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Abstract. Cyber-physical systems (CPS) in automotive or robotics
industry comprise many different specific features, e.g., trajectory plan-
ning, lane correction, battery management or engine control, requiring
a steady interaction with their environment over sensors and actuators.
Assembling all these different features is one of the key challenges in
the development of such complex systems. Component and connector
(C&C) models are widely used for the design and development of CPS
to represent features and their logical interaction. An advantage of C&C
models is that complex features can be hierarchically decomposed into
subfeatures, developed and managed by different domain experts. In this
paper, we present the textual modeling family MontiCAR, Modeling
and Testing of Cyber-Physical Architectures. It is based on the C&C
paradigm and increases development efficiency of CPS by incorporating
(i) component and connector arrays, (ii) name and index based
autoconnections, (iii) a strict type system with unit and accu-
racy support, as well as (iv) an advanced Math language support-
ing BLAS operations and matrix classifications. Arrays and their
autoconnection modes allow an efficient way of modeling redundant com-
ponents such as front and rear park sensors or an LED matrix system
containing hundreds of single dimmable lights. The strict type system
and matrix classification provide means for integrated static verifica-
tion of C&C architectures at compile time minimizing bug-fixing related
costs. The capabilities and benefits of the proposed language family are
demonstrated by a running example of a parking assistance system.

1 Introduction

Development of Cyber-Physical Systems (CPSs) rises domain specific challenges
that are rarely present in other software engineering disciplines such as enter-
prise applications and web development. These challenges mainly originate from
steady interactions of such systems with the real world through imperfect sensors
and actors while being exposed to complex environments and physical laws.
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Germany’s industrial de facto standard to address these challenges is the
exida R©/BMW SMArDT1 approach, which consists of four layers: object of reflec-
tion (textual requirements and use cases), logical layer (functionality modeled by
abstract C&C models and underspecified activity diagrams), concrete technical
concept (deterministic C&C models and C code), and realization (e.g., ECUs,
CAN-BUS, Flexray, and timing). C&C modeling strengths on the logical layer
comprise the ability to describe architectures by components executing compu-
tations and information flows modeled via connectors between their interfaces.
The paradigm focuses on software features and their logical communication.
Due to hierarchal component decomposition, large and complex systems can be
developed by different stakeholders in a divide and conquer manner. Prominent
examples of C&C languages - used in both academia and industry - are Simulink
[28] and LabView [20].

A C&C modeling approach should be easy to use and let the developer focus
on the functionality of the system likewise it should reduce the error-proneness in
the design phase. To fulfill these demands, we derived a set of requirements for a
language to model the logical layer of CPS from a series of automotive, embedded
and CPS projects. Today, these requirements are addressed by the intersected
features of currently existing C&C modeling approaches rather than by one
unified solution. Hence, this paper presents the MontiCAR language family, a
textual modeling DSL based on the C&C paradigm. MontiCAR incorporates a
strict type system with an integrated unit support allowing developers to work
with physical quantities in a type-safe manner and liberating them from unit
checks and conversion. MontiCAR types have a value range and a resolution to
account for limited operating areas and accuracies of the system components.

Since many CPS tasks can be solved by mathematical models, an advanced
math language is an integral part of the MontiCAR language family. Addition-
ally, to guarantee system properties and to increase the performance of the gen-
erated code, we introduce a matrix type system that tracks matrix size, matrix
elements’ type, and algebraic properties. It is used at compile-time to infer vari-
able properties of the computation results for simulation purposes and to choose
the best internal data representation (e.g., full or sparse matrix storage).

The main contributions of this paper are: (C1) a comprehensive com-
parison of different C&C concepts needed for modeling embedded
software, (C2) high-Level modeling of dataflows including its seman-
tics, and (C3) new concepts for component reuse based on arrays and
efficient connector descriptions.

This paper is structured as follows. First, a running example is described
in Sect. 2, which is used to motivate the requirements explained in Sect. 3. Exist-
ing C&C modeling approaches are evaluated with respect to these requirements
in Sect. 4. Based on these requirements, the following sections present the Mon-
tiCAR language family (Sect. 5) with a focus on EmbeddedMontiArc (Sect. 6)
and MontiMath (Sect. 7).

