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Abstract: Model-based systems engineering (MBSE) is an auspicious approach to the virtual devel-
opment of cyber-physical systems. The behavior of the system’s elements is thus represented by
specialized simulation models that are integrated into the descriptive SysML-based system model.
Although many simulation models have been developed in research for the common system ele-
ments for various purposes and fidelities, their integration remains a major challenge: the parameter
interfaces of the simulation models must be coupled with each other and with the parameters of
the system elements in such a way that they are correctly parameterized. So far, this coupling can
only be carried out by model experts in a time-consuming and error-prone manner. Therefore, in
this paper, we first propose a concept that structures the system element parameters for targeted use
in validation and design cases. Second, we propose a model signature for simulation models that
differentiates its parameters by input, internal, output, and model parameters and specifies them
with spatial and temporal dimensions as well as admissible ranges, among others. Based on the
two contributions, domain models can be validly and automatable coupled and used for the virtual
development of system elements in model-based systems engineering.

Keywords: model-based systems engineering; simulation models; system models

1. Introduction

Model-based systems engineering (MBSE) is a promising approach for the accelerated,
virtual development of cyber physical systems (CPS) with reusable models [1]. Thereby,
the system to be developed (e.g., a connected vehicle) is represented by a system model
consisting of a hierarchical structure of system elements for the individual subsystems (e.g.,
top-down: mechatronic drive train, electric engine, bearing, cylindrical roller bearing,
lubricated rolling contact) in accordance to [2]. Low-level system elements are also referred
to as solution elements in [3,4]. Regardless the terminology, however, the modular and
generic entities describe fundamental interrelationships, which are often reused in a wide
variety of higher-level systems. Therefore, these low level system elements can be identified
as enablers for accelerated virtual development of CPS [3,5].

Testing requirements and ensuring the functionality of the overall system concerning
the mechanical domain, requires all system elements to be validated with regard to their
behavior. To validate the behavior of a system element, different purposes (e.g., lifetime,
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friction losses, pressures, temperatures, lubrication conditions) have to be considered [3].
Since the behavior usually cannot be validated with a descriptive, SysML-based system
model alone [6,7], a system element needs appropriate domain models to account for all the
different purposes. A domain model is, by its nature, a representation of the original system
that has been shortened or abstracted in terms of scale, detail and/or functionality [8] and
typically a specialized simulation model that runs in an external software tool and needs
to be integrated into the SysML-based system model [6,9–13]. One of the open challenges
with such an integration is to provide a well-defined, modular and consistent interface
between domain models and their system element counterparts, for instance to assure a
correct parameter exchange. The term parameter is used in this paper analogously to [3] as
a generic term for all quantitative attributes of the interfaces of domain models.

In the current state of research, numerous domain models for a specific purpose
are published, which differ in terms of their used parameters, fidelity, model assump-
tions, computational effort, and other criteria. This leads to the challenge of selecting the
most appropriate domain models, which in return requires that domain models must be
identifiable with respect to relevant criteria in order to be able to clearly assign them to
system elements [14]. To this end, suitable and efficient methods must be explored that
enable the large variety of existing models to be sustainably utilized for model-based
product development.

Another challenge is that many purposes of a system element are interdependent and
coupled. As an example, pressure, temperature, and manufacturing accuracy result in
certain lubrication conditions, which in turn affect service life. Neglecting these coupling
effects via an isolated consideration of these purposes is not sufficient in the development
process und would lead to significant errors in the system model [15,16]. Instead, it must
be possible to couple the respective domain models in order to virtually represent and
validate their feedback mechanisms. In doing so, it is crucial that the coupling of the
domain models is consistent and correct for the specific validation question. Hence, this
calls for novel research approaches to evaluate the compatibility of individual domain
models in a systematic and potentially automated way. Methods for the latter are actively
being worked on, yet proposed solutions are often restricted to specific simulation tools or
data exchange standards.

