
Citation: Zerwas, T.; Jacobs, G.;

Kowalski, J.; Husung, S.; Gerhard, D.;

Rumpe, B.; Zeman, K.; Vafaei, S.;

König, F.; Höpfner, G. Model

Signatures for the Integration of

Simulation Models into System

Models. Systems 2022, 10, 199.

https://doi.org/10.3390/

systems10060199

Academic Editor: Vladimír Bureš

Received: 15 September 2022

Accepted: 27 October 2022

Published: 29 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

systems

Article

Model Signatures for the Integration of Simulation Models into
System Models
Thilo Zerwas 1,*, Georg Jacobs 1 , Julia Kowalski 2, Stephan Husung 3 , Detlef Gerhard 4 , Bernhard Rumpe 5,
Klaus Zeman 6, Seyedmohammad Vafaei 1 , Florian König 1 and Gregor Höpfner 1

1 Institute for Machine Elements and Systems Engineering, RWTH Aachen University, Eilfschornsteinstr. 18,
52062 Aachen, Germany

2 Chair of Methods for Model-Based Development in Computational Engineering, RWTH Aachen University,
Eilfschornsteinstr. 18, 52062 Aachen, Germany

3 Product and Systems Engineering Group, Technische Universität Ilmenau, Max-Planck-Ring 12,
98693 Ilmenau, Germany

4 Chair of Digital Engineering, Ruhr-University Bochum, Universitaetsstr. 150, 44801 Bochum, Germany
5 Chair of Software Engineering, RWTH Aachen University, Ahornstraße 55, 52074 Aachen, Germany
6 Institute of Mechatronic Design and Production, Johannes Kepler Universität Linz, Altenberger Straße 69,

4040 Linz, Austria
* Correspondence: thilo.zerwas@imse.rwth-aachen.de

Abstract: Model-based systems engineering (MBSE) is an auspicious approach to the virtual devel-
opment of cyber-physical systems. The behavior of the system’s elements is thus represented by
specialized simulation models that are integrated into the descriptive SysML-based system model.
Although many simulation models have been developed in research for the common system ele-
ments for various purposes and fidelities, their integration remains a major challenge: the parameter
interfaces of the simulation models must be coupled with each other and with the parameters of
the system elements in such a way that they are correctly parameterized. So far, this coupling can
only be carried out by model experts in a time-consuming and error-prone manner. Therefore, in
this paper, we first propose a concept that structures the system element parameters for targeted use
in validation and design cases. Second, we propose a model signature for simulation models that
differentiates its parameters by input, internal, output, and model parameters and specifies them
with spatial and temporal dimensions as well as admissible ranges, among others. Based on the
two contributions, domain models can be validly and automatable coupled and used for the virtual
development of system elements in model-based systems engineering.

Keywords: model-based systems engineering; simulation models; system models

1. Introduction

Model-based systems engineering (MBSE) is a promising approach for the accelerated,
virtual development of cyber physical systems (CPS) with reusable models [1]. Thereby,
the system to be developed (e.g., a connected vehicle) is represented by a system model
consisting of a hierarchical structure of system elements for the individual subsystems (e.g.,
top-down: mechatronic drive train, electric engine, bearing, cylindrical roller bearing,
lubricated rolling contact) in accordance to [2]. Low-level system elements are also referred
to as solution elements in [3,4]. Regardless the terminology, however, the modular and
generic entities describe fundamental interrelationships, which are often reused in a wide
variety of higher-level systems. Therefore, these low level system elements can be identified
as enablers for accelerated virtual development of CPS [3,5].

Testing requirements and ensuring the functionality of the overall system concerning
the mechanical domain, requires all system elements to be validated with regard to their
behavior. To validate the behavior of a system element, different purposes (e.g., lifetime,

Systems 2022, 10, 199. https://doi.org/10.3390/systems10060199 https://www.mdpi.com/journal/systems

[ZJK+22] T. Zerwas, G. Jacobs, J. Kowalski, S. Husung, D. Gerhard, B. Rumpe, K. Zeman, S. Vafaei, F. König, G. Höpfner:
Model Signatures for the Integration of Simulation Models into System Models.
In: Systems, MDPI, Oktober 2022.
www.se-rwth.de/publications/

https://doi.org/10.3390/systems10060199
https://doi.org/10.3390/systems10060199
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/systems
https://www.mdpi.com
https://orcid.org/0000-0002-7564-288X
https://orcid.org/0000-0003-0131-5664
https://orcid.org/0000-0002-3266-7526
https://orcid.org/0000-0001-7887-0741
https://orcid.org/0000-0002-4795-6451
https://orcid.org/0000-0003-4451-3978
https://doi.org/10.3390/systems10060199
https://www.mdpi.com/journal/systems
https://www.mdpi.com/article/10.3390/systems10060199?type=check_update&version=1

Systems 2022, 10, 199 2 of 15

friction losses, pressures, temperatures, lubrication conditions) have to be considered [3].
Since the behavior usually cannot be validated with a descriptive, SysML-based system
model alone [6,7], a system element needs appropriate domain models to account for all the
different purposes. A domain model is, by its nature, a representation of the original system
that has been shortened or abstracted in terms of scale, detail and/or functionality [8] and
typically a specialized simulation model that runs in an external software tool and needs
to be integrated into the SysML-based system model [6,9–13]. One of the open challenges
with such an integration is to provide a well-defined, modular and consistent interface
between domain models and their system element counterparts, for instance to assure a
correct parameter exchange. The term parameter is used in this paper analogously to [3] as
a generic term for all quantitative attributes of the interfaces of domain models.

In the current state of research, numerous domain models for a specific purpose
are published, which differ in terms of their used parameters, fidelity, model assump-
tions, computational effort, and other criteria. This leads to the challenge of selecting the
most appropriate domain models, which in return requires that domain models must be
identifiable with respect to relevant criteria in order to be able to clearly assign them to
system elements [14]. To this end, suitable and efficient methods must be explored that
enable the large variety of existing models to be sustainably utilized for model-based
product development.

Another challenge is that many purposes of a system element are interdependent and
coupled. As an example, pressure, temperature, and manufacturing accuracy result in
certain lubrication conditions, which in turn affect service life. Neglecting these coupling
effects via an isolated consideration of these purposes is not sufficient in the development
process und would lead to significant errors in the system model [15,16]. Instead, it must
be possible to couple the respective domain models in order to virtually represent and
validate their feedback mechanisms. In doing so, it is crucial that the coupling of the
domain models is consistent and correct for the specific validation question. Hence, this
calls for novel research approaches to evaluate the compatibility of individual domain
models in a systematic and potentially automated way. Methods for the latter are actively
being worked on, yet proposed solutions are often restricted to specific simulation tools or
data exchange standards.

While a decomposition of the system model into system elements is often used and
common practice, low-level domain models are individually proposed and investigated
in the literature, yet not analyzed in the context of a system model. Domain models are
hence not systematically structured by an appropriate taxonomy that would be accessible
from system models: Up to now, it has not been possible to standardize the descriptions
of the numerous and often only gradually different domain models in terms of content
and form. As a result, system engineers have not yet been able to identify domain models
unambiguously and efficiently, assign them to associated system elements, and reuse them.
Instead, system elements are usually modeled individually, often with considerable effort
and expert knowledge, although they and their domain models are actually fundamentally
known [14]. Since there are no standardized concepts or methods either for the parameter
interfaces of the domain models or for the parameters of the system element, a great deal
of effort is involved, especially in linking these parameters.

