magnetic field B from the geometric attributes of the stator, i.e.,
the conductor and the rotor, according to Equation (1). The «Ef-

fectElement» BiotSavartLaw models Equation (2): The Lorentz-

force F depends on the magnetic field B, the electric current i,
the stator’s statorWidth and the number of windings of the sta-

tor numWindingsStator. The «EffectElement» leverEffect mod-

els Equation (3): The torque that acts around the rotation axis

depends on the Lorentz-force acting on the rotor and length of the

lever arm, i.e., the diameter of the rotor rotorDia.
Figure 12 shows a principle solution to apply a fluid with me-

chanical energy that (re-)uses the «PrincipleEffect» BiotSavart:
SynchronousDriving specializes the «ElementaryFunction» Con-
vertEnergyElToMech (cf. Figure 2) and therefore inherits the in-

terface. Further, SynchronousDriving specifies the «PrincipleEf-
fect» BiotSavart explained above and the «PrincipleGeometry»

RotorStator which models a geometry comprising a rotor and a

stator, both characterized by attributes of fix AttributeKind. The
BindingConnectors between the attributes of the modeled principle

effect and of the geometric elements of the represented principle

geometry as well as the attributes of the represented channel types

model the equality of their numeric values. The «EffectElements»

ElectricalPower and MechanicalPower represent the physical

law of energy conservation.

Solution to Generate a Volume Flow. The models of the princi-

ple solutions introduced above can be used to model a solution to

the «Architecture» GenerateVolumeFlow whose internal structure
is modeled in Figure 2. A solution to GenerateVolumeFlow is a

«Solution»-block that specializes the «Architecture» GenerateVol-
umeFlow. The «PrincipleSolution»-blocks HydrodynamicPump and

SynchronousDriving specialize the «ElementaryFunction»-blocks

ApplyFluidWithMechEnergy as well as ConvertEnergyElToMech,
respectively. The latter type the PartProperties moveFluid and

elToMech of GenerateVolumeFlow, as shown in Figure 2. A «Solu-

tion» to this «Architecture» inherits the interface and the PartProp-

erties of GenerateVolumeFlow. By redefining ConvertEnergyEl-
ToMech to SynchronousDriving and ApplyFluidWithMechEnergy
to HydrodynamicPump, this solution integrates these «PrincipleSo-

lutions» and forms a model of the solution to the entire architecture.

In this case, the solution models an electrical coolant pump.

7 RELATEDWORK AND DISCUSSION
Modeling as the act of describing or prescribing properties of the

system under development, is the essential foundation for systemat-

ically engineering (cyber-physical) systems. MDE employs formal

modeling languages to enable frontloading of analysis and design

exploration to reduce engineering costs, facilitate collaboration

among domain experts, and supports the synthesis of system parts

by automation. Research on this topic is scattered across the do-

mains of CPS engineering, including ME and SE.

RelatedWork. Ongoing research has produced theories, and mod-

eling languages for engineering software and electronic functions

of CPS, e.g., [1, 42], as well as for designing [23, 49], engineering [4],
and operating [3] CPS in various domains. Most of these approaches

consider modeling only through the lens of software engineering,

i.e., for discrete and functional systems. Where continuity and ge-

ometry are supported, the theories and languages do not support

established processes or modeling concepts from other (i.e., the
“physical”) domains, such as ME.

In the Focus theory [11], systems are composed of components

that realize stream processing functions. As functions communicate

via channels only, they can be (de)composed and refined systemati-

cally, where refinement considers both, structure and the behavior

of components. Applying Focus’s notion of refinement within a

model-driven functional PDP is subject to ongoing research.

In ME, a variety of design catalogs to aid the design process

regarding various aspects [18] exist in the literature, e.g., [40, 46].
Approaches that digitize such catalogs, e.g., [18, 34], focus on mak-

ing the (extended) information from existing design catalogs ac-

cessible by providing digital textual descriptions complemented

with mathematical expressions or sketches. Lacking a represen-

tation in a formal modeling language that also enables to inte-

grate the information within a functional architecture of a me-

chanical system hinders to apply these approaches in a model-

driven PDP. Modeling languages based on UML or SysML have
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emerged or been used in theME domain, e.g.,MechatronicUML [12],