While a decomposition of the system model into system elements is often used and
common practice, low-level domain models are individually proposed and investigated
in the literature, yet not analyzed in the context of a system model. Domain models are
hence not systematically structured by an appropriate taxonomy that would be accessible
from system models: Up to now, it has not been possible to standardize the descriptions
of the numerous and often only gradually different domain models in terms of content
and form. As a result, system engineers have not yet been able to identify domain models
unambiguously and efficiently, assign them to associated system elements, and reuse them.
Instead, system elements are usually modeled individually, often with considerable effort
and expert knowledge, although they and their domain models are actually fundamentally
known [14]. Since there are no standardized concepts or methods either for the parameter
interfaces of the domain models or for the parameters of the system element, a great deal
of effort is involved, especially in linking these parameters.

Furthermore, due to the poor documentation described above, it is not possible to
clearly and efficiently evaluate if two domain models can be coupled in an automated way.
As a result, system engineers either need a lot of time to reliably assess the compatibility or
domain models are partially coupled incorrectly. Depending on when these errors become
apparent, this leads to change costs in the development phase or, in the worst case, high
recall costs in the use phase of the system.

Imagining an ideal development process, each system element and domain model
would have an unambiguous and machine-readable interface description of its relevant
model parameters, so that within the required time, cost and quality for the development
of CPS
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• A clear and automated assignment of domain models to system elements is possible;
• The compatibility of domain models can be automatically evaluated;
• The most appropriate combination of domain models given a certain requirements-

driven goal can be identified.

To reach this goal, we propose a parameter concept for system elements (cf. Section 4)
as well as an unambiguous and machine-readable model signature for domain models (cf.
Section 5). Finally, we discuss to what extent the parameter concept and model signatures
help in combination to uniquely identify and correctly link domain models for system
elements (cf. Section 6). For exemplary application and explanation of the results, in this
paper we use the lubricated rolling contact as a typical machine element in mechanics: Two
convex or convex/concave cylinder surfaces touch each other in a lubricated state at a
narrow contact area where a thin lubricant film transfers mechanical forces from one surface
to the other (Figure 1) [17].
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Figure 1. Cylindrical roller bearing and lubricated rolling contact with the formation of a hydrody-
namic oil film (right).

2. State of the Art

Nowadays, and in the future, increasingly, CPS are being developed. CPS are char-
acterized by interacting subsystems of the mechanical, electrical and software domain.
The different subsystems and development processes of the domains lead to an immanent
complexity in the development of CPS [18,19].

2.1. Function-Oriented Model-Based Systems Engineering

A promising approach to multidisciplinary CPS development is function-oriented
model-based systems engineering whose key element is a cross-domain functional architec-
ture typically modeled with the Systems Modeling Language (SysML) [7] or an advanced
profile based on SysML [20]. This functional architecture is derived from the requirements
and comprises functional flows as interfaces between the functions [20,21]. Based on this
functional architecture, all involved domains develop system elements that realize the
individual functions assigned to them. These system elements inherit the functional flows
of the functions and can thus be developed modularly within the specific domains. Due to
this encapsulation, the system elements have a low complexity and jointly represent the
behavior of the superordinate system. As a rule, several function-oriented decomposition
steps are necessary to reduce the typical CPS complexity within the system elements to a
manageable level. This results in a system architecture consisting of system elements across
multiple hierarchy levels. The elementary system elements at the lowest level describe
very small and fundamental relationships (Figure 2) [3]. One example of such a function-
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oriented and model-based development approach is the motego method, which has already
been applied in several research projects and is continuously being extended [4,22–24].
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system architecture.

Figure 2 shows the system element lubricated rolling contact which comprises three
main constituents: The principle solution, domain models and workflows [3].