Furthermore, due to the poor documentation described above, it is not possible to
clearly and efficiently evaluate if two domain models can be coupled in an automated way.
As a result, system engineers either need a lot of time to reliably assess the compatibility or
domain models are partially coupled incorrectly. Depending on when these errors become
apparent, this leads to change costs in the development phase or, in the worst case, high
recall costs in the use phase of the system.

Imagining an ideal development process, each system element and domain model
would have an unambiguous and machine-readable interface description of its relevant
model parameters, so that within the required time, cost and quality for the development
of CPS

Systems 2022, 10, 199 3 of 15

• A clear and automated assignment of domain models to system elements is possible;
• The compatibility of domain models can be automatically evaluated;
• The most appropriate combination of domain models given a certain requirements-

driven goal can be identified.

To reach this goal, we propose a parameter concept for system elements (cf. Section 4)
as well as an unambiguous and machine-readable model signature for domain models (cf.
Section 5). Finally, we discuss to what extent the parameter concept and model signatures
help in combination to uniquely identify and correctly link domain models for system
elements (cf. Section 6). For exemplary application and explanation of the results, in this
paper we use the lubricated rolling contact as a typical machine element in mechanics: Two
convex or convex/concave cylinder surfaces touch each other in a lubricated state at a
narrow contact area where a thin lubricant film transfers mechanical forces from one surface
to the other (Figure 1) [17].

Systems 2022, 10, x FOR PEER REVIEW 3 of 17

errors become apparent, this leads to change costs in the development phase or, in the

worst case, high recall costs in the use phase of the system.

Imagining an ideal development process, each system element and domain model

would have an unambiguous and machine-readable interface description of its relevant

model parameters, so that within the required time, cost and quality for the development

of CPS

• A clear and automated assignment of domain models to system elements is possible;

• The compatibility of domain models can be automatically evaluated;

• The most appropriate combination of domain models given a certain requirements-

driven goal can be identified.

To reach this goal, we propose a parameter concept for system elements (cf. Section

4) as well as an unambiguous and machine-readable model signature for domain models

(cf. Section 5). Finally, we discuss to what extent the parameter concept and model signa-

tures help in combination to uniquely identify and correctly link domain models for sys-

tem elements (cf. Section 6). For exemplary application and explanation of the results, in

this paper we use the lubricated rolling contact as a typical machine element in mechanics:

Two convex or convex/concave cylinder surfaces touch each other in a lubricated state at

a narrow contact area where a thin lubricant film transfers mechanical forces from one

surface to the other (Figure 1) [17].

Figure 1. Cylindrical roller bearing and lubricated rolling contact with the formation of a hydrody-

namic oil film (right).

2. State of the Art

Nowadays, and in the future, increasingly, CPS are being developed. CPS are char-

acterized by interacting subsystems of the mechanical, electrical and software domain.

The different subsystems and development processes of the domains lead to an immanent

complexity in the development of CPS [18,19].

2.1. Function-Oriented Model-Based Systems Engineering

A promising approach to multidisciplinary CPS development is function-oriented

model-based systems engineering whose key element is a cross-domain functional archi-

tecture typically modeled with the Systems Modeling Language (SysML) [7] or an ad-

vanced profile based on SysML [20]. This functional architecture is derived from the re-

quirements and comprises functional flows as interfaces between the functions [20,21].

Based on this functional architecture, all involved domains develop system elements that

realize the individual functions assigned to them. These system elements inherit the

Inner ring

Rolling
element

Cage

Load

Outer ring

Load

Oil film thickness

Lubricated Rolling Contact

Figure 1. Cylindrical roller bearing and lubricated rolling contact with the formation of a hydrody-
namic oil film (right).

2. State of the Art

Nowadays, and in the future, increasingly, CPS are being developed. CPS are char-
acterized by interacting subsystems of the mechanical, electrical and software domain.
The different subsystems and development processes of the domains lead to an immanent
complexity in the development of CPS [18,19].

2.1. Function-Oriented Model-Based Systems Engineering

A promising approach to multidisciplinary CPS development is function-oriented
model-based systems engineering whose key element is a cross-domain functional architec-
ture typically modeled with the Systems Modeling Language (SysML) [7] or an advanced
profile based on SysML [20]. This functional architecture is derived from the requirements
and comprises functional flows as interfaces between the functions [20,21]. Based on this
functional architecture, all involved domains develop system elements that realize the
individual functions assigned to them. These system elements inherit the functional flows
of the functions and can thus be developed modularly within the specific domains. Due to
this encapsulation, the system elements have a low complexity and jointly represent the
behavior of the superordinate system. As a rule, several function-oriented decomposition
steps are necessary to reduce the typical CPS complexity within the system elements to a
manageable level. This results in a system architecture consisting of system elements across
multiple hierarchy levels. The elementary system elements at the lowest level describe
very small and fundamental relationships (Figure 2) [3]. One example of such a function-

Systems 2022, 10, 199 4 of 15

oriented and model-based development approach is the motego method, which has already
been applied in several research projects and is continuously being extended [4,22–24].

Systems 2022, 10, x FOR PEER REVIEW 4 of 17

functional flows of the functions and can thus be developed modularly within the specific

domains. Due to this encapsulation, the system elements have a low complexity and

jointly represent the behavior of the superordinate system. As a rule, several function-

oriented decomposition steps are necessary to reduce the typical CPS complexity within

the system elements to a manageable level. This results in a system architecture consisting

of system elements across multiple hierarchy levels. The elementary system elements at

the lowest level describe very small and fundamental relationships (Figure 2) [3]. One

example of such a function-oriented and model-based development approach is the

motego method, which has already been applied in several research projects and is con-

tinuously being extended [4,22–24].

Figure 2 shows the system element lubricated rolling contact which comprises three

main constituents: The principle solution, domain models and workflows [3].

Figure 2. Extract of two system elements linked via functional flows from a function-oriented sys-

tem architecture.

The principle solution is an established concept in design methodology to describe so-

lutions based on physical effects and active surfaces with certain geometric and material

properties [21,25–27]. The physical effect is modeled as a constraint and typically estab-

lishes a mathematical relationship between active surfaces, material properties and func-

tional flows. This means that the equation of the physical effect comprises, e.g., the length

l, which is of course also a parameter of the two active surfaces (Figure 2). To avoid re-

dundant or inconsistent parameters, these parameters must be linked. Even if system ele-

ments sometimes describe only a small scope of a technical system, the parametric de-

scription of the active surfaces including material properties, the physical effect, the in-

coming and outgoing functional flows as well as other relevant physical quantities quickly

result in a large number of parameters, most of which must be linked together. When

domain models are integrated into the system element, the number of parameters (to be

linked) increases again significantly. Since there is no simplifying structuring for the pa-

rameters occurring in the system element so far, the linkage is complex, effortful and er-

ror-prone [3,21].

The domain model section in the system element contains and structures all models

relevant for the development of the scope (e.g., Lubricated rolling contact). At the top

level, a differentiation is made between engineering, production and controlling models,

whereby only the engineering domain is considered in this publication which typically

applicates models of analytical and numerical nature calculating the physical behavior of

Figure 2. Extract of two system elements linked via functional flows from a function-oriented
system architecture.

Figure 2 shows the system element lubricated rolling contact which comprises three
main constituents: The principle solution, domain models and workflows [3].