1 http://www.exida.pl/EnterTheDOOR/help/soley-generation.htm.

http://www.exida.pl/EnterTheDOOR/help/soley-generation.htm
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2 Running Example

A running example of a lightweight but incomplete driver assistance software sys-
tem providing automated emergency braking and visual user feedback is depicted
as a simplified C&C architecture in Fig. 1. Since this is a logical model, it does
not exhibit any technical details such as assignments of components to concrete
ECUs or transmission protocols. The ParkingAssistant component interface
is defined by its in and out ports: In ports on the left hand side receive signals
needed for component computations including the GPS position, speed, steering
angle of the vehicle, as well as a port array for complex radar signals containing
in-phases and quadrature components for object movement detection. In con-
trast, out ports on the right hand side represent the calculated results, i.e., user
feedback for the dashboard and a brakeForce array controlling the car’s four
brakes.

Fig. 1. C&C architecture of an Park Assistant component in automated vehicle.

The behavior of the ParkingAssistant (i.e., its concrete computation) is
decomposed into several subcomponents each handling one specific task: filter-
ing signals (Filter), fusioning sensor data (SensorFusion), calculating overall
emergency brake effort (EmergencyBrake) depending on the distance, assigning
concrete brake forces to each wheel (BrakeActuator) relative to the car’s direc-
tion, and creating user feedback. The connectors, depicted by solid arrow lines,
represent directed data flows between subcomponents.

A major concern in embedded systems is that most components only guaran-
tee correct behavior for certain working conditions, e.g., radars are only able to
detect obstacles within a certain area due to their physical nature. Models need
to be enriched with such details to ensure verifiability and to enforce correctness
at runtime. For example, EmergencyBrake uses radar measurements to execute
its task, where it needs an obstacle detection within a predefined range having
no blind spots between the sensors’ beams. However, it is capable of processing
input values outside this area, say all positive distances. The component might
not have been designed to cope with unusual inputs such as negative distances.
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Hence, it is essential to make supported ranges, operational areas, and accura-
cies of used types explicit in models so that they can be validated for system
integrity and compatibility; e.g., it can be ensured that OEMs only use radars
fulfilling the accuracy requirement of EmergencyBrake instead of choosing the
cheapest one. Furthermore, explicit declarations of the ports’ units are essential
to make interconnections between ports describing different physical quantities,
e.g., lengths and speeds, impossible and to provide automatic conversion between
ports working with different unit prefixes such as meters and kilometers, or dif-
ferent systems of units, e.g., metric and imperial. Such static checks are usually
not provided by existing C&C languages (cf. Sect. 4).

3 Requirements

From industry cooperations using CPS modeling, we derived the following
requirements to solve the challenges introduced in Sect. 1:

– (R1) Unit support. In- and output ports should support (R1.1) metric,
(R1.2) imperial, and (R1.3) customized units, such as pixel-per-inch.

– (R2) Unit conversion. Units should be automatically converted to SI units
and prefixes should be resolved (R2.1) for port connections and (R2.2) in
mathematical expressions.

– (R3) Array support. Redundancy in models should be avoided by supporting
(R3.1) port arrays and (R3.2) component arrays. (R3.3) A convenient mecha-
nism to interconnect and access ports and components should be supported.

– (R4) Domain and Accuracy. There is a need for concepts to model the
domain, i.e., (R4.1) minimum, (R4.2) maximum, and (R4.3) resolution, of
the values exchanged between components, and (R4.4) accuracies for sensor
and actuator components. In addition, (R4.5) multiple domains with separate
accuracies should be supported, e.g., high accuracy of a distance sensor is
essential if the object is near but less important if the object is far away.

– (R5) Static Analysis. Theoretical concepts and tools to support static analy-
sis, i.e., (R5.1) over- and (R5.2) underflow checks, (R5.3) division by zero, and
(R5.4) detection of components in dead paths.