The principle solution is an established concept in design methodology to describe
solutions based on physical effects and active surfaces with certain geometric and material
properties [21,25–27]. The physical effect is modeled as a constraint and typically establishes
a mathematical relationship between active surfaces, material properties and functional
flows. This means that the equation of the physical effect comprises, e.g., the length l, which
is of course also a parameter of the two active surfaces (Figure 2). To avoid redundant
or inconsistent parameters, these parameters must be linked. Even if system elements
sometimes describe only a small scope of a technical system, the parametric description
of the active surfaces including material properties, the physical effect, the incoming and
outgoing functional flows as well as other relevant physical quantities quickly result in a
large number of parameters, most of which must be linked together. When domain models
are integrated into the system element, the number of parameters (to be linked) increases
again significantly. Since there is no simplifying structuring for the parameters occurring in
the system element so far, the linkage is complex, effortful and error-prone [3,21].

The domain model section in the system element contains and structures all models
relevant for the development of the scope (e.g., Lubricated rolling contact). At the top
level, a differentiation is made between engineering, production and controlling models,
whereby only the engineering domain is considered in this publication which typically
applicates models of analytical and numerical nature calculating the physical behavior of
system elements. Here, the models are classified according to their computational purpose,
such as the deformation of the active surfaces or the temperature in the lubricated rolling
contact [3,4,14].

Workflows are the third area in the system element. Since domain models must be
coupled for specific issues in the development process [14,24,28,29], these coupled models
are also stored in a reusable manner and differentiated between validation, design and
optimization workflows [3].

The joint storage of principle solution, domain models and workflows enables the spec-
ification of the system element (principle solution) to be reusable and consistently linked to
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the behavior description (domain models) and efficiently applicable in the development
(workflows) [3].

2.2. Integration and Coupling of Simulation Models

The system model with the central functional structure and the system elements
provides a descriptive representation of the system under development. In order to validate
system elements against requirements or to design them with respect to requirements
during development, domain models that describe the behavior of the system element
need to be integrated and correctly linked to parameters of the other constituents of the
system element [30].

Furthermore, typically not only one but several domain models of different purposes
and suitable fidelities are necessary to test and design system elements during development.
This results in the fact that several domain models must be coupled with each other [3,15,30].
In order for the coupled domain models to perform valid calculations, it is essential that
the domain models themselves and their parameter interfaces must be compatible with
each other.

Research on the design and of mechanical system elements has built up a large
number of models over the last decades. Even within a certain scope (e.g., lubricated
rolling contact) and purpose (e.g., lubrication), a large number of domain models of
different fidelities can be found, resulting from different (empirical) approaches, boundary
conditions and simplifications [31,32]. As a result, a high two- or even three-digit number
of domain models is typically available for common system elements such as bearings,
gears, shaft-hub connections, or fasteners, respectively. If several domain models have to
be coupled with each other, e.g., for service life calculations and wear predictions, a simple
combinatoric consideration results in a very large number of potential model configurations.
The naive number of model combinations can be significantly reduced, when focusing on
the model configurations that are physically compatible. To avoid manual efforts and to
use the potential of existing domain models, an unambiguous and machine-processable
description of the models and their parameter interfaces is necessary.

For this reason, several approaches for the interaction of system model and domain
models have been developed in the past. A good overview of the basic strategies for data
exchange between models in general is provided by [33] and with a focus on the parameter
exchange between SysML-based system models and domain models by [9,34,35]. In some
approaches, SysML profiles were developed to enable data exchange, e.g., for the model
transformation between system models and Modelica-based simulation models [36] or for
the automatic generation of analysis models from system models [10]. In this context, [9]
states that the developed interfaces are often limited to specific simulation tools and
compatibility issues frequently arise due to different versions of exchange standards (e.g.,
FMI [37,38]). Another approach is to orchestrate the data exchange between domain models
and the system model by SysML diagrams [30,39].

Often, the approaches develop a specific interface and do not address the fundamental
question of how the parametric interfaces of a domain model must be formalized generally
in order to enable the valid coupling of domain models inside system elements.