The principle solution is an established concept in design methodology to describe
solutions based on physical effects and active surfaces with certain geometric and material
properties [21,25–27]. The physical effect is modeled as a constraint and typically establishes
a mathematical relationship between active surfaces, material properties and functional
flows. This means that the equation of the physical effect comprises, e.g., the length l, which
is of course also a parameter of the two active surfaces (Figure 2). To avoid redundant
or inconsistent parameters, these parameters must be linked. Even if system elements
sometimes describe only a small scope of a technical system, the parametric description
of the active surfaces including material properties, the physical effect, the incoming and
outgoing functional flows as well as other relevant physical quantities quickly result in a
large number of parameters, most of which must be linked together. When domain models
are integrated into the system element, the number of parameters (to be linked) increases
again significantly. Since there is no simplifying structuring for the parameters occurring in
the system element so far, the linkage is complex, effortful and error-prone [3,21].

The domain model section in the system element contains and structures all models
relevant for the development of the scope (e.g., Lubricated rolling contact). At the top
level, a differentiation is made between engineering, production and controlling models,
whereby only the engineering domain is considered in this publication which typically
applicates models of analytical and numerical nature calculating the physical behavior of
system elements. Here, the models are classified according to their computational purpose,
such as the deformation of the active surfaces or the temperature in the lubricated rolling
contact [3,4,14].

Workflows are the third area in the system element. Since domain models must be
coupled for specific issues in the development process [14,24,28,29], these coupled models
are also stored in a reusable manner and differentiated between validation, design and
optimization workflows [3].

The joint storage of principle solution, domain models and workflows enables the spec-
ification of the system element (principle solution) to be reusable and consistently linked to

Systems 2022, 10, 199 5 of 15

the behavior description (domain models) and efficiently applicable in the development
(workflows) [3].

2.2. Integration and Coupling of Simulation Models

The system model with the central functional structure and the system elements
provides a descriptive representation of the system under development. In order to validate
system elements against requirements or to design them with respect to requirements
during development, domain models that describe the behavior of the system element
need to be integrated and correctly linked to parameters of the other constituents of the
system element [30].

Furthermore, typically not only one but several domain models of different purposes
and suitable fidelities are necessary to test and design system elements during development.
This results in the fact that several domain models must be coupled with each other [3,15,30].
In order for the coupled domain models to perform valid calculations, it is essential that
the domain models themselves and their parameter interfaces must be compatible with
each other.

Research on the design and of mechanical system elements has built up a large
number of models over the last decades. Even within a certain scope (e.g., lubricated
rolling contact) and purpose (e.g., lubrication), a large number of domain models of
different fidelities can be found, resulting from different (empirical) approaches, boundary
conditions and simplifications [31,32]. As a result, a high two- or even three-digit number
of domain models is typically available for common system elements such as bearings,
gears, shaft-hub connections, or fasteners, respectively. If several domain models have to
be coupled with each other, e.g., for service life calculations and wear predictions, a simple
combinatoric consideration results in a very large number of potential model configurations.
The naive number of model combinations can be significantly reduced, when focusing on
the model configurations that are physically compatible. To avoid manual efforts and to
use the potential of existing domain models, an unambiguous and machine-processable
description of the models and their parameter interfaces is necessary.

For this reason, several approaches for the interaction of system model and domain
models have been developed in the past. A good overview of the basic strategies for data
exchange between models in general is provided by [33] and with a focus on the parameter
exchange between SysML-based system models and domain models by [9,34,35]. In some
approaches, SysML profiles were developed to enable data exchange, e.g., for the model
transformation between system models and Modelica-based simulation models [36] or for
the automatic generation of analysis models from system models [10]. In this context, [9]
states that the developed interfaces are often limited to specific simulation tools and
compatibility issues frequently arise due to different versions of exchange standards (e.g.,
FMI [37,38]). Another approach is to orchestrate the data exchange between domain models
and the system model by SysML diagrams [30,39].

Often, the approaches develop a specific interface and do not address the fundamental
question of how the parametric interfaces of a domain model must be formalized generally
in order to enable the valid coupling of domain models inside system elements.

Therefore, it makes sense to analyze the parameter and model definitions of data
exchange standards such as Functional Mock-up Interface (FMI) [37], which among other
things aim to integrate Modelica domain models into SysML-based system models [40].
The FMI standard requires in particular that each functional mock-up unit contains an XML
file describing the model. In addition to their name and description, the parameters of the
model are characterized by their causality and variability.

The causality specifies whether the parameter is an input or output parameter, a
parameter that controls the model, or a calculated, independent or local parameter. The
variability defines whether a parameter is constant, fixed after the initialization, tunable
or discrete. Thereby, the FMI standard allows only certain combinations of the attributes
‘causality’ and ‘variability’. In addition, it is possible to specify start, nominal, minimum

Systems 2022, 10, 199 6 of 15

and maximum values for the different types of parameters [37]. Since the FMI standard is
relatively advanced, the model signature developed in this contribution should ensure its
logical compatibility to FMIs.

In addition to FMI as a cross-tool standard, there is also research on model classification
or signatures for specific tools. [41] aims to improve the quality of Modelica models by
adding information on traceability, uncertainty and calibration in a standardized way; [42]
proposes a signature for Simulink subsystems as a generalization of the interface including
input and output ports as well as data stores. [43] introduces a model identity card capturing
classifiers of input and output parameters as well as the expectable quality. Preliminary
work on validity and credibility exists in a fundamental nature by [44] and with a focus on
software intense embedded systems by [45], who developed a framework to assess and
formalize the validity range of simulation models. Many of the approaches mentioned
contain classifiers that are very specifically adapted to the needs and possibilities of certain
software tools and only partially offer generally valid methods for the lack of logical
systematization of domain models in the context of system elements for model-based
development described in the introduction.

Another important research approach that has been established in software engineer-
ing is contract-based design algebra. Here, system components can be combined to form
systems on the basis of predefined sets of rules [46], for example in order to automatically
generate consistent design variants that meet requirements [47]. A modeling approach for
evaluating compatibility between SysML blocks was introduced in [48]. This approach
considers the conformance and direction of data types as well as the compatibility of the
value ranges of two parameter interfaces but not on domain model level.

3. Research Question

In the introduction (cf. Section 1), three challenges were described. First, the pa-
rameters occurring in system elements are not classified in such a way that parameter
associations cannot be efficiently identified when integrating domain models and work-
flows. Secondly, it is not possible to assess without expert knowledge and high effort
whether an existing simulation model is suitable for the calculation of certain properties of
a system element. Third, multiple simulation models can only be coupled manually and
with a certain error rate, which can potentially lead to high damages and costs [16].

These challenges have not yet been overcome by the current state of research (cf.
Section 2). Therefore, the research question addressed in this publication is:

How can an unambiguous parameter relationship be established between system elements and
domain models for their identification and coupling?

Two subordinate questions can be derived from this research question:

1. How can the parameters in the system element be structured for testing and design
with domain models?

2. How can model signatures for domain models be defined unambiguously and
machine-readable?

The following two sections address the two derived questions: In Section 4 a parameter
concept for system elements is proposed and in Section 5 a model signature for domain
models based on requirements from the development process is elaborated. In Section 6,
research findings are discussed, concluded, and an outlook on necessary and possible
future research directions are outlined.

