
Model-driven Digital Twin Construction:
Synthesizing the Integration of Cyber-Physical Systems with

Their Information Systems
Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

Software Engineering, RWTH Aachen University, Germany, www.se-rwth.de

ABSTRACT
Digital twins emerge in many disciplines to support engineering,
monitoring, controlling, and optimizing cyber-physical systems,
such as airplanes, cars, factories, medical devices, or ships. There
is an increasing demand to create digital twins as representation
of cyber-physical systems and their related models, data traces,
aggregated data, and services. Despite a plethora of digital twin
applications, there are very few systematic methods to facilitate the
modeling of digital twins for a given cyber-physical system. Existing
methods focus only on the construction of specific digital twin
models and do not consider the integration of these models with the
observed cyber-physical system. To mitigate this, we present a fully
model-driven method to describe the software of the cyber-physical
system, its digital twin information system, and their integration.
The integration method relies on MontiArc models of the cyber-
physical system’s architecture and on UML/P class diagrams from
which the digital twin information system is generated. We show
the practical application and feasibility of our method on an IoT case
study. Explicitly modeling the integration of digital twins and cyber-
physical systems eliminates repetitive programming activities and
can foster the systematic engineering of digital twins.

CCS CONCEPTS
• Software and its engineering → Architecture description lan-
guages; Integration frameworks; • Computer systems organi-
zation → Embedded and cyber-physical systems.

KEYWORDS
Model-Driven Software Engineering, Cyber-Physical Systems, Dig-
ital Twins, Information Systems, Software Architecture

ACM Reference Format:
Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga,
Andreas Wortmann . 2020. Model-driven Digital Twin Construction: Syn-
thesizing the Integration of Cyber-Physical Systems with Their Information
Systems. In ACM/IEEE 23rd International Conference on Model Driven Engi-
neering Languages and Systems (MODELS ’20), October 18–23, 2020, Virtual
Event, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/
3365438.3410941

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MODELS ’20, October 18–23, 2020, Virtual Event, Canada
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7019-6/20/10. . . $15.00
https://doi.org/10.1145/3365438.3410941

1 INTRODUCTION
Motivation. There is an increasing demand for the fast and agile
creation of digital twins [56, 67], namely digital representations
of cyber-physical systems (CPSs), in a variety of disciplines, e.g.,
marine [33, 39, 70], smart manufacturing [68, 69], avionics [35, 41],
building information and energy management [21, 31, 40], auto-
motive [10, 11] or health care [15, 32, 37]. Such a digital twin (DT)
comprises models, data traces, (aggregated) data representations,
and services to represent, monitor, control, or even optimize the ob-
served CPS. Digital twin information systems (DTISs) with a set of
graphical user interfaces provide a convenient and effective way to
manage a CPS [34]. The DTIS would be responsible for displaying
the data and allowing for interaction with both users and the CPS.
The CPS then handles all the cyber-physical elements and shares
its data with the DTIS. As such, DTISs can serve as viable bases for
representing and monitoring CPSs, i.e., acting as their DTs. Clearly,
the DTIS and CPS have to share a great number of interfaces to be
able to communicate about data and models.

Open Challenges. Until now, large parts of the connections be-
tween such interfaces had to be crafted manually. These implemen-
tation tasks do not require high cognitive performance of the devel-
opers but are, due to the number of interfaces, time-consuming, and
hence, error-prone. As the tasks and the artifacts to be developed
are highly repetitive, this is a good candidate for improvements [64].
Following the idea of model centered architecture [43, 44], mod-
els can be used for the flexible definition of any kind of system
interfaces and communication. Through making these interfaces
and their connections explicit in suitable models, creating these
repetitive artifacts can be automated. This improves efficiency and
consistency in engineering DTs for CPSs. Although model-driven
software engineering (MDSE) provides the necessary methods to
generate these connections, these methods have not yet been ap-
plied to integrated development and connection of DTs to CPSs.

Contribution. In this paper, we address the challenge of reducing
the effort for engineering the communication interfaces between
cyber-physical systems and digital twins implemented as infor-
mation systems. To this end, the paper conceives a model-driven
method for the integration of CPSs andDTISs using a novel, domain-
specific tagging language that decouples the development of both
systems. This separates the concerns involved, and many related
development tasks can then be fully automated.

Our contribution, hence, consists of

• A development process for the model-driven integration of
CPSs and DTISs.

• A model-driven solution for the generative extension of
architecture models and class diagrams (CDs) with elements
that keep their data synchronized.

[KMR+20] J. C. Kirchhof, J. Michael, B. Rumpe, S. Varga, A. Wortmann: 
Model-driven Digital Twin Construction: Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems. 
In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems, ACM, Oct. 2020. 
www.se-rwth.de/publications/

https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1145/3365438.3410941
https://doi.org/10.1145/3365438.3410941


MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

• A method for clearly separating business logic and synchro-
nization infrastructure in model-driven systems using DTs.

Structure of the paper. In the following, Section 2 introduces
preliminaries on concepts, modeling languages, and tools used in
the remainder. Section 3 presents the requirements for our sys-
tem. Section 4 introduces our running example, the automatic fire
extinguishing system, and shows how it can be represented with
different types of models. Section 5 presents how to enhance mod-
els with further information about component communication and
how to generate the synchronization infrastructure between a DTIS
and the corresponding CPS. Section 6 shows the application of our
method in a case study. Section 7 relates our approach to other
approaches and Section 8 discusses it. Section 9 concludes.

2 BACKGROUND
This section introduces our notion of digital twins, the MontiArc
architecture description language, which we leverage to model the
architecture of CPSs, the MontiGem code generation framework
for the efficient engineering of DTISs, and the tagging language
framework used to combine the CPSs with the DTISs.

2.1 Digital Twins
DTs are digital representations of cyber-physical assets or processes
that enable advanced control, decision making, and optimization.
They are used in a variety of domains, including avionics, automo-
tive, and smart manufacturing [12, 26, 68].

While the use of DTs promises to improve the use of CPSs in
many ways, intensional definitions of DTs are rare and vague, such
as (1) “An always in sync digital model of existing manufacturing
cells throughout the life cycle” [66], (2) “[. . . ] virtual product models,
which are frequently referred to as DTs” [60], or (3) “[. . . ] a set of
virtual information constructs that fully describes a potential or
actual physical manufactured product from the micro atomic level
to the macro geometrical level” [26]. Such approaches to definitions
often use the term model—opposed to the commonly accepted
definition of Stachowiak [63]—in a sense that the reduction property
(i.e., themodel is an abstraction of the original for a specific purpose)
cannot be adhered to. Often, these definitions also focus on very
specific applications, such as “manufacturing cells” or “product
models.” Hence, a commonly accepted definition still is lacking.

Based on a joint effort within the German “Internet of Produc-
tion”1 cluster of excellence research project of 200 researchers of 25
departments conducting research in artificial intelligence, computer
science, innovation research, labor science, mechanical engineer-
ing, and production technology [61], we conceived the following
definition on the constituents of DTs that is liberated from specific
applications, focuses on its contents, and separates data and models:

A DT of a system consists of a set of models of the system, a set
of contextual data traces and/or their aggregation and abstraction
collected from a system, and a set of services that allow using the data
and models purposefully with respects to the original system.

From this, it follows that (1) A DT is not a model itself: instead
it comprises models of the system it represents. These can be the
engineering models used to build the developed system, models
derived from these, or abstractions of the data traces observed
1Internet of Production: https://www.iop.rwth-aachen.de/

«interface»

LightSensor
light

SmartHome

MontiArc

«interface»

Camera<T>
doorCam

«interface»

Microphone
mic

SpeechRecog
speechRec

SmartAssistant
assistant

LightBulb
bedroomLight

DoorLock
lock

FireExtinguisher
fex

FaceDetection
faceDet

embedded automaton 
(specifies component behavior)

atomic component
(does not contain subcomponents)

directed
connector

composed component type definition
(contains subcomponents)

port
(directed, typed)

Face

subcomponent
type name

subcomponent
instance name

LightState

Recording

Brightness

Command

Boolean

Cmd

DataStore
store

Image

Query

Result

Figure 1: MontiArc architecture of a smart home system

by the DT. (2) A DT can be made active by invoking its services,
which may comprise databases, user interfaces, analyses, and even
the interaction with other systems. (3) A DT leverages its models
and data traces to converge the observations coming from the
represented system and from itself.

This supports the investigation of a variety of DTs, such as
development digital twins used during the development of the
(to be) represented system, usage DTs that represent the system
as operated, diagnostic DTs that support detailed analysis of the
represented system in its context, and many more.