Therefore, it makes sense to analyze the parameter and model definitions of data
exchange standards such as Functional Mock-up Interface (FMI) [37], which among other
things aim to integrate Modelica domain models into SysML-based system models [40].
The FMI standard requires in particular that each functional mock-up unit contains an XML
file describing the model. In addition to their name and description, the parameters of the
model are characterized by their causality and variability.

The causality specifies whether the parameter is an input or output parameter, a
parameter that controls the model, or a calculated, independent or local parameter. The
variability defines whether a parameter is constant, fixed after the initialization, tunable
or discrete. Thereby, the FMI standard allows only certain combinations of the attributes
‘causality’ and ‘variability’. In addition, it is possible to specify start, nominal, minimum
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and maximum values for the different types of parameters [37]. Since the FMI standard is
relatively advanced, the model signature developed in this contribution should ensure its
logical compatibility to FMIs.

In addition to FMI as a cross-tool standard, there is also research on model classification
or signatures for specific tools. [41] aims to improve the quality of Modelica models by
adding information on traceability, uncertainty and calibration in a standardized way; [42]
proposes a signature for Simulink subsystems as a generalization of the interface including
input and output ports as well as data stores. [43] introduces a model identity card capturing
classifiers of input and output parameters as well as the expectable quality. Preliminary
work on validity and credibility exists in a fundamental nature by [44] and with a focus on
software intense embedded systems by [45], who developed a framework to assess and
formalize the validity range of simulation models. Many of the approaches mentioned
contain classifiers that are very specifically adapted to the needs and possibilities of certain
software tools and only partially offer generally valid methods for the lack of logical
systematization of domain models in the context of system elements for model-based
development described in the introduction.

Another important research approach that has been established in software engineer-
ing is contract-based design algebra. Here, system components can be combined to form
systems on the basis of predefined sets of rules [46], for example in order to automatically
generate consistent design variants that meet requirements [47]. A modeling approach for
evaluating compatibility between SysML blocks was introduced in [48]. This approach
considers the conformance and direction of data types as well as the compatibility of the
value ranges of two parameter interfaces but not on domain model level.

3. Research Question

In the introduction (cf. Section 1), three challenges were described. First, the pa-
rameters occurring in system elements are not classified in such a way that parameter
associations cannot be efficiently identified when integrating domain models and work-
flows. Secondly, it is not possible to assess without expert knowledge and high effort
whether an existing simulation model is suitable for the calculation of certain properties of
a system element. Third, multiple simulation models can only be coupled manually and
with a certain error rate, which can potentially lead to high damages and costs [16].

These challenges have not yet been overcome by the current state of research (cf.
Section 2). Therefore, the research question addressed in this publication is:

How can an unambiguous parameter relationship be established between system elements and
domain models for their identification and coupling?

Two subordinate questions can be derived from this research question:

1. How can the parameters in the system element be structured for testing and design
with domain models?

2. How can model signatures for domain models be defined unambiguously and
machine-readable?

The following two sections address the two derived questions: In Section 4 a parameter
concept for system elements is proposed and in Section 5 a model signature for domain
models based on requirements from the development process is elaborated. In Section 6,
research findings are discussed, concluded, and an outlook on necessary and possible
future research directions are outlined.

4. System Element Parameter Concept

As described in Section 2.1, system elements which are typically used in function-
oriented model-based development consist of inherited function ports, physical effects,
active surfaces with material properties, domain models, and other physical parameters.
All these constituents of the system element are formalized with parameters [3,21] resulting
in a large number of parameters, which can complicate the integration of domain models
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with their parameter interfaces. Therefore, we propose the differentiation of the following
three types of parameters:

Functional flow parameters are all parameters comprised in the functional flows entering
and leaving the system element. These parameters are imposed on the system element
by the environment or functionally dependent system elements and reflect operating and
environmental conditions. Examples include the pressure of a fluid flow and the rotational
speed of a mechanical energy flow.