SysML4Modelica [5], or SysML4Mechatronics [26], in the field of

production systems engineering [16], and in the context of Industry

4.0 [58], e.g., UML4IoT [51]. Neither of these languages enable to

relate (elementary) functions and (principle) solutions of mechani-

cal systems as part of a systematic PDP. The FAS-method [30, 56],

extended for ME by FAS4M [39] promotes modeling functional

architectures for system design and both define respective SysML

profiles. As introduced in [37, 38] the latter uses trace links to

underly SysML elements with informal sketches of geometric com-

ponents. The focus of these contributions lies on the connection

between requirements and function. In contrast to our approach,

principle solutions, here, are described by informal sketches that

neither distinguish between principle geometry and principle ef-

fect nor enable automatic processing. This prevents utilizing the

information from design catalogs such as, e.g., [28], and to compose

the physical product architecture of geometric elements related

to physical effects by a principle solution. This holds similarly for

the techniques proposed in [15, 20, 57, 59]. In particular, the ap-

proaches in [15, 20] do not consider functional structures in the

sense of [28, 40] (see Section 4.1) and do not systematically es-

tablish consistency between function and principle geometry in

a model-driven approach. Currently, precise modeling languages

tailored to support the PDP based on the foundations of functional

architectures established in [27, 28] do not exist. Explicit modeling

techniques for the PDP in ME do not support the time-honored

paradigms that paved the way for the success of software engineer-

ing, such as abstraction, automation, composition, refinement, and

separation of concerns.

Discussion. The meta-model and its encoding in SysML emerged

during an interdisciplinary project comprising researchers from SE

andME as well as practitioners from the automotive industry. So far,

the meta-model captures and extends the notion of functional ar-

chitectures prevalent in mechanical design theory [28, 40]. Therein,

components interact through functional flows, and physical func-

tions are implemented by principle solutions, i.e., an interaction of

a physical effect and a geometry. Integrating description techniques

for functional behavior prevalent, e.g., in the software [11, 13] and

control engineering domains [1, 42], is subject to ongoing research.

As SysML is fairly in known in the automotive domain [14, 29] and

since there exist modeling tools with integrated model-processing,

we encoded the meta-model as a SysML profile. To test the approach

in the ME domain, we engineered an automotive coolant pump

and modeled its functional architecture as well as the solutions

to each function in SysML4FMArch. The model comprises mul-

tiple SysML4FMArch-diagrams which were presented exemplary

throughout the paper. The systematic relation between functions

and solutions in the SysML4FMArch-models enabled to use the tool-

ing effectively for automation during the mechanical design process.

For example, we tested the suitability of the chosen principle so-

lutions (cf. Figure 10 and Figure 12) by linking virtual simulations

to the effect elements in the SysML4FMArch model and for virtual

dimensioning of the pump wheel, i.e., the automatic manipulation

of values of its geometric attributes, (cf. Figure 10), which was en-

abled by utilizing the automatic model execution functionality of

existing SysML tools. Towards the end of the project, the pump

wheel was 3D-printed to obtain a prototype of a part of the physical

product. Further automation for functional testing and dimension-

ing as well as digitizing a design catalog such as [28] are subject

to ongoing research. However, SysML has its drawbacks, e.g., re-
garding modeling efficiency, and intuitiveness. SysML’s nature as

a general purpose language and the inherited UML concepts de-

crease understanding and ease of use for ME practitioners, as, for

them, these concepts are not as intuitive as for SE practitioners.

Further, the graphical nature of SysML may hinder manageability

of SysML4FMArch models with many attributes. The lack of formal

semantics for SysML hinder the implementation of product-specific

automatic model processing and tailored model analyses based on

mathematical theories.

8 CONCLUSION
This paper formalized and extended the concepts of [28, 40] in

a meta-model that defines modeling languages for the ME do-

main. Further, we encoded the meta-model in the SysML profile

SysML4FMArch and employed the language within in an inter-

disciplinary, industrial project to engineer an automotive coolant

pump. As a result, the models could be used for automatic, virtual

dimensioning and testing, which holds out the prospect of an ag-

ile model-driven PDP supported by automation. While SysML has

its drawbacks regarding formality and intuitiveness, the results of

the project signpost the potential of utilizing modeling languages

for explicating functional architectures of a technical system and

making the knowledge of design catalogs assimilable for a holistic

MDE approach that narrows the gap between the functional and

the product architecture by means of abstraction.