– (R6) Reuse concepts. (R6.1) A library concept for components and (R6.2)
ports configurable over parameters is needed. Advanced reuse concepts such
as (R6.3) configuration parameters and (R6.4) generics are required to allow
modifications of component interfaces and behavior.

– (R7) Matrix supports. Discrete control systems are often described by
matrix-vector expressions. To reduce error-proneness a type system should
support (R7.1) static matrix dimension, (R7.2) units, and (R7.3) detection
of domain incompatibilities, e.g., multiplying two 3× 3 matrices having the
domain [0, 1]3×3 must result in a [0, 3]3×3 matrix .

– (R8) Differential equations. Physical systems are often modeled by differ-
ential equations. A native support can facilitate the system design.
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– (R9) Acausal Modeling support. Acausal modeling is needed to model sys-
tems where the behavior of each system’s component depends on the global
system architecture rather than having casual data flows with static compo-
nent behavior. An example is a non-ideal voltage source whose output depends
on the load connected.

– (R10) Operational area. It should be possible to define the operational area
of a system, i.e., the constraints regarding sensor values in which the system
is fully operational. For example, if multiple distance sensors are used, the
operational area can be defined by at least two sensors detecting the obstacle.

4 Existing C&C Modeling Languages

This section compares the most important C&C modeling languages, listed in
Table 1, according to the requirements in Sect. 3.

Most C&C modeling languages do not support units. In SystemC, unit
support can be added by defining unit types as C++ preprocessor templates
[23, p. 299]. In Simulink, units are used for documentation purposes only, e.g.,
in the bus editor. Partial unit support is available in xADL extending the
meta-schema, Verilog AMS and VHDL AMS. The AMS extensions provides
the nature concepts for defining a collection of attributes with own unit types
[36, 3.6.1]. The unit annotation is passed to the simulator to check compatibility
using Units Value Rule. Modelica, SysML, LabView, AutoSAR fully support SI
units according to ISO 31-1992. Metric, imperial and customized units can be
expressed as unit dimensions. Developers might need to provide transformations
to SI units for own defined ones. MontiCAR uses the same unit meta model as
defined in SysML 1.4 specification Sect. 8.6.4 to support units.

All languages having full SI unit support also allow unit conversions. Simple
conversion (R2.1) is possible in AMS languages (Verilog AMS, VHDL AMS),
since prefixes such as Pico, Micro are part of the number, e.g., 3 pA still has
Ampere as unit. Even though AMS languages support conversion of flow to
potential and vice versa (using disciplines), they do not support more complex
conversions such as kilometer per hour to miles per hour.

Support for port and/or component arrays (R3) is not present in Simulink,
SysML, Marte, AutoFocus3, xADL, AutoSAR, LabView, MontiArc, Rapide,
SADL, Scade, and TECS. Partial support for arrays is given in Modelica by using
a class as a component. Classes can be instantiated as an array. This concept has
been reused in MontiCar to support component arrays. Ptolemy supports arrays
by using the Java array syntax and semantics, allowing only to define the num-
ber of array dimensions but not their concrete array size. Verilog supports one
and two dimensional arrays using a similar syntax as Ptolemy. VHDL supports
ranged and unconstrained arrays of defined types. SystemC allows to declare
array sizes of ports and signals using a C-like syntax. UniCon supports fixed
length arrays of simple types. WRIGHT supports multiple instances of pipes,
which can be seen as arrays of the same connector.
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Table 1. Comparison of C&C tools and standards (*),
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Simulink [28] - - -
√

- p
√

-
√

- - -
Modelica*[4,16]

√ √
P

√ √
P

√ √ √ √ √
-

SysML*[31]
√ √

- P P -
√ √

- - - -
Marte*[30]

√ √
- P P -

√ √ √ √
- -

AutoFocus3 [2] - - -
√

-
√ √

- - - - -
xADL [11] P - - P - P P - - - - -
AutoSAR*[5,6]

√ √
-

√ √
P

√
- - - - -

LabView [20]
√ √

-
√ √ √ √

-
√

P - -
MontiArc [17] - - -

√ √
P

√ √
- - - -

MontiCar (this paper)
√ √ √ √ √ √ √ √ √

- -
√

Ptolemy [14] - -
√

- -
√ √ √

- - - -
Verilog (AMS) [36]