Design parameters can be set directly by the engineer, written into the engineering
drawing, and imposed on the real product via manufacturing. These parameters may
also change over time due to operation (e.g., wear) or the environment (e.g., ambient
temperature), but the initial value is set by the engineer and the manufacturing process.
Examples might be the diameter of an active surface or the Young’s modulus of a material.

State variables cannot be set directly by the engineer. These parameters (e.g., tensile
stress) adjust themselves depending on the functional flows from the environment and
operation (e.g., force) as well as the design parameters (e.g., cross-sectional area) according
to the laws of physics.

It is the engineer’s task to define the design parameters in such a way that the state
variables are within certain value ranges in all relevant operational and environmental
scenarios experienced by the system element via the functional flows.

The proposed differentiation of parameter types helps in the integration and coupling
of domain models for validation and design of system elements. The validation of system
elements with workflows [30] involves checking whether the behavior of the system element
meets the requirements. These requirements can relate to state variables (e.g., a maximum
permissible temperature) or to functional flow parameters (e.g., the minimum required
torque of a drive system). In both cases the design parameters are already known or at
least estimated. This means that such domain models have to be selected and coupled with
each other, which take known design parameters as input and calculate the state variable
or functional flow parameter to be validated as output (Figure 3, orange).

Systems 2022, 10, x FOR PEER REVIEW 8 of 17 
 

 

 

Figure 3. Schematic representation of the parameter flows in validation and design case. 

In the case of the design of a system element, it is the other way around. One or more 

design parameters are to be determined such that the state variables are within the ranges 

of validity and the functional flow parameters are generated as required by the operating 

case. Therefore, such domain models must be selected and coupled in a way that the de-

sired functional flow parameters and limits of the state variables can be taken as input 

and the sought design parameters are calculated as output (Figure 3, green). Of course, in 

addition to the sought design parameter, there are also design parameters that are already 

fixed or at least should not be calculated in the design workflow under consideration. 

These subordinate design parameters may also be an input. Figure 3 only shows the flow 

directions of the main parameters considered in the respective workflow in a simplified 

way. 

Thus, the parameters of the system element are meaningfully structured for valida-

tion and design. For the appropriate selection and coupling of the domain models, these 

still lack an unambiguous description of the parameter interfaces, which is proposed in 

the following section. 

5. Model Signature for Domain Models 

Model signatures are an approach to describe domain models and their interfaces un-

ambiguously and in a machine-processable way, thus enabling the valid selection and 

combination of domain models within a system element. Since a large number of individ-

ually and inconsistently documented domain models is actively being used, our approach 

to tackle the research question is to consider a collection of well-known domain models 

for a specific example, and to derive requirements for model signatures based on their 

content and form (Section 5.1). From these requirements we propose an approach for 

model signatures (Section 5.2). 

5.1. Domain Model Requirements for the Model Signature 

Figure 3. Schematic representation of the parameter flows in validation and design case.



Systems 2022, 10, 199 8 of 15

In the case of the design of a system element, it is the other way around. One or more
design parameters are to be determined such that the state variables are within the ranges
of validity and the functional flow parameters are generated as required by the operating
case. Therefore, such domain models must be selected and coupled in a way that the
desired functional flow parameters and limits of the state variables can be taken as input
and the sought design parameters are calculated as output (Figure 3, green). Of course, in
addition to the sought design parameter, there are also design parameters that are already
fixed or at least should not be calculated in the design workflow under consideration.
These subordinate design parameters may also be an input. Figure 3 only shows the flow
directions of the main parameters considered in the respective workflow in a simplified way.

Thus, the parameters of the system element are meaningfully structured for validation
and design. For the appropriate selection and coupling of the domain models, these still
lack an unambiguous description of the parameter interfaces, which is proposed in the
following section.