In this respect, our contribution focuses on efficiently modeling
DTs comprising data structures representing properties of CPSs by
relating interfaces of the CPSs’ architecture models to data struc-
ture properties. The data structures are used by a DTIS that may
aggregate and abstract this data prior to visualization and further
use. These DTs offer services through their software architecture
as well as through human interaction with the DTIS.

2.2 MontiArc
MontiArc [18, 27] is an extensible [17, 57] architecture description
language [45] for the efficient engineering of CPSs. The language
comprises modeling elements for atomic and composed component
types that exchange messages via the directed and typed ports
of their interfaces. Atomic component types yield embedded be-
havior (e.g., automata) models or general-purpose language (GPL)
implementations that define their behavior directly. Composed
components are hierarchically composed and yield topologies of
subcomponents. Hence, their behavior emerges from their subcom-
ponents’ behavior.

Figure 1 illustrates MontiArc’s most important modeling ele-
ments on the software architecture for a smart home: the system
boundaries are defined by the SmartHome component type that
contains ten subcomponents of different component types, such
as the subcomponent mic of component type Microphone. The
subcomponents mic, light, and doorCam sense the smart home’s
environment and send their data either into post-processing compo-
nents (such as speechRec or faceDet) or directly into the central
component assistant. Based on these inputs, the central controller,
i.e., the assistant, decides on the next actions and activates the
actuators fex, bedroomLight, and lock on the right.

https://www.iop.rwth-aachen.de/


Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems MODELS ’20, October 18–23, 2020, Virtual Event, Canada

MontiArc supports various features to facilitate architectural
programming, such as generic data type parameters for compo-
nent types, interface components, component type inheritance,
component parametrization, injection of component instances into
composed components, or dynamic reconfiguration [29]. In Fig-
ure 1, the component type Camera, e.g., defines a generic data type
parameter that can be used to define the data type of its single out-
going port. For the component instance doorCam, this parameter
bound to the data type Image. Camera, as well as the component
types Microphone and LightSensor, also is an abstract component
type that does not yield an implementation by design. Instead, this
type is replaced by a platform-specific component type that extends
it and yields a specific implementation before deployment.

MontiArc models can be translated to Java [58] for educational
purposes, to Python [4] for service robotics, and to C++ for Internet
of Things (IoT) systems. Through modular language engineering,
the MontiArc language and its code generation capabilities can be
extended with novel language elements and transformations [17].

2.3 MontiGem
MontiGem [6, 23], the generator framework for enterprise infor-
mation systems, uses models to generate complete (enterprise)
information systems [24]. Different UML/P [59] languages, such as
CDs and the object constraint language (OCL), are used as sources.
Further domain-specific languages (DSLs) are incorporated for code
generation such as the GuiDSL, a graphical user interface (GUI)
description language. Using these models, MontiGem generates
the data structure, database schema, and (web-)pages, including
corresponding data views (ViewModels). Together with the basic
runtime environment for the frontend, i.e., the user interface, and
the backend, i.e., the data processing, of the information system (IS),
the generated code forms an executable application which is ex-
tendable by handwritten code.

We derive the database schema and data structure in front- and
backend from CDs. This ensures consistency between front- and
backend by construction. We use OCL as a restriction language on
the data structure and generates validators for data inputs. Com-
mands handle the communication between front- and backend and
also depend directly on the CD input. Additional structure and
behavior commands can be defined. GUI models describe the lay-
out of the generated (web)page, as well as the used ViewModels.
Those ViewModels map the data structure to specified GUI mod-
els enabling the generation of views with specific extracts from
the data. This enables defining the ViewModels in place, where
they are to be displayed. To improve usability and speed up the
development process, a set of standard GUI models does not need
to be defined manually but can be generated based on the domain
models (CDs). This provides an overview of all used data classes
but still allows for adaption and extension of the (web)pages using
handwritten GUI models and/or code. Additionally, we use a tag-
ging language [25, 42] to enrich the domain model described in the
CD. This DSL enables the use of different generator configurations,
i.e., what should be generated, or adds implementation-specific
information to CD or GUI models.

The MontiGem generator framework enables the generation of
a complete IS using only domain-specific CDs citeGMN+20 but

≪RTE≫

Tag Base

Language

Base 

Language

≪RTE≫

Tag Schema Base

Language

≪derived≫

Domain-Specific

Tag Language

≪derived≫

Domain-Specific

Schema Language

models

languages

extendsextends

Tag 

Schema 

Model
Base

Model

c
o

n
fo

rm
s

conformsconforms

references

references

Tagging 

Model

provided by 
runtime 

environment

builds onextends

input 
language

Figure 2: Architecture of the tagging languages based on [25]

allows to use further DSLs for detailed behavior. To allow the inclu-
sion of further DSLs, e.g., behavior and goal models [49] or privacy
concepts [48] is in discussion. By now, the resulting IS presents
stored data and provides operations to create, edit, or delete data
sets. MontiGem is used in several application areas, such as finance
cockpits [7, 23], IoT or energy management dashboards. Each spe-
cific implementation adapts and extends the generated code with
domain-specific logic and additional functionality.

2.4 Tagging
In this work, we use tagging to connect CPSs with their DTs. Tag-
ging [25] is a language engineering technique that enables the non-
invasive annotation of existing models of a given base language
through models of a domain-specific tagging language automati-
cally derived from the base language. Through this, domain experts
can reuse established syntax of the base language in the tagging
models for annotating it and do not need to convolute the base
model with these annotations. In consequence, this increases the
reusability of the base models.

As depicted in Figure 2, tagging is based on a common tag base
language (bottom left), which predefines various tag types, and
a common tag schema base language (bottom right), which pre-
scribes the structure of tag schemata. Based on these and the base
language (bottom middle), the tagging code generators derive a
domain-specific schema language and a domain-specific tag lan-
guage. Models of the former govern the type, number, and shape
of tags in conforming tag models. This, e.g., enables annotating the
base models with non-functional properties [42] or adding commu-
nication information [20]. In general, for a single base language,
multiple tag schemata can be defined, and models of the domain-
specific tagging language then are validated against the schema
they reference. Models of the domain-specific tag language refer
to a base model they annotate and to a tag schema model they
conform to.

3 REQUIREMENTS
Within the last decade, we have gained experience in various do-
mains including avionics [36, 72], automotive [9, 22], robotics [5,
57], smart homes [50, 65], and manufacturing [47, 48, 71]. These
domains are facing the same challenges in creating a connection
between a CPS and a DTIS. To automate engineering of these con-
nections, we identified the following requirements based on an
analysis of popular IoT tools such as Arduino IoT Cloud, Amazon
AWS, or Microsoft Azure (see Section 7 for details):



MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

(R1) The CPS and the DTIS shall be able to synchronize any data
type known to both the CPS and the DTIS. Until now, integrat-
ing CPS and DTIS demands for error-prone handcrafting to
map each datatype from one system to the other one from
various languages.

(R2) The communication infrastructure that keeps the CPS and the
DTIS synchronized shall be completely generated from corre-
sponding models. Until now, the integration of both demands
repetitive handcrafting and is error-prone.

(R3) The handwritten artifacts (e.g., models, code) specifying the
CPS and DTIS shall not contain information about their inte-
gration and the integration of the systems shall not presuppose
the content of the handwritten artifacts. Component devel-
opers and system architects of the CPS and frontend and
backend developers of the DTIS should be able to work in-
dependently on the design of these systems, including mod-
eling aspects. R3 ensures the independent modeling of CPS
and DTIS. In addition, R3 ensures that the integration can
be applied to legacy artifacts that were not created with DTs
in mind.

(R4) The DTIS shall enable users to manually override the specified
behavior of the CPS temporarily or permanently. This is im-
portant to be able to handle exceptional situations. Thus, a
user’s manual intervention should be possible and override
the automatic behavior of the system.

(R5) The CPS should support heterogeneous platforms as long as
they can communicate with the Internet.Toworkwith platform-
independent versions offers hardware flexibility.

The following sections discuss each of these requirements in
detail and show how these requirements are met.

4 EXAMPLE: AUTOMATIC FIRE
EXTINGUISHING SYSTEM

In IoT environments, systems need to interact with the real world
and connect to DTISs to receive the goals of their users. In the
following, we use an automatic fire extinguisher in a smart home
environment (cf. Figure 1) as a running example. This example
is motivated by Google’s fire alarm system Nest Protect2—though
our example is simplified for better comprehension. Our simplified
version of the architecture is based on the fire alarm architecture
shown in [46]. Figure 3 depicts the models used to specify this
automatic fire extinguishing system: (a) the MontiArc architecture
of the CPS and (b) a CD describing the DTIS’s data structures.