REFERENCES
[1] Rajeev Alur. 2015. Principles of cyber-physical systems.
[2] Faysal Andary, Joerg Berroth, and Georg Jacobs. 2019. An Energy-Based Load

Distribution Approach for the Application of Gear Mesh Stiffness on Elastic

Bodies. Journal of Mechanical Design 141, 9 (2019).

[3] Patrick Bareiss, Daniel Schütz, Rafael Priego, Marga Marcos, and Birgit Vogel-

Heuser. 2016. A model-based failure recovery approach for automated production

systems combining sysml and industrial standards. In 2016 IEEE 21st International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE, 1–7.

[4] Luca Berardinelli, Stefan Biffl, Arndt Lüder, Emanuel Mätzler, Tanja Mayerhofer,

Manuel Wimmer, and Sabine Wolny. 2016. Cross-disciplinary engineering with

AutomationML and SysML. at-Automatisierungstechnik 64, 4 (2016), 253–269.

[5] Olaf Berndt, Uwe Freiherr von Lukas, and Arjan Kuijper. 2015. Functional Mod-

elling And Simulation Of Overall System Ship-Virtual Methods For Engineering

And Commissioning In Shipbuilding.. In ECMS. 347–353.
[6] Joerg Berroth, Georg Jacobs, Tobias Kroll, and Ralf Schelenz. 2016. Investigation

on pitch system loads by means of an integral multi body simulation approach.

Journal of Physics: Conference Series 753 (2016).
[7] Manfred Broy. 2006. Challenges in Automotive Software Engineering. In Pro-

ceeding of the 28th international conference on Software engineering - ICSE ’06.
[8] Manfred Broy. 2007. Model-driven architecture-centric engineering of (embed-

ded) software intensive systems: modeling theories and architectural milestones.

Innovations Syst Softw Eng 3 (2007).

[9] Manfred Broy. 2010. A Logical Basis for Component-Oriented Software and

Systems Engineering. Comput. J. 53, 10 (2010).
[10] Manfred Broy, · Heinrich Daembkes, and Janos Sztipanovits. 2019. Editorial to

the theme section on model-based design of cyber-physical systems. Software &
Systems Modeling 18 (2019).

[11] MBroy and Ketil Stølen. 2001. Specification and development of interactive systems.
[12] Sven Burmester, Holger Giese, and Matthias Tichy. 2004. Model-driven develop-

ment of reconfigurable mechatronic systems with mechatronic UML. In Model
Driven Architecture. Springer, 47–61.

[13] Arvid Butting, Arne Haber, Lars Hermerschmidt, Oliver Kautz, Bernhard Rumpe,

and Andreas Wortmann. 2017. Systematic Language Extension Mechanisms

for the MontiArc Architecture Description Language. In European Conference



Modeling Mechanical Functional Architectures in SysML MODELS ’20, October 18–23, 2020, Virtual Event, Canada

on Modelling Foundations and Applications (ECMFA’17) (Marburg) (LNCS 10376).
Springer, 53–70.

[14] Imke Drave, Steffen Hillemacher, Timo Greifenberg, Stefan Kriebel, Evgeny

Kusmenko, Matthias Markthaler, Philipp Orth, Karin Samira Salman, Johannes

Richenhagen, Bernhard Rumpe, Christoph Schulze, Michael vonWenckstern, and

Andreas Wortmann. 2019. SMArDT modeling for automotive software testing.

[15] Martin Eigner, Torsten Gilz, and Radoslav Zafirov. 2012. Proposal for functional

product description as part of a PLM solution in interdisciplinary product devel-

opment.

[16] Stefan Feldmann, Sebastian JI Herzig, Konstantin Kernschmidt, Thomas Wolfen-

stetter, Daniel Kammerl, Ahsan Qamar, Udo Lindemann, Helmut Krcmar, Chris-

tiaan JJ Paredis, and Birgit Vogel-Heuser. 2015. Towards effective management

of inconsistencies in model-based engineering of automated production systems.

IFAC-PapersOnLine 48, 3 (2015), 916–923.
[17] Robert France and Bernhard Rumpe. 2007. Model-Driven Development of Com-

plex Software: A Research Roadmap. In Future of Software Engineering 2007 at
ICSE.

[18] H.-J Franke, S Löffler, and M Deimel. 2004. Increasing the Efficiency of Design

Catalogues By Using Modern Data Processing Techniques. In DS 32: Proceedings
of DESIGN 2004, the 8th International Design Conference, Dubrovnik, Croatia.