5. Model Signature for Domain Models

Model signatures are an approach to describe domain models and their interfaces un-
ambiguously and in a machine-processable way, thus enabling the valid selection and
combination of domain models within a system element. Since a large number of individu-
ally and inconsistently documented domain models is actively being used, our approach
to tackle the research question is to consider a collection of well-known domain models
for a specific example, and to derive requirements for model signatures based on their
content and form (Section 5.1). From these requirements we propose an approach for model
signatures (Section 5.2).

5.1. Domain Model Requirements for the Model Signature

An extract of known domain models for the system element ‘lubricated rolling con-
tact’ is shown in Figure 4. As already mentioned, they can be distinguished by purpose
and fidelity [14] whereby the term fidelity is used here in the combined sense of validity
and detail of [44]. In our example three domain models of various fidelity can be dif-
ferentiated for the purpose ‘temperature calculation’ ranging from the assumption of a
constant temperature to a fully spatially resolved, transient temperature evolution. De-
pending on the required modeling fidelity of (thermo-)elastohydrodynamic lubrication
calculations in the lubricated rolling contact, different modeling strategies can be applied
as demonstrated in Figure 4. For instance, in order to model the lubrication film, either
temperature (represented by Barus equation) or pressure dependencies of the viscosity
(represented by Vogel equation) in the lubrication film or the combination (represented
by Eyring, Barus, and Vogel) can be considered to reach the desired fidelity levels in sim-
ulations. Analogously, different approaches for temperature, deformation and pressure
calculations can be used [31,32,49]. Please note that the domain models shown are only
a small excerpt. Both in the published research literature and in companies, such as a
bearing manufacturer, a significantly higher number of models will be found. Based on the
extent shown here, an elastohydrodynamic (EHD) calculation (Figure 4, green line) and a
thermo-elastohydrodynamic (TEHD) calculation (Figure 4, yellow line) can be found as
meaningful model configurations and performed as calculation.

The Assessment of the domain model compatibility requires expert knowledge or a
formalized and evaluable domain model signature. Only the latter can later be utilized in
automated validation tests.

Figure 5 shows the parameters which are exchanged between the domain models
if a TEHD calculation is executed. The depicted workflow (Figure 5, top left corner)
combines the Reynolds equation, half-space theory, energy equation and fluid models
for viscosity. After iteratively solving the equations for required parameters with given
boundary conditions, the film thickness and pressure distribution in the contact area will
be achieved as the result of the simulation model (Figure 5, top right corner).
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Apparently, mainly state variables as well as design parameters are exchanged, which
constitute input and output parameters of the domain model. Besides these input and
output parameters, however, also internal parameters are needed within the individual
domain models. These internal parameters only exist inside domain models, where they
can be changed in the model’s code, and cannot be accessed from outside. This leads
to the challenge of possible inconsistencies between invisible instances of the same in-
ternal parameter in two different domain models, which is still a common problem in
system modeling. This consideration leads to the conclusion that the model signature of
a domain model should not only contain input and output parameters, but also internal
parameters explicitly.

Another challenge are undefined spatial and temporal resolutions of parameters. If a
parameter occurs in several domain models, these instances must be linked together (e.g.,
the dynamic viscosity between both domain models in Figure 5) and match in particular
with respect to their spatial and temporal resolutions as well as admissible physical or
operational regimes. While, e.g., the spatial dimensions (x, y and z) of the parameters have
to match completely, a partial match of the regimes can be sufficient to execute two coupled
domain models. As a final point, it can be stated that also properties resulting from the
model building must be compatible to each other. For instance, the computation times of
coupled models should be harmonized in order to guarantee an efficient execution.

While input and output relations can be represented in today’s SysML the admissibility
regimes require a linguistic extension of SysML. This is also the case if regime compatibility
at higher hierarchical levels is to be tested with the system element parameter concept
building on this contribution.