The CPS architecture shows two sensors (top), a central con-
troller (middle), and two actuators (bottom). The sensors measure
the carbon monoxide concentration in air and the current temper-
ature. This raw data is sent to the central controller, which then
decides whether there is a fire or not. If a fire is detected, the con-
troller can react by turning on the sprinklers or triggering a fire
alarm. To do so, the controller sends commands to the actuators via
its outgoing ports and the attached connectors. While the sprinkler
only needs to be prompted to switch on, the Alarm component
also requires a sound file with the alarm tone and a volume level
at which the alarm should be played. The architect, however, did

2Nest Protect: https://store.google.com/product/nest_protect_2nd_gen_specs

TempSensor
temp

FireExtinguisher

FireExtinguisherController
fex

Sprinkler
spr

SmokeSensor
smoke

Alarm
al

MontiArc

(a) Underspecified CPS architecture describing a fire extinguishing system that
detects fire based on smoke and temperature sensors and uses this information to

trigger an alarm and turn on a sprinkler

CD

FireDetector

int carbonMonox

int temperature

Sound

File    audio

String codec

Speaker

Bool on

int volume

String  serial

Sprinkler

Bool on

Date nextService

** 1

1

(b) Domain model of the DTIS describing the data structure used to monitor the fire
extinguishing system in online platform

Figure 3: Automatic fire extinguisher system. The MontiArc
model (a) describes the logical software architecture of IoT
devices. The CD (b) describes the IS data model.

not specify how this information should be provided. This under-
specification is reflected by the two ports on the left side of the
alarm component that are not connected to another component.
Allowing such underspecification is crucial in the development
process as it allows to defer design decisions to a later stage of the
development process where more information about the system is
available. However, to generate code from the architecture model,
the gaps resulting from underspecification have to be filled.

The DTIS domain model shows four data classes that might be
used in a DT of the CPS. For example, turning up the volume of
the Speaker in the domain model should cause the volume of the
real Alarm to increase (R1). Similarly, if the temperature sensor
detects a temperature change, the temperature information in the
DTIS needs to be updated. While the DTIS’s domain model repre-
sents a view on the same system, the data structure is different,
as the DTIS may contain information that is not required by the
CPS architecture, omit data used by the CPS, and structure the data
differently. For example, the DTIS domain model also includes a
Date nextService storing the due date of the next required main-
tenance. Though this might be valuable information to the user
who interacts with the DTIS, the sprinklers themselves do not need
this information.

The two models are used as input for MontiArc and MontiGem
to generate code that is executed on the IoT devices and in the
backend of the DTIS. However, these models do not define the
interfaces between the CPS architecture and DTIS, i.e., the CPS
does not know how to exchange data with the DTIS and vice versa.

https://store.google.com/product/nest_protect_2nd_gen_specs


Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems MODELS ’20, October 18–23, 2020, Virtual Event, Canada
CP

S 
De

ve
lo

pm
en

t
DT

IS
 D

ev
el

op
m

en
t

uses

reuses

Backend 
Developer

Frontend 
Developer

System 
Integration

Transformation & Generation

In
te

gr
at

ed
 P

ro
du

ct
 M

od
el

s

Digital Twin
Information 

System

Target
CodeTarget

CodeTarget
Code

Generated 
GPL Code

Product
Integration

ProcessOverviewFancy

Generator

Generator

Cyber-Phys. 
System

Target
CodeTarget

CodeTarget
Code

Model-to-Model
Transformation

Model-to-Text
Generation

Architect
Component 
Developer

Integrator

Generated 
GPL Code

Figure 4: Process overview: The CPS architecture and the IS can be developed independently of one another. The integrator
connects the models by tagging elements in the architecture and the IS. Based on these connections, model-to-model transfor-
mations create the necessary interfaces between the architecture and the IS.

Implementing connections between both systems is a repetitive
and time-consuming task. Clearly, the automatic generation of such
interfaces and their automatic integration into existing systems is
an attractive option for the development of such systems (R2).

5 INTEGRATING CYBER-PHYSICAL AND
INFORMATION SYSTEMS

Our process for developing integrated CPSs and DTISs consists of
four activities (cf. Figure 4), the first two of which can be performed
in parallel: (1) Developing the CPS architecture; (2) Developing the
DTIS; (3) Integrating the CPS with the DTIS; and (4) Generating
the CPS and DTIS.

The first two steps consist of developing a set of models from
which the software running on the CPS’s devices and the DTIS can
be generated. The two systems can, but do not have to, be developed
independently of each other (R3). As the systems may be developed
independently of each other, our process can be applied to already
existing systems as well as to greenfield, i.e., newly developed,
systems including both the development of the CPS and the DTIS.
In the third step, the models generated in the first two steps are
integrated. The fourth step generates GPL code from the models.
This is fully automated.

Step (1): The CPS architecture development starts with devel-
oping a set of reusable software components—in our case using
the MontiArc architecture description language. Next, the architect
connects the components to create an integrated architecture of
the CPS. While first developing a set of reusable components inde-
pendently of the architecture is useful, it is not required to apply
our method. It is also possible to start developing architectures
for specific products and then later decide which components are
worth maintaining independently of the product.

Step (2): The DTIS development includes the development of
the front- and backend. The frontend depends on accessing data
provided by the backend. Nevertheless, the front- and backend can
be developed (partly) in parallel. In our case, the DTIS is developed
using MontiGem, i.e., we use class diagrams to describe the domain
model, i.e., the data structures used by the backend.

Step (3): Once the CPS architecture and the DTIS have been
developed, the integrator tags ports of the CPS architecture with
attributes of the domain model and vice versa. This tagging is
conceptually based on [25]. Section 5.1 describes this in more detail.

Step (4): Using the tagging created in Step 3, the CPS archi-
tecture, and the DTIS’s data model as input, a model-to-model
transformation extends the CPS and DTIS by the necessary com-
munication and synchronization infrastructure. This step is fully
automated (R2). The process for transforming the CPS architec-
ture is described in Section 5.2, and the process for transforming
the DTIS is described in Section 5.3. The transformation results
in integrated product models using the same MontiArc and class
diagram languages that were used by the input models. This allows
forwarding the resulting models of the integrated CPS and DTIS
to MontiArc’s and MontiGem’s code generators that produce the
necessary GPL code to be executed on the CPS devices and the
server that provides the DTIS.

5.1 Tagging CPS Architectures and IS Domain
Models

DTs need to stay synchronized with the original system. While the
logic that the DTIS may apply to the data of the DT is application-
specific, the task of keeping the data values of two systems in
sync is repetitive and, therefore, automatable. If both the CPS and
the DTIS are developed in a model-driven fashion, tagging can be



MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

utilized to select the model elements of both systems that should
stay synchronized.

The tagging model serves two purposes: First, it specifies how to
match DTs, i.e., objects instantiated from the domain model, to the
physical devices they represent. Secondly, it specifies which ports
of the CPS architecture should connect to which attributes of the
domain model. Ports are architecture elements that components
use to exchange data with other components. Hence, they are ideal
candidates for injecting data into or extracting data from the system.
Attributes in the domain model are used to store the actual data
values. Accordingly, tagging attributes of the domain model and
connecting them to ports of the architecture allows specifying
which data reflects the state of the CPS. Figure 5 shows such a
tagging model.

The two purposes of the tagging model leave two tasks for the
integrator (Figure 4) who is responsible for connecting the CPS
and the DTIS: (1) Identify which attributes of the domain model
are designed to store device identifiers or detect there is no such
attribute for a certain device type. (2) Select which attributes of the
objects instantiated from the domain model should be synchronized
to which ports of the CPS architecture.

For the first task, the integrator needs to find out which attributes
of the domain model are intended to store device identifiers of the
CPS. If the integrator finds an attribute that stores a device identifier,
(s)he specifies it as an identifier in the tagging (ll. 4-5 of Figure 5).
Manually specifying the identifier enables the user of the DTIS to
create digital twins for future devices. If the user sets the values of
these attributes to hardware identifiers of the devices, the system
can match the actual devices to their DTs once the devices first
go online. Here, objects of the Speaker class are identified by the
attribute Speaker.serial, which stores the serial numbers of the
physical devices. Objects of the Sound class are identified by the
serial attribute of the Speaker object, which references the Sound.
This is possible as there is exactly one Speaker for every Sound
(Figure 3(b)).

If the integrator does not find an attribute that stores a device
identifier, (s)he can choose to automatically instantiate DTs for
devices once they first connect to the DTIS (l. 8 of Figure 5). The
auto identify keyword is followed by the qualified name of a
class from the domain model. This class is then instantiated every
time a device with a port that should be synchronized to one of the
class’s attributes first connects to the DTIS. Each physical device
is identified by a unique hardware-specific identifier of the device,
e.g., the MAC address of the network interface. The DTIS uses
this identifier to connect the ports of the architecture to the new
instance of that class, but the identifier will not be part of the data
model.