√
P
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- P

√
-

VHDL (AMS) [3,15]
√

P
√ √ √ √ √ √

- P - -
Rapide [25] - - - - -

√ √
- - - - -

SADL [18] - - - - -
√ √

- - - - -
Scade [13] - - - - -

√
- - - - - -

SystemC [34] - -
√

- -
√ √ √

- - - -
TECS [7] - - - - -

√ √
- - - - -

UniCon [35]
√

-
√ √ √ √ √

- - - - -
WRIGHT [1] - -

√
- -

√ √
- - - - -

Multiple languages provide support to specify the domain together with its
resolution of a variable as required by (R4). Simulink allows to specify the mini-
mum and maximum values for a signal and a resolution for fixed data types using
the data type parameters slope and bias. LabView supports creation of custom
scales, which can be linear, polynomial or table based. This facilitates flexibility
for the creation of custom resolutions, ranges. However, for types with multi-
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ple domains, only table scale is applicable. Modelica allows to specify attributes
with a variable declaration. Both, reals and integers support a minimum and
a maximum value. A nominal attribute can be used for automatic model scal-
ing. AUTOSAR requires all of its integer types to have a constraint subnode to
specify a scaling with minimum and maximum values.

SysML allows to create value types that are classifiers having the stereotype
«data type» and the corresponding attributes, e.g., min and max. Using this
data type allows setting minimum and maximum values for variables using it,
e.g., in an object diagram. Alternatively, OCL constraints can be used to specify
ranges and resolutions. Verilog-AMS natures concept supports type parameters
such as abstol, and max absolute tolerance to define tolerances and allowed value
ranges primarily for the VLSI domain. VHDL-AMS provides a similar approach
but uses tolerances to specify the preciseness of approximations provided by
numerical algorithms.

SysML, Marte have no concepts to detect over-, underflows, division by zero
or unused components (R5). The Simulink Design Verifier detects division by
zero. Over- and underflow checks are done at runtime. However, no compile-time
verification is possible. Autofocus 3 uses model checkers (NuSMV/nuXmv [9])
to check variable ranges and find unreachable states. Since xADL is a modeling
language without any semantic definition (it also has no denotational seman-
tics introduced by a code generator), it only checks that connectors of models
are correct. LabView programs are verified by translating their models to ACL2
solver expressions and formulate theorems that should be proved [21]. Finding
duplicates (even semantical ones) in MontiArc is done using MontiMatcher [33].
MontiCAR uses the MontiMatcher framework and extends it with support for
checking over-, underflow and divisions by zero by using the MontiMatcher’s
intermediate controlflow graph for backward compatibility checks. Structural
crosscutting specification, C&C views, verification [26] as well as static consis-
tency checks for extra-functional properties [27] are also available in MontiCAR.
Ptomely is a Java-based event extension for modeling architectures. Therefore,
static analysis tools (e.g., Cibai [24]) for Java programs can be used. Verilog
models are checked by translating them to BLIF-MV [10] to perform symbolic
verification2. In SystemC, type checking, control flow graph analysis, and veri-
fying C pointers or static analysis in general can be done with SCOOT [8].

Enabling component reuse, e.g. of general library ones, can be decomposed
into supporting configuration parameters and generics (R6). Simulink supports
configuration parameters (set_param command), which can be defined arbitrar-
ily. However, Simulink does not support general generics for modifying compo-
nent interfaces. It only can be done partially, e.g. Logical Operator block allows
to define the number of input ports. Modelica supports generic components and
configuration parameters provided by the Modelica generic block (MBLOCK).
SysML does not provide explicit language constructs to model variants but pro-
vides a profile mechanism to extend SysML with a concept for variant modeling,
i.e., stereotypes. Stereotypes are also used in MARTE to define parameters and

2 http://vlsi.colorado.edu/~vis/whatis.html.