4. System Element Parameter Concept

As described in Section 2.1, system elements which are typically used in function-
oriented model-based development consist of inherited function ports, physical effects,
active surfaces with material properties, domain models, and other physical parameters.
All these constituents of the system element are formalized with parameters [3,21] resulting
in a large number of parameters, which can complicate the integration of domain models

Systems 2022, 10, 199 7 of 15

with their parameter interfaces. Therefore, we propose the differentiation of the following
three types of parameters:

Functional flow parameters are all parameters comprised in the functional flows entering
and leaving the system element. These parameters are imposed on the system element
by the environment or functionally dependent system elements and reflect operating and
environmental conditions. Examples include the pressure of a fluid flow and the rotational
speed of a mechanical energy flow.

Design parameters can be set directly by the engineer, written into the engineering
drawing, and imposed on the real product via manufacturing. These parameters may
also change over time due to operation (e.g., wear) or the environment (e.g., ambient
temperature), but the initial value is set by the engineer and the manufacturing process.
Examples might be the diameter of an active surface or the Young’s modulus of a material.

State variables cannot be set directly by the engineer. These parameters (e.g., tensile
stress) adjust themselves depending on the functional flows from the environment and
operation (e.g., force) as well as the design parameters (e.g., cross-sectional area) according
to the laws of physics.

It is the engineer’s task to define the design parameters in such a way that the state
variables are within certain value ranges in all relevant operational and environmental
scenarios experienced by the system element via the functional flows.

The proposed differentiation of parameter types helps in the integration and coupling
of domain models for validation and design of system elements. The validation of system
elements with workflows [30] involves checking whether the behavior of the system element
meets the requirements. These requirements can relate to state variables (e.g., a maximum
permissible temperature) or to functional flow parameters (e.g., the minimum required
torque of a drive system). In both cases the design parameters are already known or at
least estimated. This means that such domain models have to be selected and coupled with
each other, which take known design parameters as input and calculate the state variable
or functional flow parameter to be validated as output (Figure 3, orange).

Systems 2022, 10, x FOR PEER REVIEW 8 of 17

Figure 3. Schematic representation of the parameter flows in validation and design case.

In the case of the design of a system element, it is the other way around. One or more

design parameters are to be determined such that the state variables are within the ranges

of validity and the functional flow parameters are generated as required by the operating

case. Therefore, such domain models must be selected and coupled in a way that the de-

sired functional flow parameters and limits of the state variables can be taken as input

and the sought design parameters are calculated as output (Figure 3, green). Of course, in

addition to the sought design parameter, there are also design parameters that are already

fixed or at least should not be calculated in the design workflow under consideration.

These subordinate design parameters may also be an input. Figure 3 only shows the flow

directions of the main parameters considered in the respective workflow in a simplified

way.

Thus, the parameters of the system element are meaningfully structured for valida-

tion and design. For the appropriate selection and coupling of the domain models, these

still lack an unambiguous description of the parameter interfaces, which is proposed in

the following section.

5. Model Signature for Domain Models

Model signatures are an approach to describe domain models and their interfaces un-

ambiguously and in a machine-processable way, thus enabling the valid selection and

combination of domain models within a system element. Since a large number of individ-

ually and inconsistently documented domain models is actively being used, our approach

to tackle the research question is to consider a collection of well-known domain models

for a specific example, and to derive requirements for model signatures based on their

content and form (Section 5.1). From these requirements we propose an approach for

model signatures (Section 5.2).

5.1. Domain Model Requirements for the Model Signature

Figure 3. Schematic representation of the parameter flows in validation and design case.

Systems 2022, 10, 199 8 of 15

In the case of the design of a system element, it is the other way around. One or more
design parameters are to be determined such that the state variables are within the ranges
of validity and the functional flow parameters are generated as required by the operating
case. Therefore, such domain models must be selected and coupled in a way that the
desired functional flow parameters and limits of the state variables can be taken as input
and the sought design parameters are calculated as output (Figure 3, green). Of course, in
addition to the sought design parameter, there are also design parameters that are already
fixed or at least should not be calculated in the design workflow under consideration.
These subordinate design parameters may also be an input. Figure 3 only shows the flow
directions of the main parameters considered in the respective workflow in a simplified way.

Thus, the parameters of the system element are meaningfully structured for validation
and design. For the appropriate selection and coupling of the domain models, these still
lack an unambiguous description of the parameter interfaces, which is proposed in the
following section.

5. Model Signature for Domain Models

Model signatures are an approach to describe domain models and their interfaces un-
ambiguously and in a machine-processable way, thus enabling the valid selection and
combination of domain models within a system element. Since a large number of individu-
ally and inconsistently documented domain models is actively being used, our approach
to tackle the research question is to consider a collection of well-known domain models
for a specific example, and to derive requirements for model signatures based on their
content and form (Section 5.1). From these requirements we propose an approach for model
signatures (Section 5.2).

5.1. Domain Model Requirements for the Model Signature

An extract of known domain models for the system element ‘lubricated rolling con-
tact’ is shown in Figure 4. As already mentioned, they can be distinguished by purpose
and fidelity [14] whereby the term fidelity is used here in the combined sense of validity
and detail of [44]. In our example three domain models of various fidelity can be dif-
ferentiated for the purpose ‘temperature calculation’ ranging from the assumption of a
constant temperature to a fully spatially resolved, transient temperature evolution. De-
pending on the required modeling fidelity of (thermo-)elastohydrodynamic lubrication
calculations in the lubricated rolling contact, different modeling strategies can be applied
as demonstrated in Figure 4. For instance, in order to model the lubrication film, either
temperature (represented by Barus equation) or pressure dependencies of the viscosity
(represented by Vogel equation) in the lubrication film or the combination (represented
by Eyring, Barus, and Vogel) can be considered to reach the desired fidelity levels in sim-
ulations. Analogously, different approaches for temperature, deformation and pressure
calculations can be used [31,32,49]. Please note that the domain models shown are only
a small excerpt. Both in the published research literature and in companies, such as a
bearing manufacturer, a significantly higher number of models will be found. Based on the
extent shown here, an elastohydrodynamic (EHD) calculation (Figure 4, green line) and a
thermo-elastohydrodynamic (TEHD) calculation (Figure 4, yellow line) can be found as
meaningful model configurations and performed as calculation.

The Assessment of the domain model compatibility requires expert knowledge or a
formalized and evaluable domain model signature. Only the latter can later be utilized in
automated validation tests.

Figure 5 shows the parameters which are exchanged between the domain models
if a TEHD calculation is executed. The depicted workflow (Figure 5, top left corner)
combines the Reynolds equation, half-space theory, energy equation and fluid models
for viscosity. After iteratively solving the equations for required parameters with given
boundary conditions, the film thickness and pressure distribution in the contact area will
be achieved as the result of the simulation model (Figure 5, top right corner).

Systems 2022, 10, 199 9 of 15

Systems 2022, 10, x FOR PEER REVIEW 9 of 17

An extract of known domain models for the system element ‘lubricated rolling con-

tact’ is shown in Figure 4. As already mentioned, they can be distinguished by purpose

and fidelity [14] whereby the term fidelity is used here in the combined sense of validity

and detail of [44]. In our example three domain models of various fidelity can be differen-

tiated for the purpose ‘temperature calculation’ ranging from the assumption of a constant

temperature to a fully spatially resolved, transient temperature evolution. Depending on

the required modeling fidelity of (thermo-)elastohydrodynamic lubrication calculations

in the lubricated rolling contact, different modeling strategies can be applied as demon-

strated in Figure 4. For instance, in order to model the lubrication film, either temperature

(represented by Barus equation) or pressure dependencies of the viscosity (represented

by Vogel equation) in the lubrication film or the combination (represented by Eyring, Ba-

rus, and Vogel) can be considered to reach the desired fidelity levels in simulations. Anal-

ogously, different approaches for temperature, deformation and pressure calculations can

be used [31,32,49]. Please note that the domain models shown are only a small excerpt.