To ensure that any communication with a device is always as-
signed to the same digital twin, the DTIS must know a permanent
device identifier for each device. For the second task, the integrator
needs to specify which attributes of the domain model should be
synchronized to which ports of the architecture. The remaining
lines of Figure 5 (ll. 9-18) show how to connect ports of the CPS
architecture to attributes of the domain model of the DTIS and
vice versa. If data from the CPS architecture should be sent to the
DTIS, the CPS architecture will update the DTIS whenever a new
message is sent through the port. For this, the integrator specifies

// Objects of the Sound and Speaker classes serve as 

// digital twins for CPS devices that use the value of 

// Speaker.serial as identifier

identify Sound    by attr Speaker.serial

identify Speaker  by attr Speaker.serial

// Automatically create and link a digital twin when 

// a device first connects to the IS

auto identify FireDetector

// Send data from the CPS architecture to the IS

connect port smokeSensor.value

--> attr FireDetector.carbonmonoxy

connect port temperatureSensor.value

--> attr FireDetector.temperature

// Send data from the IS to the CPS architecture

connect attr Sprinkler.on --> port sprinkler.on

connect attr Speaker.on --> port alarm.on

connect attr Speaker.volume --> port alarm.volume

connect attr Speaker.sound.audio --> port alarm.sound

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Tagging Model

class from
domain model

class name from domain model. 

architecture component instance outgoing port

class from domain model. 
Same as before or reach-
able via to-1-association.

attribute of the class
before the dot. Stores 

device identifier.

class name from domain model attribute name

“Use messages from
temperatureSensor‘s
port ‘value‘ to update 
the temperature
attribute of the
FireDetector class“

“If ‘Speaker.volume‘ changes, inject the new value into alarm‘s ‘volume‘ port“

class name from
domain model

(association +)
attribute

component
instance

port

Figure 5: Taggingmodel connecting the architecture and the
domain model from Figure 3. Ports of the architecture are
mapped to attributes of the domain model and vice versa.

the sending port and the receiving attribute (ll. 9-13). To this ef-
fect, a message containing the fully qualified name of the port, the
identifier of the device, and the new value is generated and sent to
the DTIS. Inversely, if updates of an attribute are to be forwarded
to a port of the CPS (ll. 14-18), the DTIS generates such a message
whenever the attribute in the DTIS is updated and sends it to the
corresponding device.

5.2 Cyber-Physical System Architecture
Transformation

Our method leverages model-to-model transformations to extend
(possibly underspecified) CPS architectures by components that
carry out the communication and synchronization with the DTIS.
Figure 6 conceptually depicts this transformation. The input ar-
chitecture consists of a sensor, a controller, and an actuator. The
tagging defines with ports need to send data to or receive data
from the DTIS. Accordingly, for each such tag, a component is
generated. The transformation distinguishes between three cases:
Tagging (1) outgoing ports, (2) incoming ports without connectors,
and (3) incoming ports with connectors.

Case (1): The tagged port is an outgoing port that should send
data from the architecture to the DTIS. The generated sender com-
ponent (Figure 7) has an incoming port that takes data of the
type given to the component as a generic type parameter (R1).



Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems MODELS ’20, October 18–23, 2020, Virtual Event, Canada

Actuator

Controller

Sensor

MontiArc

case (2)
(underspec.)

Actuator

Controller

Sensor

MontiArc

Receiver

Transceiver

Injector

Sender

MUX

case (1)

case (2)

case (3)case (3)
case (1)

model-to-model transformation

Figure 6: Architecture transformation that inserts compo-
nents to keep the system synchronized with the informa-
tion system. Generated elements illustrated in bold. Generic
parameters omitted from all generated elements for better
readability.

Receiver<T>

Data

Deserializer<T>

«interface»

NetworkReceiver

MontiArc

T

String

Sender<T>

Data

Serializer<T>

«interface»

NetworkSender

MontiArc

T

String

Transceiver<T>

Sender<T>

Receiver<T>

MontiArc

T

T

Figure 7: Prototypes for generated composed components
that handle the communication with the IS.

The generator uses the type of the tagged port to instantiate the
sender component and, thus, ensures matching types. A gener-
ated connector then connects the tagged port to the generated
component. As soon as the generated sender component receives
data, it serializes and forwards the data, together with identifiers of
the emitting device and port, to the DTIS. The Sender component
specifies the NetworkSender as an interface component. This com-
ponent is exchanged during the deployment process by a hardware
platform-specific version. This ensures portability across hardware
platforms (R5) by exchanging the interface components that re-
quire platform-specific network functionalities by platform-specific
variants during deployment of the architecture.

Case (2): The tagged port is an incoming port without connec-
tions. The process for injecting data into the architecture is inverse
to the process of extracting data: If the tagged port should process
data from the DTIS, the generated receiver component (Figure 7)
has an outgoing port with a generic type (R1). The generator again
uses the type of the tagged port to instantiate the generated compo-
nent and, thus, guarantees that the type of the port of the receiver
component matches the tagged port. A generated connector con-
nects the outgoing port of the generated receiver component to the
tagged (incoming) port. If the NetworkReceiver component inside
the generated receiver component receives data from the DTIS, it
creates a message on its outgoing port that is then deserialized and
forwarded to the tagged port.

Case (3): The tagged port is an incoming port with a connector.
In this case, a more complex injector component is generated that
replaces the connector and synchronizes incoming messages with
the DTIS. This injector has two subcomponents: A transceiver and
a multiplexer (MUX). The transceiver can be realized by combining

Domain CD

Sound

File    audio

String codec

Speaker

Bool on

Int volume

String  serial

* 1

1

Adapter CD

Endpoint

String cpsConnect

String cpsId

0..1

0..1

object
connections

SoundAudioAdapter

SpeakerVolumeAdapter

 Adapter

�
adapter for
each tagging

Adapter

*1

connects 
to CPS

Figure 8: Additional endpoint for the example domain (Fig-
ure 3(b)). Each mapping has its own adapter to transform
given data. Generated elements illustrated in bold.

the generated sender and receiver components from the previous
two cases (Figure 7). This is done by using them as subcomponents
of the transceiver, where connectors forward the data to or from
the ports of the enclosing transceiver component. The generated
sender and receiver keep the device synchronized with the DTIS.

The MUX gives manual decisions of the user priority over au-
tomatic decisions by the CPS, as the user’s manual intervention
expresses the explicit decision to override the automatic behavior
of the system (R4). If the MUX receives valid input from both of
its incoming ports, the port connected to the DTIS is preferred.
The MUX does not accept any value from the original system until
the transceiver component explicitly releases the connection by
sending an empty message. This is done to prevent immediately
overriding the user’s messages.

5.3 Information System Transformation
The generated sender and receiver components of the CPS commu-
nicate with endpoints of the DTIS. Endpoints store the necessary
communication-related information about the connection to the
CPS (cpsConnect in Figure 8), e.g., a socket. Moreover, an endpoint
maps a port of the CPS architecture to the respective adapter of the
DTIS. Adapters are responsible for processing incoming data and
monitoring data updates in the DTIS. For each connect statement
of the tagging, we extend the DTIS with an adapter.

Depending on the tagging, the adapter either processes data
received from the CPS (ll. 10-13, Figure 5) or monitors data updates
that need to be sent to the CPS (ll. 15-18, Figure 5). An adapter that
processes data received from the CPS determines to which object in
the data source of the DTIS, e.g., database, the data belongs. Figure 9
describes the process of how an object is loaded. The first step is
to find the adapter that knows how to load the data from the data
source and which parts (attributes) of the object to load. If the
adapter is found, the object can be loaded directly. If the adapter
cannot be found, that is, it has not yet been created, it is created
together with the object in the DTIS data source and connected to
it. Now that the adapter is created, the object can be retrieved. After
the loading of the connected data object, the adapter then updates
the data source accordingly. An adapter that informs the CPS about
data updates listens to changes in the data objects. Changes in data
objects can either originate from a user or external sources, e.g.,
data imports. On every change, the adapter creates a message and
forwards the data to the CPS via the endpoint.



MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

AD

act Object Retrieval

Find Object

Load Object

ObjectInfo

Connect

ObjectInfo

Find Adapter

Adapter
name

Create Adapter Create Object

Object
Info

Adapter
Info

ObjectInfo

ObjectInfo

[Adapter exists] [Adapter inexistent]

Figure 9: Object retrieval with adapters

Endpoints handle the DTIS’s communication with the CPS and
can be created either manually by the user or automatically when
a CPS device first connects to the DTIS and no corresponding end-
point exists. The connection information of a device (cpsConnect)
is set when the device first connects to the DTIS. As IoT devices
may be mobile and the network topology cannot be assumed to
be static, the endpoint updates this information whenever a CPS
sends a message to the DTIS. To enable these updates, devices of
the CPS include a unique device identifier (cpsId), e.g., a name or
serial number, in their messages to the DTIS.