Another important aspect for the model signature is the variability of parameters.
Depending on the validation and design question, the developer may want to specifically
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keep individual parameters constant or allow them to change. Therefore, when integrating
a domain model, it must be transparent whether the model keeps the individual parameters
constant or varies them partially during the calculation. Hence, the model signature for
domain models should explicitly contain the variability of the parameters in addition
to the classification according to input, internal and output, dimensions, regimes and
execution times.
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5.2. Proposal of a Model Signature for Domain Models

From the requirements identified based on domain models (cf. Section 5.1), the
following proposal of a domain model signature is derived comprising four constituents
(Figure 6).

Systems 2022, 10, x FOR PEER REVIEW 12 of 17 
 

 

parameters constant or varies them partially during the calculation. Hence, the model sig-

nature for domain models should explicitly contain the variability of the parameters in 

addition to the classification according to input, internal and output, dimensions, regimes 

and execution times. 

5.2. Proposal of a Model Signature for Domain Models 

From the requirements identified based on domain models (cf. Section 5.1), the fol-

lowing proposal of a domain model signature is derived comprising four constituents 

(Figure 6).  

 

Figure 6. Model signature of the domain model ‘Eyring, Barus, Vogel’ (partly based on data from 

[49,50]). 

Among the input parameters all parameters are collected, which are needed as input 

for the specific calculation purpose of the domain model. Similarly, the output parameters 

are also specified, which are result of the calculation purpose of the particular domain 

model. In addition to the input and output parameters, the internal parameters are also 

included as a third constituent, which are characterized by the fact that they cannot be 

specified or read out externally of the domain model calculation. 

The domain model signature specifies all input, output and internal parameters, con-

cerning their name, dimension, data type, physical quantity and unit, spatial and temporal 

resolution as well as admissible regimes (Figure 6). Additionally, it is indicated whether 

the parameter is fixed or tunable inside the model. For example, it is defined that the do-

main model ‘Eyring, Barus, Vogel’ needs an input parameter ‘pressure’ with unit ‘Pa’, 

which is resolved in x and y direction as well as in time. This parameter is fixed since it is 

not changed or optimized inside this particular domain model. This fluid model is valid 

for moderate temperatures [50] and low pressures [49]. To fix the admissible regimes in 
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Among the input parameters all parameters are collected, which are needed as input for
the specific calculation purpose of the domain model. Similarly, the output parameters are
also specified, which are result of the calculation purpose of the particular domain model.
In addition to the input and output parameters, the internal parameters are also included as
a third constituent, which are characterized by the fact that they cannot be specified or read
out externally of the domain model calculation.

The domain model signature specifies all input, output and internal parameters,
concerning their name, dimension, data type, physical quantity and unit, spatial and
temporal resolution as well as admissible regimes (Figure 6). Additionally, it is indicated
whether the parameter is fixed or tunable inside the model. For example, it is defined that
the domain model ‘Eyring, Barus, Vogel’ needs an input parameter ‘pressure’ with unit
‘Pa’, which is resolved in x and y direction as well as in time. This parameter is fixed since
it is not changed or optimized inside this particular domain model. This fluid model is
valid for moderate temperatures [50] and low pressures [49]. To fix the admissible regimes
in the proposed model signature, temperatures up to 100 ◦C and pressures of 100 kPa to
about 1 GPa are assumed as an example. The parameter specification (Figure 6, right) is a
suggested notation that allows an algorithm-based evaluation of parameter compatibilities.
For example, the unit Pascal is expressed via the exponents of the power product of the
seven standardized SI units [51].

As a last parameter group, the domain model signature also contains the model
parameters. These model parameters have no equivalent on the modeled system, but arise
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from the way the model is built. These include, for example, the computation time, time
steps or termination criteria.

6. Discussion, Conclusion and Outlook

In this section, we discuss and summarize the results and provide an outlook for
future research.