Both in the published research literature and in companies, such as a bearing manufac-

turer, a significantly higher number of models will be found. Based on the extent shown

here, an elastohydrodynamic (EHD) calculation (Figure 4, green line) and a thermo-elas-

tohydrodynamic (TEHD) calculation (Figure 4, yellow line) can be found as meaningful

model configurations and performed as calculation.

Figure 4. Engineering domain models of the system element “lubricated rolling contact” classified

by their purposes and fidelities (in accordance with [13,14]).

The Assessment of the domain model compatibility requires expert knowledge or a

formalized and evaluable domain model signature. Only the latter can later be utilized in

automated validation tests.

Figure 4. Engineering domain models of the system element “lubricated rolling contact” classified by
their purposes and fidelities (in accordance with [13,14]).

Apparently, mainly state variables as well as design parameters are exchanged, which
constitute input and output parameters of the domain model. Besides these input and
output parameters, however, also internal parameters are needed within the individual
domain models. These internal parameters only exist inside domain models, where they
can be changed in the model’s code, and cannot be accessed from outside. This leads
to the challenge of possible inconsistencies between invisible instances of the same in-
ternal parameter in two different domain models, which is still a common problem in
system modeling. This consideration leads to the conclusion that the model signature of
a domain model should not only contain input and output parameters, but also internal
parameters explicitly.

Another challenge are undefined spatial and temporal resolutions of parameters. If a
parameter occurs in several domain models, these instances must be linked together (e.g.,
the dynamic viscosity between both domain models in Figure 5) and match in particular
with respect to their spatial and temporal resolutions as well as admissible physical or
operational regimes. While, e.g., the spatial dimensions (x, y and z) of the parameters have
to match completely, a partial match of the regimes can be sufficient to execute two coupled
domain models. As a final point, it can be stated that also properties resulting from the
model building must be compatible to each other. For instance, the computation times of
coupled models should be harmonized in order to guarantee an efficient execution.

While input and output relations can be represented in today’s SysML the admissibility
regimes require a linguistic extension of SysML. This is also the case if regime compatibility
at higher hierarchical levels is to be tested with the system element parameter concept
building on this contribution.

Another important aspect for the model signature is the variability of parameters.
Depending on the validation and design question, the developer may want to specifically

Systems 2022, 10, 199 10 of 15

keep individual parameters constant or allow them to change. Therefore, when integrating
a domain model, it must be transparent whether the model keeps the individual parameters
constant or varies them partially during the calculation. Hence, the model signature for
domain models should explicitly contain the variability of the parameters in addition
to the classification according to input, internal and output, dimensions, regimes and
execution times.

Systems 2022, 10, x FOR PEER REVIEW 11 of 17

Figure 5. TEHD workflow and result (top) as well as the parametric coupling of the domain models

“Eyring, Barus, Vogel” and “2d stationary Energy Conservation” (bottom; in accordance with [13]).

While input and output relations can be represented in today’s SysML the admissi-

bility regimes require a linguistic extension of SysML. This is also the case if regime com-

patibility at higher hierarchical levels is to be tested with the system element parameter

concept building on this contribution.

Another important aspect for the model signature is the variability of parameters.

Depending on the validation and design question, the developer may want to specifically

keep individual parameters constant or allow them to change. Therefore, when integrat-

ing a domain model, it must be transparent whether the model keeps the individual

Figure 5. TEHD workflow and result (top) as well as the parametric coupling of the domain models
“Eyring, Barus, Vogel” and “2d stationary Energy Conservation” (bottom; in accordance with [13]).

Systems 2022, 10, 199 11 of 15

5.2. Proposal of a Model Signature for Domain Models

From the requirements identified based on domain models (cf. Section 5.1), the
following proposal of a domain model signature is derived comprising four constituents
(Figure 6).

Systems 2022, 10, x FOR PEER REVIEW 12 of 17

parameters constant or varies them partially during the calculation. Hence, the model sig-

nature for domain models should explicitly contain the variability of the parameters in

addition to the classification according to input, internal and output, dimensions, regimes

and execution times.

5.2. Proposal of a Model Signature for Domain Models

From the requirements identified based on domain models (cf. Section 5.1), the fol-

lowing proposal of a domain model signature is derived comprising four constituents

(Figure 6).

Figure 6. Model signature of the domain model ‘Eyring, Barus, Vogel’ (partly based on data from

[49,50]).

Among the input parameters all parameters are collected, which are needed as input

for the specific calculation purpose of the domain model. Similarly, the output parameters

are also specified, which are result of the calculation purpose of the particular domain

model. In addition to the input and output parameters, the internal parameters are also

included as a third constituent, which are characterized by the fact that they cannot be

specified or read out externally of the domain model calculation.

The domain model signature specifies all input, output and internal parameters, con-

cerning their name, dimension, data type, physical quantity and unit, spatial and temporal

resolution as well as admissible regimes (Figure 6). Additionally, it is indicated whether

the parameter is fixed or tunable inside the model. For example, it is defined that the do-

main model ‘Eyring, Barus, Vogel’ needs an input parameter ‘pressure’ with unit ‘Pa’,

which is resolved in x and y direction as well as in time. This parameter is fixed since it is

not changed or optimized inside this particular domain model. This fluid model is valid

for moderate temperatures [50] and low pressures [49]. To fix the admissible regimes in

Figure 6. Model signature of the domain model ‘Eyring, Barus, Vogel’ (partly based on data from [49,50]).

Among the input parameters all parameters are collected, which are needed as input for
the specific calculation purpose of the domain model. Similarly, the output parameters are
also specified, which are result of the calculation purpose of the particular domain model.
In addition to the input and output parameters, the internal parameters are also included as
a third constituent, which are characterized by the fact that they cannot be specified or read
out externally of the domain model calculation.

The domain model signature specifies all input, output and internal parameters,
concerning their name, dimension, data type, physical quantity and unit, spatial and
temporal resolution as well as admissible regimes (Figure 6). Additionally, it is indicated
whether the parameter is fixed or tunable inside the model. For example, it is defined that
the domain model ‘Eyring, Barus, Vogel’ needs an input parameter ‘pressure’ with unit
‘Pa’, which is resolved in x and y direction as well as in time. This parameter is fixed since
it is not changed or optimized inside this particular domain model. This fluid model is
valid for moderate temperatures [50] and low pressures [49]. To fix the admissible regimes
in the proposed model signature, temperatures up to 100 ◦C and pressures of 100 kPa to
about 1 GPa are assumed as an example. The parameter specification (Figure 6, right) is a
suggested notation that allows an algorithm-based evaluation of parameter compatibilities.
For example, the unit Pascal is expressed via the exponents of the power product of the
seven standardized SI units [51].

As a last parameter group, the domain model signature also contains the model
parameters. These model parameters have no equivalent on the modeled system, but arise

Systems 2022, 10, 199 12 of 15

from the way the model is built. These include, for example, the computation time, time
steps or termination criteria.

6. Discussion, Conclusion and Outlook

In this section, we discuss and summarize the results and provide an outlook for
future research.