http://vlsi.colorado.edu/~vis/whatis.html
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generics. AutoFocus 3 supports parameters that can be used for configuration
purposes but lacks support for generic components. By default xADL does not
support configuration parameters and generics. However, because it uses XML
as the base structure, the tooling supports partial configuration parameters by
direct manipulation of the XML schema. In AutoSAR, parameters can also be
used to configure components. However, it does not support generics for compo-
nents. Similar holds for LabView. MontiArc supports concepts for configuration
parameters and generic components, which are used in the MontiCAR language
family. Being an extension of Java, Ptolemy supports configuration parameters
and generics. Verilog, VHDL, Rapide, TECS, UniCon, WRIGHT, and SADL
only support configuration parameters but no generics. Scade supports configu-
ration parameters nor generics. Since SystemC is an extension of C++, it sup-
ports configuration parameters and adds support for generics.

Several languages implement native matrix support including MAT-
LAB/Simulink as one of the most prominent examples, thereby, partially ful-
filling (R7). However, MATLAB/Simulink neither provides a strict type system
allowing for static checks required by (R7.1), and (R7.3), nor does it allow to
specify units for the entries of a matrix. A far more elaborated matrix type
system is provided by Modellica [16], which not only allows to define the ele-
ment types and its dimensions but also units of the matrix elements allowing far
more rigorous static checks. Other languages providing matrix support comprise
MARTE [30] and LabView. The latter does not allow for the restriction of a
matrix to a specified size and, hence, does not provide static checks. Instead,
similarly to MATLAB/Simulink, matrices can grow dynamically and checks are
only performed at runtime. In contrast, MontiCAR provides full matrix sup-
port with a strict type system and unit support with compile-time checks used
in system verification. Furthermore, to our knowledge, MontiCAR is the only
language using a matrix taxonomy to derive matrix properties for static checks.

Native support for differential equations (R8) is provided by Modelica and
MARTE. With support for ordinary differential equations only, LabView par-
tially fulfills this requirement. The same holds for Verilog and VHDL [29]. All
other languages do not fulfill requirement (R8).

In Modelica, acausal modeling (R9) is done using flow ports and declarative
equations3. In Verilog-AMS, acausal modeling (e.g.y Kirchhoff’s Flow Law and
Potential Law [36, Figs. 1–3]) is done using signal-flow systems. Since MontiCAR
is designed for modeling on the logical layer of the SMArDT methodology, there
is no need for modeling flow properties, e.g., current or voltage flows. There-
fore, Modelica’s acausal modeling concept has not been integrated to keep the
language syntax slim.

From the overview in Table 1, it can be derived that none of the analyzed
modeling languages support definition of an (R10) operational area, e.g., to
guarantee a correct behavior for a limited set of environmental conditions. In
MontiCAR, we integrated OCL/P to allow for the definition of such constraints.

3 https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-
Peter-Fritzson-120328.pdf.

https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf
https://www.openmodelica.org/images/docs/Modelica-and-OpenModelica-overview-Peter-Fritzson-120328.pdf
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5 MontiCAR Modeling Family

As was shown in Sect. 4, existing modeling languages fail to provide all necessary
means for type-safe and verifiable modeling of cyber-physical systems. Therefore,
we present MontiCAR, a modeling language family developed against real indus-
trial requirements gathered in Sect. 3. The structure of the complete MontiCAR
modeling family is shown in Fig. 2. In this section we give a short description for
each family member.

The base language used by all the other language members is NumberUnit.
It contains rules to parse complex numbers, e.g., 2 - 4i or rational numbers
with and without units, e.g., -3/7 m/sˆ2, 0.35, 1N. OCL/P [32] is a Java-
based OCL derivative to formulate constraints such as brakePedalPressed
implies vehicleAcceleration < 0 m/sˆ2, i.e., the acceleration should be
negative if the brake pedal is pressed. The syntax of MontiMath is very sim-
ilar to the one of MATLAB except that it forces all its variables to be typed.
This language will be introduced in more depth in Sect. 7. The Type language
allows the definition of enumerations and C-like structures. An example is pro-
vided in Fig. 3. Lines 1–2 define a struct type for GPS coordinates aggregating
the scalars latitude and longitude. Pay attention to the type of the two primitive

Fig. 2. MontiCAR modeling family.