6.1. Discussion

Besides the advantage of an unambiguous and machine-readable description, the
model signature also offers the possibility to evaluate the formal compatibility of domain
models. The domain models considered in this example for the system element ‘lubricated
rolling contact’ can be combined theoretically to 81 different model chains (Figure 4). This
example is still idealized, such that in reality many more combinations can be expected. Of
course, not all of the model chains can be technical coupled. Even with in-depth knowledge
of the domain models, it is not possible to reliably and reproducibly filter out incompatible
model chains without error and with acceptable effort. The proposed model signatures
allow to easily and unambiguously determine whether the respective coupled parameters
match in terms of dimensions, data type, unit, spatial and temporal resolution, and regime.

In order to reduce the set of possible model configurations to compatible ones with the
proposed model signature, it makes sense to implement the model signature as an extension
of SysML in a language profile. For example, the mechanisms of structural expressions in
system modeling environments such as Cameo could be used to automatically evaluate
compatible domain models [52].

6.2. Conclusions

In function-oriented model-based system development, executable domain models
must be integrated into the SysML-based descriptive system model in order to virtually
validate and design its system elements. Since all constituents of a system element are
formalized via parameters, the challenge arises on the one hand of how to structure these
parameters in order to connect them in a meaningful way with the domain models. At the
same time, a large number of domain models exist for typical mechanical system elements,
which are not documented in a standardized manner, and therefore, on the other hand, can
only be integrated into the system element and coupled with each other in a effortful and
failure-prone manner. Therefore, we proposed a parameter concept for system elements
and a domain model signature, which are harmonized with each other and allow the
integration and unambiguous coupling of domain models inside system elements.

The parameter concept for system elements distinguishes its parameters into design
parameters that need to be defined by engineers or models, state variables that cannot be
set directly be engineers and adjust themselves according to the laws of physics, as well
as functional flows that enter and leave the system element representing operating and
environmental conditions.

The proposed notion of model signatures specifies domain models concerning the
following attributes. All input, internal and output parameters are defined by their re-
spective name and their physical quantity. Furthermore, the physical is indicated by the
power of the seven standardized SI units. The admissible regime is specified by a basically
unrestricted set of constraints. Thus, several disjoint ranges of validity can also be expressed
by minimum and maximum values or a formulaic relationship. Furthermore, the spatial
and temporal resolution as well as the variability are provided. The latter categorizes
whether the value of a parameter is fixed or tunable through changes or optimizations
inside the domain model. The domain model signature additionally includes the model
parameters as a final parameter group. These model parameters are a result of how the
model is constructed rather than having an equivalent in the modeled system.

This unambiguous and machine-processable description allows domain models to be
validly coupled with each other. In combination with the parameter concept, the domain
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models can read and calculate parameters of the system element according to the certain
validation and design cases.

6.3. Outlook

In this article, we motivated the necessity of model signatures and investigated its
realization based on a specific example. The conceptual approach, however, is not restricted
to system elements representing the lubricated rolling contact in a gearing box, but can be
generalized to other system elements. In order to further develop and establish the concept
of model signatures, it will therefore be important to apply it to additional, typical system
elements in the course of further research. In this context, it makes sense to extend SysML
with a possibility to specify resolutions and regimes in order to formulate model signatures
with this language in the future. In preparation for application, it is also necessary to
develop algorithms for automated compatibility checking and coupling of domain models.

The proposed notion of model signatures also reminds of software structures used
in multi-physics software systems, that choose an object-oriented approach, in which
‘model classes’ exist that encapsulate a certain process model to facilitate hierarchical
modeling [53], or reproducibility [54]. A specific simulation is then an object of class
model with certain parameters (constraining the physical regime) and certain underlying
mathematical and numerical methods (that define spatiotemporal resolution). Such an
object-oriented software structure also helps to orchestrate high-throughput simulations
such as needed for model-based uncertainty management. Additionally, ontologies could
provide a way to semantically express and make usable the information needed to select
and link simulation models from a model building perspective [55,56]. Combing these
closely related concepts will offer new pathways towards a conceptual integration of system
models with high-fidelity simulation models.
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