This identifier can also be used to link devices to existing data
objects when they first connect to the DTIS. To this effect, an at-
tribute in the existing data class can be set in the tagging model
(ll. 4-5, Figure 5). This also enables creating DTs of devices even
before their counterparts in the CPS first connect to the DTIS. A
special variant of this is choosing an attribute of a connected ob-
ject. This only works for *-to-1-associations as the object has to be
uniquely identified. If the identifier of the CPS device is unknown
to the DTIS, a new object is created. If the tagging model specifies
automatic mapping (l. 8, Figure 5), a new object is created whenever
a device first connects.

The application itself does not need to know any of the exten-
sions to the backend data structure, because the data is transformed
by the respective adapter to match the internal data structure. The
existing data structure or database schema used by the application
does not need to be changed; it is only extended to handle the
communication (Figure 8). These extensions are non-invasive and
do not require the system to know the adapters.

6 CASE STUDY
Our case study uses the fire extinguisher example (Section 4), which
is based on Google’s Nest Protect. The goal is to build an extensible
fire extinguisher system that can be monitored and controlled at
runtime from an online dashboard. For monitoring the system,
sensor values need to be sent to a DTIS. For controlling the system,
the state of the actuators and its representation in the DTIS needs
to be synchronized and the DTIS should be enabled to influence

actuators. From an engineering perspective, the synchronization
of the systems should be realizable with as little effort as possible.
Since writing high-level communication protocols is a repetitive
task, the communication between the DTIS and the CPS should be
generated to a large extent instead of handwritten (R2). The CPS
was implemented using three Raspberry Pi 4B (R5). Two of them
were connected to a gas sensor and a siren, and one was connected
to a temperature sensor. All of them executed C++ Code generated
from MontiArc models. The sprinklers were only virtually present
to prevent damage to our laboratory.

We integrate the architecture model (Figure 3(a)) of the CPS
and the domain model (Figure 3(b)) of the DTIS using the tagging
model from Figure 5. A major advantage of our approach is that the
integration of the two systems only takes nine statements. This not
only makes very efficient use of the engineers’ time but also enables
rapid prototyping of DTs as no time is needed for implementing
communication infrastructures to keep the CPS and DTIS in sync.

Using the tagging model, we transform the CPS architecture and
extend the DTIS according to this tagging model (cf. Section 5.2).
Through this, we automatically include appropriate endpoints for
the communication with the cyber-physical devices. The result-
ing architecture (Figure 10(a)) shows generated elements in bold.
Clearly, all concepts from the original architecture are still present
in the resulting architecture except for the connectors between
the controller and the actuators. The two absent connectors are
replaced by connectors to the added Injector components that
tap the data and forward it to the DTIS. The new sender and re-
ceiver components connect to the already existing components of
the architecture to extract or inject data. Figure 3(a) shows two
underspecified ports that leave the decisions open how the Alarm
component gets the desired volume and the sound played in case
of an alarm. The generated VolumeReceiver and SoundReceiver
components eliminate this underspecification. The fact that the
original components remain unchanged ensures that the behavior
description of the components, which relies on communication via
the ports, does not need to be changed.

Figure 10(b) shows the changes in the DTIS based on the specified
elements defined by the tagging model (Figure 5). Adapters for each
mapping are added to the existing infrastructure of the DTIS. Once
again, the additions do not interferewith the system’s business logic,
but only add the ability to update the internal data objects and send
data update from the DTIS to the respective CPS. It is not necessary
to modify the system’s data- or view-logic. The added parts interact
with the preexisting infrastructure. To load data objects which are
sent to the CPS, the adapters are used to load the specific data from
the database. The adapters then transform the domain data to a
format that suits the communication with the CPS. When data is
sent from the CPS to the DTIS an adapter transforms the message
to an internal data object and stores it in the database.

7 RELATEDWORK
Multiple tools support the model-driven engineering of IoT sys-
tems. ThingML [28, 51] enables defining devices and their logic
using a C-like DSL that is used to generate C, Java, or JavaScript
artifacts. Ericsson’s Calvin [54] enables defining the architecture of
IoT applications in a MontiArc-like syntax using the CalvinScript



Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems MODELS ’20, October 18–23, 2020, Virtual Event, Canada

TempSensor
temp

MontiArc

FireExtinguisherController
fex

Sprinkler
spr

SmokeSensor
smoke

Alarm
al

Receiver
volumeReceiver

Receiver
soundReceiver

Sender
temperatureSender

Sender
carbonMonoxSender

Transceiver
trans

Injector
alarmOnInjector

MUX

mux

Transceiver
trans

Injector
sprinklerOnInjector

MUX
mux

(a) Transformed CPS architecture including DT communication infrastructure.

Sender

temperatureSender

Sender

carbonMonoxSender

Injector

sprinklerOnInjector

Injector

alarmOnInjector

Receiver

volumeReceiver

Receiver

soundReceiver

Database

Frontend

CPS Architecture 

(MontiArc)

Digital Twin Information System 

(MontiGem)

Command

Backend

Temperature

Adapter

CarbonMonox

Adapter

SprinklerOn

Adapter

AlarmOn

Adapter

Volume

Adapter

Sound

Adapter

Preexisting

Backend

Command

Endpoint

(b) Adapters and DTIS adapter endpoint added to the existing MontiGem DTIS.

Figure 10: Automatic fire extinguisher system. Generated elements are in bold. (Generic type) parameters are omitted for
better comprehensibility.

DSL. MDE4IoT [19] uses the Foundational Subset for Executable
UML Models (fUML) and the action language for foundational
UML (ALF) [53] to describe IoT applications and possible deploy-
ments to physical devices. SysML4IoT [30] describes how to develop
adaptive IoT systems using a SysML-based DSL. Node-RED [2] pro-
vides a graphical editor that allows connecting the in- and outputs
of software components. Node-RED comes with a library of pre-
defined components to access, e.g., Twitter or Amazon S3 cloud
storage. Similarly, the Ptolomy-based CapeCode [13] offers a user in-
terface for graphically combining software components as reusable
building blocks.

While some of these systems enable specifying message ex-
changes and serialization, they lack mechanisms for automatically
synchronizing them to DTISs or defining DTs (R2). Though it might
be possible to execute some of the actors defined in the above lan-
guages inside the DTIS, none of these languages is designed to
define a DTIS. Therefore, synchronization with the DTIS data struc-
tures is possible (R1), but requires considerable manual effort (R2)
and that the DTIS and CPS developers agree on messages or topics
for synchronization (R3). Especially, this requires the developer of
the CPS architecture to have in-depth knowledge about an already
existing DTIS and vice versa. In our approach, only the integra-
tor is required to know both systems and only on a high level of
abstraction.

Even with popular IoT solutions, such as IBM’s Bluemix Cloud
platform, connecting devices as simple as a temperature sensor, can
be unnecessarily complicated [38]. Following our method, reading
and synchronizing the values of a sensor to the data structure in
the DTIS requires only two statements in the model (cf. ll. 8-11, Fig-
ure 5). Moreover, as all of the above approaches to IoT development
platforms are based on components exchanging data with each
other, our method could be applied to any of the above systems if
the generated sender and receiver components were adapted to the
platforms’ respective interfaces.

The robot operating system (ROS) [55] serves to develop (dis-
tributed) robotic software as collections of loosely connected nodes
that perform computations and exchange messages over topics
(typed message buses). These topics can exchange messages of com-
plex data types known to participating nodes (R1) and a generic

communication infrastructure takes care of handling message han-
dling. However, sending and reacting to messages has to be hand-
written (R2) and requires developers to agree on topics (R3). As
such, ROS architectures can already represent small-scale IoT appli-
cations. While the communication infrastructure of ROS is generic,
the data types that can be communicated are, similar to our ap-
proach, defined in (rosmsg) models that resemble C++ structs. From
these, platform-specific implementations of the data types are gen-
erated. However, ROS does not feature any notion of system repre-
sentation aside from logging and debugging information that could
be considered a representation of the CPS.

AutoFocus 3 [8] is a modeling framework based on the Focus [14]
calculus to describe the architectures of embedded systems. As
such, it covers modeling from requirements to logical and technical
architectures to their deployment. It neither facilitates engineering
of DTISs to represent DTs, nor connecting DTs to themodeled CPSs.
None of the platforms provide specific infrastructure for users to
overwrite values out-of-the-box (R4).