Fig. 3. Define new port types
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struct members. We are not interested in the concrete realization of the scalars
such as int or float on our level of abstraction. Instead, we specify, that each
of the two members is a rational number, denoted by the letter Q according
to the set of rational numbers Q. The latitude coordinate can only take values
from −90◦ to +90◦ whereas a valid longitude must lie between 0◦ and 180◦. We
incorporate this range specification in brackets thereby declaring a new type.
Moreover, GPS sensors only have a limited resolution. This is declared through
the resolution parameter, here taking a value of 0.001◦. An accuracy can also be
added to ranges; e.g. Q(-90 ◦:0.001 ◦:90 ◦) ± 0.02 ◦ says that values between
−90◦ to +90◦ have an accuracy, normally distributed noise, of 0.02◦. Making such
constraints explicit will later help us identifying incompatible components, e.g.,
sensors not providing the required signal resolution. The concrete type imple-
mentation is delegetated to the compiler allowing the system designer to focus on
the functionality. In line 3 we use enumerations to declare a type in MontiCAR. It
can take one of the four possible color values the feedback LED of a driver assis-
tance system can emit. The core language of our family is EmbeddedMontiArc
which extends the general purpose Architecture Description Language (ADL)
MontiArc [17] used for modeling web and cloud services in a C&C like manner.
EmbeddedMontiArc, explained in detail in the next section, supports in contrast
to its base language MontiArc additionally port and component arrays, and it
overwrites the type system of MontiArc in order to provide unit support and
integrate the Type language. The Tagging language [27] enables the developer to
enrich EmbeddedMontiArc models with extra-functional properties allowing for
semantic consistency checks on C&C architectures. The EmbeddedMontiArcMath
language enriches EmbeddedMontiArc models with the possibility to specify the
behavior for atomic components by embedding MontiMath syntax which will be
demonstrated in Sect. 7. Stream models, based on the stream theory of Broy and
Rumpe [22], allow the definition of ordered sequences of input values for C&C
input ports and the expected output sequences for all output ports to faciliate
unit and integration testing of C&C models. Note that due to language aggre-
gation Stream models have knowledge about the EmbeddedMontiArcMath mod-
els, but not vice versa. This allows deploying productive C&C models later-on
without their respective test models. I/O-Automata is a language for describing
behavior by finite automata. It provides internal variables, states and transitions
pointing from a source to a target state. On activation, the automaton goes into
the first start states for which the guard conditions are satisfied by the vari-
ables provided at the input ports. Moreover, transitions produce output values
according to their defined output-port-assignment expressions and activate the
automaton’s target state. I/O-AutomataMath embeds the MontiMath language
for describing guard conditions and output assignments using the Math syn-
tax into the I/O-Automata language. MontiCAR extends EmbeddedMontiArcMath
language allowing both Math and I/O-Automata behavior descriptions.

Since presenting the entire MontiCAR modeling family is out of the scope
of this paper, the next sections will focus on the two most interesting family
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members: EmbeddedMontiArc for describing CPS features and their interaction
as C&C models and the MontiMath language for defining the features’ behavior.

6 EmbeddedMontiArc

Based on our example introduced in Sect. 2 this section shows how the architec-
ture of embedded and cyber-physical systems can be modeled with Embedded-
MontiArc language belonging to the MontiCAR language family.

The EmbeddedMontiArc model for the running example is given in Fig. 4.
Line 1 defines the main component, having the ParkAssistant type and the
derived instance name parkAssistant. Similar to Java’s convention, all compo-
nent types start with a capital letter and all component instances with a small
one. Lines 2–5 define ParkAssistant’s in- and ll.6–7 out ports. An advantage of
EmbeddedMontiArc’s port arrays, Z brakekForce[4], over MontiArc’s solution
with one port having a data type array, Integer[] brakeForce, is that each
port in the port array can be wired-up individually. A port definition has the
following structure: direction, can be in or out indicating incoming or outgoing
data flow, port type, see paragraph Type in Sect. 5, port name, a small letter
Java variable name, and an 1-dimensional array size (squared brackets). If the
direction is missing such as in l.3, then the one of the previous port definition,
here in l.2, is taken. The default value for missing array size is one.