6.1. Discussion

Besides the advantage of an unambiguous and machine-readable description, the
model signature also offers the possibility to evaluate the formal compatibility of domain
models. The domain models considered in this example for the system element ‘lubricated
rolling contact’ can be combined theoretically to 81 different model chains (Figure 4). This
example is still idealized, such that in reality many more combinations can be expected. Of
course, not all of the model chains can be technical coupled. Even with in-depth knowledge
of the domain models, it is not possible to reliably and reproducibly filter out incompatible
model chains without error and with acceptable effort. The proposed model signatures
allow to easily and unambiguously determine whether the respective coupled parameters
match in terms of dimensions, data type, unit, spatial and temporal resolution, and regime.

In order to reduce the set of possible model configurations to compatible ones with the
proposed model signature, it makes sense to implement the model signature as an extension
of SysML in a language profile. For example, the mechanisms of structural expressions in
system modeling environments such as Cameo could be used to automatically evaluate
compatible domain models [52].

6.2. Conclusions

In function-oriented model-based system development, executable domain models
must be integrated into the SysML-based descriptive system model in order to virtually
validate and design its system elements. Since all constituents of a system element are
formalized via parameters, the challenge arises on the one hand of how to structure these
parameters in order to connect them in a meaningful way with the domain models. At the
same time, a large number of domain models exist for typical mechanical system elements,
which are not documented in a standardized manner, and therefore, on the other hand, can
only be integrated into the system element and coupled with each other in a effortful and
failure-prone manner. Therefore, we proposed a parameter concept for system elements
and a domain model signature, which are harmonized with each other and allow the
integration and unambiguous coupling of domain models inside system elements.

The parameter concept for system elements distinguishes its parameters into design
parameters that need to be defined by engineers or models, state variables that cannot be
set directly be engineers and adjust themselves according to the laws of physics, as well
as functional flows that enter and leave the system element representing operating and
environmental conditions.

The proposed notion of model signatures specifies domain models concerning the
following attributes. All input, internal and output parameters are defined by their re-
spective name and their physical quantity. Furthermore, the physical is indicated by the
power of the seven standardized SI units. The admissible regime is specified by a basically
unrestricted set of constraints. Thus, several disjoint ranges of validity can also be expressed
by minimum and maximum values or a formulaic relationship. Furthermore, the spatial
and temporal resolution as well as the variability are provided. The latter categorizes
whether the value of a parameter is fixed or tunable through changes or optimizations
inside the domain model. The domain model signature additionally includes the model
parameters as a final parameter group. These model parameters are a result of how the
model is constructed rather than having an equivalent in the modeled system.

This unambiguous and machine-processable description allows domain models to be
validly coupled with each other. In combination with the parameter concept, the domain

Systems 2022, 10, 199 13 of 15

models can read and calculate parameters of the system element according to the certain
validation and design cases.

6.3. Outlook

In this article, we motivated the necessity of model signatures and investigated its
realization based on a specific example. The conceptual approach, however, is not restricted
to system elements representing the lubricated rolling contact in a gearing box, but can be
generalized to other system elements. In order to further develop and establish the concept
of model signatures, it will therefore be important to apply it to additional, typical system
elements in the course of further research. In this context, it makes sense to extend SysML
with a possibility to specify resolutions and regimes in order to formulate model signatures
with this language in the future. In preparation for application, it is also necessary to
develop algorithms for automated compatibility checking and coupling of domain models.

The proposed notion of model signatures also reminds of software structures used
in multi-physics software systems, that choose an object-oriented approach, in which
‘model classes’ exist that encapsulate a certain process model to facilitate hierarchical
modeling [53], or reproducibility [54]. A specific simulation is then an object of class
model with certain parameters (constraining the physical regime) and certain underlying
mathematical and numerical methods (that define spatiotemporal resolution). Such an
object-oriented software structure also helps to orchestrate high-throughput simulations
such as needed for model-based uncertainty management. Additionally, ontologies could
provide a way to semantically express and make usable the information needed to select
and link simulation models from a model building perspective [55,56]. Combing these
closely related concepts will offer new pathways towards a conceptual integration of system
models with high-fidelity simulation models.

Author Contributions: Methodology, T.Z., G.J., J.K., S.H., D.G., B.R., K.Z., S.V., F.K. and G.H.;
Writing—original draft, T.Z.; Writing—review and editing, T.Z., G.J., J.K., S.H., D.G., B.R., K.Z., S.V.,
F.K. and G.H. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. INCOSE. Systems Engineering Vision. 2020. Available online: https://sdincose.org/wp-content/uploads/2011/12/SEVision202

0_20071003_v2_03.pdf (accessed on 4 October 2022).
2. Ropohl, G. Allgemeine Technologie: Eine Systemtheorie der Technik; KIT Scientific Publishing: Karlsruhe, Germany, 2009.
3. Jacobs, G.; Konrad, C.; Berroth, J.; Zerwas, T.; Höpfner, G.; Spütz, K. Function-Oriented Model-Based Product Development.

In Design Methodology for Future Products: Data Driven, Agile and Flexible, 1st ed.; Krause, D., Heyden, E., Eds.; Springer eBook
Collection; Springer: Cham, Switzerland, 2022.

4. Spütz, K.; Berges, J.; Jacobs, G.; Berroth, J.; Konrad, C. Classification of Simulation Models for the Model-based Design of
Plastic-Metal Hybrid Joints. Procedia CIRP 2022, 109, 37–42. [CrossRef]

5. Husung, S.; Weber, C.; Mahboob, A. Model-Based Systems Engineering: A New Way for Function-Driven Product Development.
In Design Methodology for Future Products; Springer: Cham, Switzerland, 2022; pp. 221–241. [CrossRef]

6. Chabibi, B.; Anwar, A.; Nassar, M. Towards an alignment of SysML and simulation tools. In Proceedings of the 2015 IEEE/ACS
12th International Conference of Computer Systems and Applications (AICCSA), Marrakech, Morocco, 17–20 November 2015;
IEEE: Piscataway, NJ, USA, 2016; pp. 1–6.

7. Object Management Group. OMG System Modeling Language Specification: Version 1.5. Available online: https://www.omg.
org/spec/SysML/1.5 (accessed on 14 July 2022).

8. Stachowiak, H. Allgemeine Modelltheorie; Springer: Wien, Austria, 1973.
9. Nigischer, C.; Bougain, S.; Riegler, R.; Stanek, H.P.; Grafinger, M. Multi-domain simulation utilizing SysML: State of the art and

future perspectives. Procedia CIRP 2021, 100, 319–324. [CrossRef]
10. Kim, H.; Fried, D.; Menegay, P.; Soremekun, G.; Oster, C. Application of Integrated Modeling and Analysis to Development of

Complex Systems. Procedia Comput. Sci. 2013, 16, 98–107. [CrossRef]
11. Wilking, F.; Sauer, C.; Schleich, B.; Wartzack, S. Integrating Machine Learning in Digital Twins by utilizing SysML System Models.