Many popular commercial IoT platforms support the develop-
ment of digital twins but lack means for the model-driven develop-
ment and integration of CPSs and DTISs. Examples include the ar-
guably largest cloud providers: Microsoft Azure’s “device twin” [3]
and Amazon AWS’s “device shadow” [1]. Both of them exchange
data with the CPSs using a combination of JSON and MQTT to
synchronize values known to both the CPS and the cloud (R1).
Those messages can also be used for manually overwriting val-
ues (R4). Structurally, the DT services offered by Azure and AWS
resemble the tripartite division into CPS, DTIS and integration of
our development process with one important difference: While
AWS and Azure require lots of error-prone low-level programming
for communicating with the DTIS and synchronizing values, our
model-driven approach can automatically generate this infrastruc-
ture (R2). Hence, our approach decouples the business logic of
the systems from the communication and synchronization tasks
required to create a DTs. Thus, we argue that our systems are easier
to understand and maintain as the implementation of the business
logic is not cluttered with code needed by the infrastructure (R3).
In contrast, the Arduino IoT Cloud takes works at a lower level
of abstraction. It allows users to define variables of primitive data



MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

IoT / Architecture Tools
Th

is
So
lu
tio

n

Th
in
gM

L
[2
8,
51
]

Ca
lv
in

[5
4]

M
D
E4

Io
T
[1
9]

N
od

e-
RE

D
[2
]

Ca
pe
Co

de
[1
3]

RO
S
[5
5]

A
ut
oF
oc
us

3
[8
]

M
ic
ro
so
ft
A
zu
re

A
m
az
on

AW
S

A
rd
ui
no

Io
T
Cl
ou

d

R1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ 𝑃1

R2 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

R3 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

R4 ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ 𝑃2

Re
qu

ire
m
en
ts

R5 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 𝑃3

1 Only primitive data types (optionally with unit)
2 Users can set values, but devices can immediately reset them
3 Only Arduino-compatible hardware

Table 1: Comparison to related work. ✓= fulfilled, ✗= not
fulfilled, 𝑃 = partially fulfilled

types online (R1) for which it then generates the necessary code
to keep them synchronized with the Arduino IoT Cloud (R2). This,
however, pollutes the business logic with synchronization-specific
code and requires the developers to use the variables defined by
the generated code (R3). While all other tools usually only require
support for a specific GPL, the Arduino IoT Cloud is limited to
Arduino-compatible devices (R5).

While our concept is designed for combining MontiArc and
MontiGem, there is no conceptual limitation that forbids adapting
the generated MontiArc components to use the interfaces offered
by Azure and AWS. Adding support for them only requires im-
plementing cloud-specific NetworkSender and NetworkReceiver
components and adapting the DataSerializer to use the JSON
structures expected by the respective cloud (cf. Figure 7).

8 DISCUSSION
One of the main advantages of our solution is the separation of
concerns that is achieved by defining communication and synchro-
nization related structures separately from the business logic of the
application. This makes the models easier to understand because de-
velopers who encounter them for the first time can concentrate on
the business logic without being distracted by the technical details
of synchronizing values. Also, this enables generating the necessary
infrastructure to keep the CPS synchronized with the DTs. This
eliminates a repetitive and error-prone task for the developers.

Our separation of concerns comes at the cost of the integrator
needing to have a high-level understanding of models for both the
CPS and DTIS. While this is a simple task for small systems, it
can quickly become complicated as systems become more complex.
Therefore, ideally, the integrator is not a single person, but a group
consisting of at least one developer of both the CPS and the DTIS.
Commercial solutions like the “spatial graph” used by Microsoft
Azure’s DT require similar roles. In Azure’s spatial graph, each
device can contain multiple sensors producing data of a certain
type. The devices have to be aware of this information and react
to requests created based on the information in the spatial graph.
This leads to problems if there is a mismatch between the sensors

offered by the actual device and the sensors specified in the spatial
graph. Since our solution directly utilizes the models used to create
the CPS and DTIS, we can detect potential inconsistencies caused
by this integration step automatically before deploying the system.

While we think a model-driven approach to developing CPSs and
DTISs offers many advantages [16], we do acknowledge that many
real-world systems do not use a model-driven approach [62]. DTISs,
in particular, are today often programmed by hand. Therefore, it is
necessary to leave open the option of communicating with those
systems. By allowing customization of the communication mecha-
nisms through abstract components, our solution can also easily be
adapted to communicate with popular commercial solutions like
Amazon AWS instead of our MontiGem DTIS. This would be done
by providing network components (cf. Figure 7) that use the APIs
of the commercial or handwritten solutions.

In some situations, however, it might also be useful to convert
between the data types offered by the CPS and the data types
used by the DTIS. For example, the CPS might process values of
a temperature sensor given in Fahrenheit, while the DTIS stores
temperature in Celsius. Currently, the data types used by the CPS
have to match the data types used by the DTIS. As future work,
we plan to allow conversions and transformations that are applied
during the synchronization.

Furthermore, the logic of the synchronization can be further
investigated. Currently, the CPS gives priority to the messages com-
ing from the DTIS. However, the component that sends a message
to the tagged port is not aware of this process and therefore does
not change its behavior. Thus, it would immediately overwrite the
value set by the user in the DTIS. To prevent this, the user can
(temporarily) lock a value in the DTIS. As long as the lock is set,
messages from the CPS are then ignored in favor of the last value set
in the DTIS for this port. This prevents user-set values from being
overwritten by the CPS. This process, however, may not be desired
for all use cases. If the CPS should adapt its behavior to match the
user-set values, a more complex synchronization is required.

Moreover, our evaluation only shows the general feasibility of
the approach. For productive use, further investigations regarding
the scalability would be necessary. To ensure scalability on the
server side, common load distribution methods can be used. On
the CPS device side, the available processing power and network
bandwidth limit the number of values synchronized with the DTIS.

9 CONCLUSION
Creating DTs for a system comprises creating models of the sys-
tem, means to process and represent data received from that sys-
tem, and connecting the represented system to its DT. The latter
usually involves manually programming the connection using a
communication framework of choice, such as MQTT [52]. This is
tedious, error-prone, and complicates the analysis of connections.
Our method to connect DTs with DTISs facilitates their integra-
tion and separates concerns in DT development by decoupling the
development of the CPS architecture and the DTIS. The generated
infrastructure consists of consistent-by-construction interfaces be-
tween CPS and DTIS that synchronize both systems and accelerates
developing DTs for CPSs. Overall, explicitly modeling the integra-
tion can facilitate the systematic engineering of DTs.



Synthesizing the Integration of Cyber-Physical Systems with Their Information Systems MODELS ’20, October 18–23, 2020, Virtual Event, Canada

REFERENCES
[1] Device Shadow Service for AWS IoT. [Online]. Available: https://docs.aws.amazon.

com/iot/latest/developerguide/iot-device-shadows.html. Last checked 28. April
2020

[2] Node-RED—Low-code programming for event-driven applications. [Online].
Available: https://nodered.org. Last checked 28. April 2020

[3] Understand and use device twins in IoT Hub. [Online]. Available: https://
docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins. Last
checked 28. April 2020

[4] Adam, K., Butting, A., Heim, R., Kautz, O., Rumpe, B., Wortmann, A.: Model-
Driven Separation of Concerns for Service Robotics. In: Int.Workshop onDomain-
Specific Modeling (DSM’16). pp. 22–27. ACM (October 2016)

[5] Adam, K., Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Executing Robot Task
Models in Dynamic Environments. In: Proc. of MODELS 2017. Workshop EXE.
CEUR 2019 (September 2017)

[6] Adam, K., Michael, J., Netz, L., Rumpe, B., Varga, S.: Enterprise Information
Systems in Academia and Practice: Lessons learned from a MBSE Project. In: 40
Years EMISA: Digital Ecosystems of the Future: Methodology, Techniques and
Applications (EMISA’19). LNI, vol. P-304, pp. 59–66. Gesellschaft für Informatik
e.V. (May 2020)

[7] Adam, K., Netz, L., Varga, S., Michael, J., Rumpe, B., Heuser, P., Letmathe, P.:
Model-Based Generation of Enterprise Information Systems. In: Fellmann, M.,
Sandkuhl, K. (eds.) Enterprise Modeling and Information Systems Architectures
(EMISA’18). CEUR Workshop Proceedings, vol. 2097, pp. 75–79. CEUR-WS.org
(May 2018)

[8] Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFOCUS 3: Tooling
Concepts for Seamless, Model-based Development of Embedded Systems. ACES-
MB&WUCOR@ MoDELS 1508, 19–26 (2015)

[9] Bertram, V., Maoz, S., Ringert, J.O., Rumpe, B., von Wenckstern, M.: Component
and Connector Views in Practice: An Experience Report. In: Conf. on Model
Driven Engineering Languages and Systems (MODELS’17). pp. 167–177. IEEE
(September 2017)