Fig. 4. Textual EmbeddedMontiArc model of ParkAssistant
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All ParkAssistant’s subcomponent instances are listed in ll.8–10, each
starts with the instance keyword, followed by a component type, instance
name, an optional one dimensional array specifier. Note that in MontiArc which
is the base language of EmbeddedMontiArc, the keyword instance is also
component. But this ambiguity, component for component definitions and com-
ponent instances, lead to confusion. ParkAssistant is decomposed into one sf
of type SensorFusion (l.8), ten filter (l.9), one fb of type Feedback (l.10)
instances. The singletons of type EmbergencyBrake and BrakeActuator in Fig. 1
are skipped in Fig. 4 for presentational reasons. SensorFusion component type
has a generic parameter binding (in guillemot brackets) specifying the number of
input signals needed for fusion, and a configuration parameter passing (in round
brackets), specifying sensors’ tilt angles. This configuration parameter is a 1×10
vector defined in a MATLAB-like syntax. The difference between a generic and
a configuration parameter is that the primer changes the component’s interface
(has any impact on ports), whereas the latter has no influence on the interface
and is only needed for the component behavior.

Lines 11–13 demonstrate the concrete syntax for interconnecting ports of
subcomponent instances. While l.11 connects two ports using standard MontiArc
syntax, in l.12 we have an EmbeddedMontiArc style interconnection of a port
array with an array of components. Thereby, the colon notation, a short-form of
1:end, selects all entities of the array and connects each entity to a corresponding
entity on the right hand side separated by the -> operator. Instead of the colon
syntax, the forall syntax shown inside the box in ll.a–c can be used.

7 MontiMath Language

MontiMath is a mathematical matrix based behavior modeling language for
MontiCAR. It is mainly inspired by MathJS4, which supports matrices, units
and rational numbers allowing one to solve linear equations exactly. MontiMath
is based on MATLAB syntax. Since CPS in automotive and robotic domain
mostly describe safety critical systems, MontiMath has - in contrast to existing
matrix based languages, such as Modelica, Maple, MATLAB and MathJS - a very
strict type system to minimize runtime errors. This type system includes unit,
dimension, and element ranges information. Furthermore, it keeps track of
algebraic matrix properties based on [19].

For variable assignments and matrix expressions MontiMath detects the fol-
lowing errors at compile-time: Matrix Property Errors occuring when a
matrix violates the defined properties, e.g., diagonal, positive (semi)definite,
lower/upper triangular, invertible, symmetric, or hermitian. For example,
diag inv Qˆ{3,3} A = diag([0km 1 Km 2cm]) declares a rational 3 × 3
diagonal and invertible matrix variable A, being initialized with a diagonal
matrix having values 0 km, 1 km and 2 cm on the main diagonal. This assign-
ment results in a compiler error due to having a value of 0km on the main
diagonal and thereby violating the invertible property. Dimension Errors
4 http://mathjs.org.

http://mathjs.org
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occur during matrix assignments, e.g., Qˆ{1,3} = [1 2] and matrix infix opera-
tions, e.g., (element-wise) power, (element-wise) multiplication, summation and
equation solving. Unit Errors occur when units of matrices are not compat-
ible, e.g., in summation [10cm 7cm] + [7kg 9kg] and assignments. Out-of-
Bounds Erros occuring by direct indexing of a non-existing matrix position.
Range Errors occuring when an element in the matrix is not inside the allowed
range or if a rational number is given but only integers are allowed.