In Proceedings of the 2022 17th Annual System of Systems Engineering Conference (SOSE), Rochester, NY, USA, 7–11 June 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 297–302. [CrossRef]

https://sdincose.org/wp-content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf
https://sdincose.org/wp-content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf
http://doi.org/10.1016/j.procir.2022.05.211
http://doi.org/10.1007/978-3-030-78368-6_12
https://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/SysML/1.5
http://doi.org/10.1016/j.procir.2021.05.073
http://doi.org/10.1016/j.procs.2013.01.011
http://doi.org/10.1109/sose55472.2022.9812700

Systems 2022, 10, 199 14 of 15

12. Husung, S.; Weber, C.; Mahboob, A. Integrating Model-Based Design of Mechatronic Systems with Domain-Specific Design
Approaches. Proc. Des. Soc. 2022, 2, 1895–1904. [CrossRef]

13. Husung, S.; Gerhard, D.; Jacobs, G.; Kowalski, J.; Rumpe, B.; Zeman, K.; Zerwas, T. Model signatures for design and usage of
simulation-capable model networks in MBSE. In Proceedings of the IFIP 19th International Conference on Product Lifecycle
Management, Grenoble, France, 7–13 July 2022.

14. Hoepfner, G.; Kowalski, J.; Faustmann, C.; Zerwas, T.; Kranabitl, P.; Vafaei, S.; Jacobs, G.; Hick, H. A Classification Method for the
Systematic Identification of Models and Workflows in MBSE. In DS 119: Proceedings of the 33rd Symposium Design for X (DFX2022),
Hamburg, Germany, 22–23 September 2022; The Design Society: Glasgow, UK, 2022; pp. 1–10. [CrossRef]

15. Torres, W.; Brand, M.V.D.; Serebrenik, A. Model Management Tools for Models of Different Domains: A Systematic Literature
Review. In Proceedings of the 13th Annual IEEE International Systems Conference, Hyatt Grand Cypress Hotel, Orlando, FL,
USA, 8–11 April 2019; pp. 1–8. [CrossRef]

16. Torres, W.; Brand, M.G.J.V.D.; Serebrenik, A. A systematic literature review of cross-domain model consistency checking by
model management tools. Softw. Syst. Model. 2021, 20, 897–916. [CrossRef]

17. Haberhauer, H.; Bodenstein, F. Maschinenelemente; Springer: Berlin/Heidelberg, Germany, 2009.
18. Broy, M. Challenges in automotive software engineering. In Proceedings of the 28th International Conference on Software

Engineering, Shanghai China, 20–28 May 2006; Osterweil, L.J., Ed.; Association for Computing Machinery: New York, NY, USA,
2006; pp. 33–42.

19. France, R.; Rumpe, B. Model-driven Development of Complex Software: A Research Roadmap. In Proceedings of the Future of
Software Engineering, Minneapolis, MN, USA, 23–25 May 2007; Briand, L.C., Ed.; IEEE: Los Alamitos, CA, USA, 2007; pp. 37–54.
[CrossRef]

20. Drave, I.; Rumpe, B.; Wortmann, A.; Berroth, J.; Hoepfner, G.; Jacobs, G.; Spuetz, K.; Zerwas, T.; Guist, C.; Kohl, J. Modeling
mechanical functional architectures in SysML. In Proceedings of the 23rd ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems, Virtual Event, Canada, 16–23 October 2020; Syriani, E., Ed.; Association for Computing
Machinery: New York, NY, USA, 2020; pp. 79–89.

21. Zerwas, T.; Jacobs, G.; Spütz, K.; Höpfner, G.; Drave, I.; Berroth, J.; Guist, C.; Konrad, C.; Rumpe, B.; Kohl, J. Mechanical concept
development using principle solution models. IOP Conf. Series: Mater. Sci. Eng. 2021, 1097, 012001. [CrossRef]

22. Menninger, B.; Wiechel, D.; Rackow, S.; Höpfner, G.; Oleff, C.; Berroth, J.; Gräßler, I.; Jacobs, G. Modellierung und Analyse
funktionaler Varianz komplexer technischer Systeme. In Proceedings of the 33nd Symposium Design for X, Hamburg, Germany,
22–23 September 2022.

23. Börner, M.F.; Frieges, M.H.; Späth, B.; Spütz, K.; Heimes, H.H.; Sauer, D.U.; Li, W. Challenges of second-life concepts for retired
electric vehicle batteries. Cell Rep. Phys. Sci. 2022, 3, 19. [CrossRef]

24. Zhang, Y.; Roeder, J.; Jacobs, G.; Berroth, J.; Hoepfner, G. Virtual Testing Workflows Based on the Function-Oriented System
Architecture in SysML: A Case Study in Wind Turbine Systems. Wind 2022, 2, 599–616. [CrossRef]

25. Koller, R. Konstruktionslehre für den Maschinenbau. Grundlagen zur Neu- und Weiterentwicklung Technischer Produkte mit Beispielen,
4th ed.; Springer eBook Collection Computer Science and Engineering; Springer: Berlin/Heidelberg, Germany, 2013.

26. Pahl, G.; Beitz, W.; Feldhusen, J.; Grote, K.-H. Engineering design. In A Systematic Approach, 3rd ed.; Springer: London, UK, 2007.
27. Koller, R.; Kastrup, N. Prinziplösungen zur Konstruktion Technischer Produkte, 2., Neubearb. Aufl.; Springer: Berlin, Germany, 1998.
28. Zhang, Y.; Hoepfner, G.; Berroth, J.; Pasch, G.; Jacobs, G. Towards Holistic System Models Including Domain-Specific Simulation

Models Based on SysML. Systems 2021, 9, 76. [CrossRef]
29. Habermehl, C.; Höpfner, G.; Berroth, J.; Neumann, S.; Jacobs, G. Optimization Workflows for Linking Model-Based Systems

Engineering (MBSE) and Multidisciplinary Analysis and Optimization (MDAO). Appl. Sci. 2022, 12, 5316. [CrossRef]
30. Höpfner, G.; Jacobs, G.; Zerwas, T.; Drave, I.; Berroth, J.; Guist, C.; Rumpe, B.; Kohl, J. Model-Based Design Workflows for

Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump. IOP Conf. Series: Mater. Sci. Eng. 2021, 1097, 012004.
[CrossRef]

31. Fischer, D.; von Goeldel, S.; Jacobs, G.; Stratmann, A.; König, F. Investigation of lubricant supply in rolling point contacts under
starved conditions using CFD simulations. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1097, 012007. [CrossRef]

32. Feldermann, A.; Neumann, S.; Jacobs, G. CFD simulation of elastohydrodynamic lubrication problems with reduced order
models for fluid–structure interaction. Tribol.-Mater. Surf. Interfaces 2017, 11, 30–38. [CrossRef]

33. Paskaleva, G.; Mazak-Huemer, A.; Wimmer, M.; Bednar, T. Leveraging integration facades for model-based tool interoperability.
Autom. Constr. 2021, 128, 103689. [CrossRef]

34. Reilley, K.A.; Edwards, S.; Peak, R.; Mavris, D. Methodologies for Modeling and Simulation in Model-Based Systems Engineering
Tools. In Proceedings of the AIAA SPACE 2016, Long Beach, California, 13–16 September 2016; American Institute of Aeronautics
and Astronautics: Reston, VA, USA, 2016. [CrossRef]

35. Nikolaidou, M.; Kapos, G.-D.; Tsadimas, A.; Dalakas, V.; Anagnostopoulos, D. Challenges in SysML Model Simulation. Adv.
Comput. Sci. 2016, 5, 49–56. Available online: http://www.acsij.org/acsij/article/view/544 (accessed on 13 July 2022).