[10] Biesinger, F., Weyrich, M.: The facets of digital twins in production and the auto-
motive industry. In: 23rd Int. Conference on Mechatronics Technology (ICMT).
pp. 1–6. IEEE (2019)

[11] Blech, J.: Towards digital twins for the description of automotive software systems.
Electronic Proceedings in Theoretical Computer Science 312, 20–28 (Jan 2020).
https://doi.org/10.4204/eptcs.312.2

[12] Boschert, S., Rosen, R.: Digital twin—the simulation aspect. In: Mechatronic
futures, pp. 59–74. Springer (2016)

[13] Brooks, C., Jerad, C., Kim, H., Lee, E.A., Lohstroh, M., Nouvelletz, V., Osyk, B.,
Weber, M.: A Component Architecture for the Internet of Things. Proc. of the
IEEE 106(9), 1527–1542 (September 2018)

[14] Broy, M., Stølen, K.: Specification and Development of Interactive Systems. Focus
on Streams, Interfaces and Refinement. Springer Heidelberg (2001)

[15] Bruynseels, K., Santoni de Sio, F., van den Hoven, J.: Digital twins in health care:
Ethical implications of an emerging engineering paradigm. Frontiers in genetics
9, 31 (2018). https://doi.org/10.3389/fgene.2018.00031

[16] Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand challenges in model-
driven engineering: an analysis of the state of the research. Software and Systems
Modeling 19(1), 5–13 (2020). https://doi.org/10.1007/s10270-019-00773-6

[17] Butting, A., Haber, A., Hermerschmidt, L., Kautz, O., Rumpe, B., Wortmann,
A.: Systematic Language Extension Mechanisms for the MontiArc Architecture
Description Language. In: European Conf. on Modelling Foundations and Appli-
cations (ECMFA’17). pp. 53–70. LNCS 10376, Springer (July 2017)

[18] Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Architectural Programming with
MontiArcAutomaton. In: In 12th Int. Conf. on Software Engineering Advances
(ICSEA’17). pp. 213–218. IARIA XPS Press (May 2017)

[19] Ciccozzi, F., Spalazzese, R.: MDE4IoT: Supporting the Internet of Things with
Model-Driven Engineering. In: 10th Int. Symp. on Intelligent Distributed Com-
puting (October 2016)

[20] Dalibor, M., Jansen, N., Kirchhof, J.C., Rumpe, B., Schmalzing, D., Wortmann, A.:
Tagging Model Properties for Flexible Communication. In: Proc. of MODELS
2019. Workshop MDE4IoT. pp. 39–46. IEEE (September 2019)

[21] Francisco, A., Mohammadi, N., Taylor, J.: Smart city digital twin-enabled
energy management: Toward real-time urban building energy bench-
marking. Journal of Management in Engineering 36(2), 04019045 (2020).
https://doi.org/10.1061/(ASCE)ME.1943-5479.0000741

[22] Gatto, N., Kusmenko, E., Rumpe, B.: Modeling Deep Reinforcement Learning
Based Architectures for Cyber-Physical Systems. In: Burgueño, L., Pretschner,
A., Voss, S., Chaudron, M., Kienzle, J., Völter, M., Gérard, S., Zahedi, M., Bousse,
E., Rensink, A., Polack, F., Engels, G., Kappel, G. (eds.) Proc. MODELS 2019.
Workshop MDE Intelligence. pp. 196–202 (September 2019)

[23] Gerasimov, A., Heuser, P., Ketteniß, H., Letmathe, P., Michael, J., Netz, L., Rumpe,
B., Varga, S.: Generated Enterprise Information Systems: MDSE for Maintainable
Co-Development of Frontend and Backend. In: Michael, J., Bork, D. (eds.) Com-
panion Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo
Papers. pp. 22–30. CEUR Workshop Proceedings (February 2020)

[24] Gerasimov, A., Michael, J., Netz, L., Rumpe, B., Varga, S.: Continuous Transition
from Model-Driven Prototype to Full-Size Real-World Enterprise Information
Systems. In: Anderson, B., Thatcher, J., Meservy, R. (eds.) 25th Americas Con-
ference on Information Systems (AMCIS 2020). pp. 1–10. AIS Electronic Library
(AISeL), Association for Information Systems (AIS) (August 2020)

[25] Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: Engineering Tagging Languages
for DSLs. In: Conf. on Model Driven Engineering Languages and Systems (MOD-
ELS’15). pp. 34–43. ACM/IEEE (2015)

[26] Grieves, M., Vickers, J.: Digital twin: Mitigating unpredictable, undesirable emer-
gent behavior in complex systems. In: Transdisciplinary perspectives on complex
systems, pp. 85–113. Springer (2017)

[27] Haber, A., Ringert, J.O., Rumpe, B.: MontiArc - Architectural Modeling of Inter-
active Distributed and Cyber-Physical Systems. Technical Report AIB-2012-03,
RWTH Aachen University (February 2012)

[28] Harrand, N., Fleurey, F., Morin, B., Husa, K.E.: ThingML: A Language and Code
Generation Framework for Heterogeneous Targets. In: Proc. of the ACM/IEEE
19th Int. Conf. onModel Driven Engineering Languages and Systems. pp. 125–135.
MODELS ’16, ACM, New York, NY, USA (2016)

[29] Heim, R., Kautz, O., Ringert, J.O., Rumpe, B., Wortmann, A.: Retrofitting Con-
trolled Dynamic Reconfiguration into the Architecture Description Language
MontiArcAutomaton. In: Software Architecture - 10th European Conf. (ECSA’16).
LNCS, vol. 9839, pp. 175–182. Springer (December 2016)

[30] Hussein, M., Li, S., Radermacher, A.: Model-driven Development of Adaptive IoT
Systems. In: Proceedings of MODELS 2017. Workshop ModComp. vol. 2019, pp.
17–23. CEUR, Austin, United States (Sep 2017)

[31] Jain, P., Poon, J., Singh, J.P., Spanos, C., Sanders, S.R., Panda, S.K.: A digital
twin approach for fault diagnosis in distributed photovoltaic systems. IEEE
Transactions on Power Electronics 35(1), 940–956 (2020)

[32] Jimenez, J., Jahankhani, H., Kendzierskyj, S.: Health Care in the Cyberspace:
Medical Cyber-Physical System and Digital Twin Challenges, pp. 79–92. Springer
International Publishing (2020). https://doi.org/10.1007/978-3-030-18732-3_6

[33] Johansen, S., Nejad, A.: On digital twin condition monitoring approach for drive-
trains in marine applications. International Conference on Offshore Mechanics
and Arctic Engineering, vol. Volume 10: Ocean Renewable Energy (06 2019).
https://doi.org/10.1115/OMAE2019-95152

[34] Josifovska, K., Yigitbas, E., Engels, G.: A digital twin-based multi-modal ui adap-
tation framework for assistance systems in industry 4.0. In: Kurosu, M. (ed.)
Human-Computer Interaction. Design Practice in Contemporary Societies. pp.
398–409. Springer International Publishing (2019)

[35] Kraft, E.: The air force digital thread/digital twin - life cycle integration and
use of computational and experimental knowledge. In: 54th AIAA Aerospace
Sciences Meeting. American Institute of Aeronautics and Astronautics (2016).
https://doi.org/10.2514/6.2016-0897

[36] Kriebel, S., Raco, D., Rumpe, B., Stüber, S.: Model-Based Engineering for Avionics:
Will Specification and Formal Verification e.g. Based on Broy’s Streams Become
Feasible? In: Proc. of theWorkshops of the Software Engineering Conf.:Workshop
on Avionics Systems and Software Engineering (AvioSE’19). vol. 2308, pp. 87–94.
CEUR-WS.org (2019)

[37] Laaki, H., Miche, Y., Tammi, K.: Prototyping a digital twin for real time remote
control over mobile networks: Application of remote surgery. IEEE Access 7,
20325–20336 (2019)

[38] Lekić, M., Gardašević, G.: IoT sensor integration to Node-RED platform. In: 17th
Int. Symp. INFOTEH-JAHORINA. pp. 1–5 (March 2018)

[39] Liu, J., Zhou, H., Liu, X., Tian, G., Wu, M., Cao, L., Wang, W.: Dynamic evaluation
method of machining process planning based on digital twin. IEEE Access 7,
19312–19323 (2019)

[40] Lu, Q., Xie, X., Heaton, J., Parlikad, A.K., Schooling, J.: From bim towards digital
twin: Strategy and future development for smart asset management. In: Borangiu,
T., Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds.) Service Oriented,
Holonic and Multi-agent Manufacturing Systems for Industry of the Future. pp.
392–404. Springer International Publishing, Cham (2020)