Lines 6–11 in Fig. 5 show how MontiMath is applied in the EmbeddedMon-
tiArc SensorFusion component to specify its behavior. Lines 7* and 8* are
not part of the model but are displayed to show how the in and out ports of
EmbeddedMontiArc are adapted to MontiMath matrix variable declarations.
Line 9 defines a rational n × n matrix allowing values between 0 and 1. The *
operator in cos*(tilt) denotes that the cosine function is applied element-wise
on tilt, returning the vector [cos(tilt(1,1)), ..., cos(tilt(1,n))]. The
diag function creates a diagonal matrix with the elements of tilt on its main
diagonal; the result is assigned to facMatrix. Line 11 multiplies the distance
vector with this facMatrix resulting in a 1 × n column vector with its mini-
mum value assigned to the output port mergedDistance. Assume, in a previ-
ous software evolution step l.10 was sin*(diag(tilt)) and now needs to be
replaced by cos* due to a change in the sensors’ relative coordinate system.
Since sin(0 ◦) = 0 the element-wise sine of a diagonal matrix is again a diag-
onal matrix; replacing the sine with a cosine however results in a MontiMath
compiler error due to cos(0 ◦) �= 0 making the result non-diagonal. Without the

Fig. 5. SensorFusion component with its behavior defined in MontiMath
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strong type system and meaningful error messages such a bug may be detected
later during tests or at runtime thereby increasing development costs.

Line 2 in Fig. 6 shows the OCL/P pre-/post condition used by Monti-
Math’s type checker to find out that cos(0 ◦)=1 and therefore not zero, and
ll.5–7 defines the diag matrix property in OCL/P requiring all off-diagonal
values to be zero which is violated by the expression cos*(diag(tilt)).
Using the implies keyword in l.5 we require that the diag property
guarantees the lowerTriangular and upperTriangular properties to be
true. This correctness of this specification is then proven by the Z3 [12]
solver. Furthermore, already existing matrix properties can be reused via
(multiple) inheritance, i.e., the diag property could have been defined by
matrix-property<N1 n> diag Qˆ{n,n} y extends upperTriangular &
lowerTriangular, thereby saving l.7. Lines 8–13 show two other important con-
cepts of MontiMath: Operator overloading based on matrix properties, and func-
tion overloading based on matrix dimensions. The first one is used to define more
efficient algorithms for special matrix types, as it is done for adding two diago-
nal matrices in ll.9–11 where only the diagonal elements of the two matrices are
added reducing the computational complexity for matrix addition from O(n2)
to O(n) for diagonal matrices. Calling the function defined in l.12, diag(a) in
l.10 returns a vector containing the matrices’ diagonal elements; while the outer
diag having a row vector as its argument creates a diagonal matrix by invoking
the function defined in l.13. The decision which function to invoke is based on

Fig. 6. Function definition in math language (";" after function definition is here used
to omit the body implementation of the function.)
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the matrix dimensions. For this reason the type of the first generic parameter in
l.12 cannot be N1, and therefore it is Z(2:oo). Otherwise the compiler cannot
infer which overloading of the diag function (ll.12–13) should be invoked in case
of a row vector.

The concept of overloading functions based on matrix dimensions is taken
from MATLAB. In contrast, our approach makes the overloading with two func-
tions having different generic types explicit. Moreover, in l.13 in Fig. 6, the return
type has the return type name y, since MontiMath supports, similar to MAT-
LAB, multiple return values and therefore each return value has always a name
to differ between multiple return values.

8 Conclusion

We presented the modeling language family MontiCAR for the design of cyber
physical system encorporating requirements we derived in multiple case stud-
ies. The core of the language family is the architecture description language
EmbeddedMontiArc. This core language was extended by a stricter typing than
is usually known from modern languages. It includes a unit system, value domain
and resolution support. Furthermore, the math language MontiMath is an inte-
gral part of the language family which allows for efficient component behavior
descriptions. The simple Type language facilitates the aggregation and reuse of
data packages without overwhelming the user with unnecessary features such
as pointers and inheritance. Finally, a stream language allows a straightforward
definition of input and output data flows for the definition of test cases.

The language family was evaluated on a simplified example from the auto-
motive domain. Thereby, it was shown how the integrated language concepts
support the system developer helping him to focus on the functionality of the
system instead of implementation details.

A large scale evaluation is subject of ongoing and future work. This evaluation
comprises the modeling of driver assistance systems and autonomous vehicle
components such as a sensor fusion, a planning system, a controller unit, and a
wireless communication system as well as the integration of these modules into
a working software architecture. To validate the resulting system, a series of use
cases needs to be defined and simulated in a virtual environment.
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