[19] Erich. Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1995. Design
patterns : elements of reusable object-oriented software. Addison-Wesley.

[20] Jürgen Gausemeier, Rafal Dorociak, Sebastian Pook, Alexander Nyßen, and Axel

Terfloth. 2010. Computer-Aided Cross-DomainModeling ofMechatronic Systems,

Vol. 2.

[21] Reza Golafshan, Georg Jacobs, Matthias Wegerhoff, Pascal Drichel, and Joerg

Berroth. 2018. Investigation on the Effects of Structural Dynamics on Rolling

Bearing Fault Diagnosis by Means of Multibody Simulation. International Journal
of Rotating Machinery 2018 (2018), 1–18.

[22] Karl-Heinrich Grote and Erik K. Antonsson. 2009. Springer Handbook of Mechan-
ical Engineering. Springer, Berlin.

[23] IEEE Architecture Working Group. 2000. IEEE Std 1471-2000, Recommended
practice for architectural description of software-intensive systems. Technical

Report. IEEE.

[24] Austin Hughes and Bill Drury. 2019. Electric motors and drives: fundamentals,
types and applications. Newnes.

[25] Thomas Johnson, Aleksandr Kerzhner, Christiaan J.J. Paredis, and Roger Burkhart.

2012. Integrating models and simulations of continuous dynamics into SysML.

Journal of Computing and Information Science in Engineering 12, 1 (2012).

[26] K. Kernschmidt and B. Vogel-Heuser. 2013. An interdisciplinary SysML based

modeling approach for analyzing change influences in production plants to

support the engineering. In 2013 IEEE International Conference on Automation
Science and Engineering (CASE).

[27] Rudolf Koller. 2014. Konstruktionslehre für den Maschinenbau - Grundlagen zur
Neu- und Weiterentwicklung technischer Produkte mit Beispielen (4 ed.). Springer,

Berlin.

[28] Rudolf Koller and Norbert Kastrup. 1998. Prinziplösungen zur Konstruktion tech-
nischer Produkte. Springer Berlin.

[29] Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifenberg,

Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas Wortmann,

Philipp Orth, and Johannes Richenhagen. 2018. Improving model-based testing

in automotive software engineering. In Proceedings - International Conference on
Software Engineering.

[30] Jesko G. Lamm and Tim Weilkiens. 2014. Method for Deriving Functional Archi-

tectures from Use Cases. 17 (2014).

[31] Donald Leo. 2008. Engineering Analysis of Smart Material Systems.
[32] Object Management Group. 2015. OMG Unified Modeling Language (OMG UML)

Version 2.5.

[33] Object Management Group. 2019. OMG Systems Modeling Language (OMG

SysML) Version 1.6.

[34] Johannes Mathias, Tobias Eifler, Roland Engelhardt, Hermann Kloberdanz, Her-

bert Birkhofer, and Andrea Bohn. 2011. Selection of Physical Effects Based on

Disturbances and Robustness Rations in The Early Phases of Robust Design. In

International Conference on Engineering Design. 11–15.
[35] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Taylor. 2007. Moving

architectural description from under the technology lamppost. Information and
Software Technology 49, 1 (2007), 12–31.

[36] Nenad Medvidovic and Richard N. Taylor. 2000. A classification and comparison

framework for software architecture description languages. IEEE Transactions on
Software Engineering 26 (2000).

[37] Georg Moeser. 2015. Example on "Usage of Free Sketches in MBSE”. (04 2015).

https://doi.org/10.5445/IR/1000047231

[38] G. Moeser, A. Albers, and S. Kümpel. 2015. Usage of free sketches in MBSE

raising the applicability of Model-Based Systems Engineering for mechanical

engineers. In 2015 IEEE International Symposium on Systems Engineering (ISSE).
50–55.

[39] Georg Moeser, Christoph Kramer, Martin Grundel, Michael Neubert, Stephan

Kümpel, Axel Scheithauer, Sven Kleiner, and Albert Albers. 2015. Fortschritts-

bericht zur modellbasierten Unterstützung der Konstrukteurstätigkeit durch

FAS4M. In Tag des Systems Engineering. Carl Hanser Verlag GmbH & Co. KG,

69–78.