[41] Mandolla, C., Petruzzelli, A.M., Percoco, G., Urbinati, A.: Building a digital
twin for additive manufacturing through the exploitation of blockchain: A case
analysis of the aircraft industry. Computers in Industry 109, 134 – 152 (2019).
https://doi.org/https://doi.org/10.1016/j.compind.2019.04.011

[42] Maoz, S., Ringert, J.O., Rumpe, B., Wenckstern, M.v.: Consistent Extra-Functional
Properties Tagging for Component and Connector Models. In: Workshop on
Model-Driven Engineering for Component-Based Software Systems (Mod-
Comp’16). CEUR Workshop Proceedings, vol. 1723, pp. 19–24 (October 2016)

[43] Mayr, H.C., Michael, J., Ranasinghe, S., Shekhovtsov, V.A., Steinberger, C.: Model
Centered Architecture, pp. 85–104. Springer International Publishing (2017)

[44] Mayr, H.C., Michael, J., Shekhovtsov, V.A., Ranasinghe, S., Steinberger, C.: A
Model Centered Perspective on Software-Intensive Systems. In: Fellmann, M.,
Sandkuhl, K. (eds.) Enterprise Modeling and Information Systems Architectures
(EMISA’18). CEUR Workshop Proceedings, vol. 2097, pp. 58–64 (2018)

[45] Medvidovic, N., Taylor, R.: A Classification and Comparison Framework for
Software Architecture Description Languages. IEEE Transactions on Software
Engineering (2000)

https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-device-shadows.html
https://nodered.org
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins
https://docs.microsoft.com/en-us/azure/iot-hub/iot-hub-devguide-device-twins


MODELS ’20, October 18–23, 2020, Virtual Event, Canada Jörg Christian Kirchhof, Judith Michael, Bernhard Rumpe, Simon Varga, Andreas Wortmann

[46] Mercadal, J., Enard, Q., Consel, C., Loriant, N.: A domain-specific approach to
architecturing error handling in pervasive computing. SIGPLAN Not. 45(10),
47–61 (Oct 2010). https://doi.org/10.1145/1932682.1869465

[47] Michael, J., Koschmider, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-
Centered and Privacy-Driven ProcessMining SystemDesign for IoT. In: Cappiello,
C., Ruiz, M. (eds.) Proc. of CAiSE Forum 2019: Information Systems Engineering
in Responsible Information Systems. pp. 194–206. Springer (2019)

[48] Michael, J., Netz, L., Rumpe, B., Varga, S.: Towards privacy-preserving iot systems
using model driven engineering. In: Ferry, N., Cicchetti, A., Ciccozzi, F., Solberg,
A., Wimmer, M., Wortmann, A. (eds.) MDE4IoT & ModComp 2019, Model-Driven
Engineering for the Internet of Things (MDE4IoT) & Interplay of Model-Driven
and Component-Based Software Engineering (ModComp). pp. 15–22. CEUR-
WS.org (Sep 2019)

[49] Michael, J., Rumpe, B., Varga, S.: Human behavior, goals and model-driven soft-
ware engineering for assistive systems. In: Koschmider, A., Michael, J., Thalheim,
B. (eds.) Enterprise Modeling and Information Systems Architectures (EMSIA
2020). vol. 2628, pp. 11–18. CEUR Workshop Proceedings (June 2020)

[50] Michael, J., Steinberger, C.: Context modeling for active assistance. In: Cabanillas,
C., España, S., Farshidi, S. (eds.) Proc. of the ER Forum 2017 and the ER 2017
Demo Track co-located with the 36th Int. Conference on Conceptual Modelling
(ER 2017). pp. 221–234 (2017)

[51] Morin, B., Harrand, N., Fleurey, F.: Model-Based Software Engineering to Tame
the IoT Jungle. IEEE Software 34(1), 30–36 (January 2017)

[52] Naik, N.: Choice of effective messaging protocols for iot systems: Mqtt, coap,
amqp and http. In: IEEE Int. Systems Engineering Symposium (ISSE). pp. 1–7.
IEEE (2017)

[53] Perseil, I.: Alf formal. Innovations in Systems and Software Engineering 7(4),
325–326 (2011). https://doi.org/10.1007/s11334-011-0168-x

[54] Persson, P., Angelsmark, O.: Calvin – Merging Cloud and IoT. Procedia Computer
Science 52, 210 – 217 (2015), 6th Int. Conf. on Ambient Systems, Networks and
Technologies (ANT)

[55] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler,
R., Ng, A.: ROS: an open-source Robot Operating System. In: ICRA Workshop on
Open Source Software (2009)

[56] Rasheed, A., San, O., Kvamsdal, T.: Digital twin: Values, challenges and enablers
from a modeling perspective. IEEE Access 8, 21980–22012 (2020)

[57] Ringert, J.O., Roth, A., Rumpe, B., Wortmann, A.: Language and Code Generator
Composition for Model-Driven Engineering of Robotics Component & Connector
Systems. Journal of Software Engineering for Robotics (JOSER) 6(1), 33–57 (2015)

[58] Ringert, J.O., Rumpe, B., Schulze, C., Wortmann, A.: Teaching Agile Model-Driven
Engineering for Cyber-Physical Systems. In: Int. Conf. on Software Engineering:

Software Engineering and Education Track (ICSE’17). pp. 127–136. IEEE (May
2017)

[59] Rumpe, B.: Modeling with UML: Language, Concepts, Methods. Springer Inter-
national (July 2016)

[60] Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for
design and production engineering. CIRP Annals 66(1), 141–144 (2017)

[61] Schuh, G., Häfner, C., Hopmann, C., Rumpe, B., Brockmann, M., Wortmann, A.,
Maibaum, J., Dalibor, M., Bibow, P., Sapel, P., et al.: Effizientere produktion mit dig-
italen schatten. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 115(special),
105–107 (2020)

[62] Sebastián, G., Gallud, J., Tesoriero, R.: Code generation using model driven archi-
tecture: A systematic mapping study. Journal of Computer Languages 56, 100935
(2020). https://doi.org/https://doi.org/10.1016/j.cola.2019.100935

[63] Stachowiak, H.: Allgemeine Modelltheorie (1973)
[64] Stahl, T., Völter, M.: Model-Driven Software Development: Technology, Engi-

neering, Management. Wiley (2006)
[65] Steinberger, C., Michael, J.: Using Semantic Markup to Boost Context Awareness

for Assistive Systems, pp. 227–246. Springer International Publishing (2020)
[66] Talkhestani, B.A., Jazdi, N., Schlögl,W.,Weyrich,M.: A concept in synchronization

of virtual production system with real factory based on anchor-point method.
Procedia CIRP 67, 13–17 (2018)

[67] Tao, F., Zhang, H., Liu, A., Nee, A.Y.C.: Digital twin in industry: State-of-the-art.
IEEE Transactions on Industrial Informatics 15(4), 2405–2415 (April 2019)

[68] Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., Sui, F.: Digital twin-driven product
design, manufacturing and service with big data. The International Journal of
Advanced Manufacturing Technology 94(9-12), 3563–3576 (2018)

[69] Tao, F., Qi, Q., Wang, L., Nee, A.: Digital twins and cyber–physical systems toward
smart manufacturing and industry 4.0: Correlation and comparison. Engineering
5(4), 653 – 661 (2019)

[70] Taylor, N., Human, C., Kruger, K., Bekker, A., Basson, A.: Comparison of digital
twin development in manufacturing and maritime domains. In: Borangiu, T.,
Trentesaux, D., Leitão, P., Giret Boggino, A., Botti, V. (eds.) Service Oriented,
Holonic and Multi-agent Manufacturing Systems for Industry of the Future. pp.
158–170. Springer International Publishing, Cham (2020)

[71] Wortmann, A., Combemale, B., Barais, O.: A Systematic Mapping Study on Mod-
eling for Industry 4.0. In: Conf. on Model Driven Engineering Languages and
Systems (MODELS’17). pp. 281–291. IEEE (September 2017)

[72] Zanin, M., Perez, D., Kolovos, D.S., Paige, R.F., Chatterjee, K., Horst, A., Rumpe,
B.: On Demand Data Analysis and Filtering for Inaccurate Flight Trajectories. In:
Proc. of the SESAR Innovation Days. EUROCONTROL (2011)


	Abstract
	1 Introduction
	2 Background
	2.1 Digital Twins
	2.2 MontiArc
	2.3 MontiGem
	2.4 Tagging

	3 Requirements
	4 Example: Automatic Fire Extinguishing System
	5 Integrating Cyber-Physical and Information Systems
	5.1 Tagging CPS Architectures and IS Domain Models
	5.2 Cyber-Physical System Architecture Transformation
	5.3 Information System Transformation

	6 Case Study
	7 Related Work
	8 Discussion
	9 Conclusion
	References