[40] Gerhard Pahl, W. Beitz, Jörg Feldhusen, and Karl-Heinrich Grote. 2007. Engineer-
ing Design - A Systematic Approach (3 ed.). Springer, London.

[41] Gerwin Pasch, Georg Jacobs, Gregor Höpfner, and Joerg Karl Berroth. 2019. Multi-

Domain Simulation for the Assessment of the NVH Behaviour of a Tractor with

Hydrostatic-Mechanical Power Split Transmission. Land.Technik AgEng 2019
: Hannover 77th International Conference on Agricultural Engineering / VDI-

Wissensforum ; Supporters: VDI Max-Eyth Society for Agricultural Engineering

(2019).

[42] Claudius Ptolemaeus. 2014. System Design, Modeling, and Simulation using

Ptolemy II.

[43] Sulzer Pumps. 2010. Centrifugal Pump Handbook. Elsevier.
[44] Karlheinz Roth. 1994. Konstruieren mit Konstruktionskatalogen - Band I: Konstruk-

tionslehre (2 ed.). Springer, Berlin.
[45] Karlheinz Roth. 1996. Konstruieren mit Konstruktionskatalogen - Band III:

Verbindungen und Verschlüsse - Lösungsfindung (2 ed.). Springer, Berlin.

[46] Karlheinz Roth. 2011. Selection of Physical Effects Based on Disturbances and

Robustness Rations in The Early Phases of Robust Design. In International Con-
ference on Engineering Design.

[47] Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Methods.
Springer International.

[48] Bernhard Rumpe. 2017. Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International.

[49] Chantal Steimer, Jan Fischer, and Jan C Aurich. 2017. Model-based design process

for the early phases of manufacturing system planning using SysML. Procedia
CIRP 60 (2017), 163–168.

[50] K. Stephan. 1994. Thermodynamics. In Dubbel Handbook of Mechanical Engineer-
ing. Springer London.

[51] Kleanthis Thramboulidis and Foivos Christoulakis. 2016. UML4IoT—AUML-based

approach to exploit IoT in cyber-physical manufacturing systems. Computers in
Industry 82 (2016), 259–272.

[52] Karl Ulrich and Steven Eppinger. 2003. Product Design and Development (3 ed.).
McGraw-Hill, New York.

[53] VDI. 1982. VDI 2222 Blatt 2 - Konstruktionsmethodik - Erstellung und Anwendung
von Konstruktionskatalogen. Beuth Verlag, Berlin.

[54] VDI. 1997. VDI 2222 Blatt 1 - Konstruktionsmethodik - Methodisches Entwickeln
von Lösungsprinzipien. Beuth Verlag, Berlin.

[55] Matthias Wegerhoff, Georg Jacobs, and Pascal Drichel. 2018. Noise, vibration

and harshness validation methodology for complex elastic multibody simulation

models: With application to an electrified drive train. Journal of Vibration and
Control 25, 2 (2018).

[56] Tim. Weilkiens, Jesko G. Lamm, Stephan Roth, and Markus Walker. 2015. Model-
based system architecture.

[57] Stefan Wölkl and Kristina Shea. 2009. A Computational Product Model for

Conceptual Design Using SysML.

[58] Andreas Wortmann, Olivier Barais, Benoit Combemale, and Manuel Wimmer.

2020. Modeling Languages in Industry 4.0: an Extended Systematic Mapping

Study. Software and Systems Modeling 19, 1 (January 2020), 67–94.

[59] Christian Zingel, Albert Albers, Sven Matthiesen, and Michael Maletz. 2012.

Experiences and Advancements from One Year of Explorative Application of

an Integrated Model-Based Development Technique Using C&C2-A in SysML.

International Journal of Computer Science 34-39 (2012).

https://doi.org/10.5445/IR/1000047231

	Abstract
	1 Introduction
	2 Running Example
	3 Preliminaries
	4 A Meta-Model for Functional Architectures of CPS
	4.1 Functional Structures
	4.2 Effect Catalogs and Principle Solutions

	5 Modeling Mechanical Functions and Solutions in SysML
	5.1 Functional Interface
	5.2 Functions
	5.3 Solution Architectures

	6 Modeling Example: Automotive Electrical Coolant Pump
	6.1 Architecture of the Electric Coolant Pump
	6.2 Solution-Models

	7 Related Work And Discussion
	8 Conclusion
	References