36. Cao, Y.; Liu, Y.; Fan, H.; Fan, B. SysML-based uniform behavior modeling and automated mapping of design and simulation
model for complex mechatronics. Comput.-Aided Des. 2013, 45, 764–776. [CrossRef]

37. Modelica Association. Functional Mock-up Interface Specification. Available online: https://fmi-standard.org/docs/3.0/
(accessed on 12 July 2022).

http://doi.org/10.1017/pds.2022.192
http://doi.org/10.35199/dfx2022.17
http://doi.org/10.1109/syscon.2019.8836869
http://doi.org/10.1007/s10270-020-00834-1
http://doi.org/10.1109/fose.2007.14
http://doi.org/10.1088/1757-899X/1097/1/012001
http://doi.org/10.1016/j.xcrp.2022.101095
http://doi.org/10.3390/wind2030032
http://doi.org/10.3390/systems9040076
http://doi.org/10.3390/app12115316
http://doi.org/10.1088/1757-899X/1097/1/012004
http://doi.org/10.1088/1757-899X/1097/1/012007
http://doi.org/10.1080/17515831.2017.1279846
http://doi.org/10.1016/j.autcon.2021.103689
http://doi.org/10.2514/6.2016-5469
http://www.acsij.org/acsij/article/view/544
http://doi.org/10.1016/j.cad.2012.05.001
https://fmi-standard.org/docs/3.0/

Systems 2022, 10, 199 15 of 15

38. Blochwitz, T.; Otter, M.; Arnold, M.; Bausch, C.; Clauss, C.; Elmqvist, H.; Junghanns, A.; Mauss, J.; Monteiro, M.; Neidhold,
T.; et al. The Functional Mockup Interface for Tool independent Exchange of Simulation Models. In Proceedings of the 8th
International Modelica Conference, Technical Univeristy, Dresden, Germany, 20–22 March 2011; Linköping University Electronic
Press: Linköping, Sweden, 2011; pp. 105–114.

39. Kaslow, D.; Soremekun, G.; Kim, H.; Spangelo, S. Integrated model-based systems engineering (MBSE) applied to the Simulation
of a CubeSat mission. In Proceedings of the 2014 IEEE Aerospace Conference, Big Sky, MT, USA, 1–8 March 2014; IEEE: Piscataway,
NJ, USA, 2014; pp. 1–14. [CrossRef]

40. Cawasji, K.A.; Baras, J.S. SysML Executable Model of an Energy-Efficient House and Trade-Off Analysis. In Proceedings of the
4th IEEE International Symposium on Systems Engineering, Rome Marriott Park Hotel, Roma, Italy, 1–3 October 2018; IEEE:
Piscataway, NJ, USA, 2018.

41. Otter, M.; Reiner, M.; Tobolář, J.; Gall, L.; Schäfer, M. Towards Modelica Models with Credibility Information. Electronics 2022,
11, 2728. [CrossRef]

42. Bender, M.; Laurin, K.; Lawford, M.; Pantelic, V.; Korobkine, A.; Ong, J.; Mackenzie, B.; Bialy, M.; Postma, S. Signature required:
Making Simulink data flow and interfaces explicit. Sci. Comput. Program. 2015, 113, 29–50. [CrossRef]

43. Sirin, G.; Paredis, C.J.J.; Yannou, B.; Coatanea, E.; Landel, E. A Model Identity Card to Support Simulation Model Development
Process in a Collaborative Multidisciplinary Design Environment. IEEE Syst. J. 2015, 9, 1151–1162. [CrossRef]

44. Zeigler, B.P. Theory of modeling and simulation. In Discrete Event and Iterative System Computational Foundations, 3rd ed.; Academic
Press: Cambridge, MA, USA, 2018.

45. Van Acker, B.; De Meulenaere, P.; Denil, J.; Durodie, Y.; Van Bellinghen, A.; Vanstechelman, K. Valid (Re-)Use of Models-of-the-
Physics in Cyber-Physical Systems Using Validity Frames. In Proceedings of the 2019 Spring Simulation Conference (SpringSim),
Tucson, AZ, USA, 9 April–2 May 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–12.

46. Benveniste, A.; Caillaud, B.; Nickovic, D.; Passerone, R.; Raclet, J.-B.; Reinkemeier, P.; Sangiovanni-Vincentelli, A.; Damm, W.;
Henzinger, T.; Larsen, K.G. Contracts for Systems Design: Theory. Res. Rep. 2015, 1, 1–86.

47. Ribeiro dos Santos, C.A.; Hany Saleh, A.; Schrijvers, T.; Nicolai, M. CONDEnSe: Contract Based Design Synthesis. In Proceedings
of the 2019 ACM IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), Munich,
Germany, 15–20 September 2019; Staff, I., Ed.; IEEE: Piscataway, NJ, USA, 2019; pp. 250–260.

48. Feldmann, S.; Kernschmidt, K.; Vogel-Heuser, B. Combining a SysML-based Modeling Approach and Semantic Technologies for
Analyzing Change Influences in Manufacturing Plant Models. Procedia CIRP 2014, 17, 451–456. [CrossRef]

49. Houpert, L. New Results of Traction Force Calculations in Elastohydrodynamic Contacts. J. Tribol. 1985, 107, 241–245. [CrossRef]
50. Bader, N.F. Traction in EHL-Contacts: The influence of local fluid rheology and temperatures. 2018. Available online: https:

//www.repo.uni-hannover.de/handle/123456789/4499?locale-attribute=en (accessed on 28 October 2022).
51. DIN EN ISO 80000-1. Größen und Einheiten. Teil 1: Allgemeines. 2013. Available online: https://dx.doi.org/10.31030/2007309

(accessed on 25 August 2022).
52. No Magic. Cameo Systems Modeler Documentation. Available online: https://docs.nomagic.com/display/CSM190SP4/Cameo+

Systems+Modeler+Documentation (accessed on 14 July 2022).
53. Kowalski, J.; Torrilhon, M. Moment Approximations and Model Cascades for Shallow Flow. Commun. Comput. Phys. 2019,

25, 669–702. [CrossRef]
54. Zimmerman, A.G.; Kowalski, J. Monolithic Simulation of Convection-Coupled Phase-Change: Verification and Reproducibility.

In Recent Advances in Computational Engineering: Proceedings of the 4th International Conference on Computational Engineering (ICCE
2017) in Darmstadt, Darmstadt, Germany, 28–29 September 2017; Schäfer, M., Behr, M., Mehl, M., Wohlmuth, B., Eds.; Lecture Notes
in Computational Science and Engineering; Springer Nature: Cham, Switzerland, 2018; pp. 177–197.

55. Turnitsa, C.; Padilla, J.J.; Tolk, A. Ontology for Modeling and Simulation. In Proceedings of the Winter Simulation Conference,
Baltimore, MD, USA, 5–8 December 2010; IEEE Press: Orlando, FL, USA, 2010; pp. 643–651.

56. Staab, S.; Studer, R. (Eds.) Handbook on Ontologies; International Handbooks on Information Systems; Springer: Berlin/Heidelberg,
Germany, 2009.

http://doi.org/10.1109/aero.2014.6836317
http://doi.org/10.3390/electronics11172728
http://doi.org/10.1016/j.scico.2015.07.005
http://doi.org/10.1109/JSYST.2014.2371541
http://doi.org/10.1016/j.procir.2014.01.140
http://doi.org/10.1115/1.3261033
https://www.repo.uni-hannover.de/handle/123456789/4499?locale-attribute=en
https://www.repo.uni-hannover.de/handle/123456789/4499?locale-attribute=en
https://dx.doi.org/10.31030/2007309
https://docs.nomagic.com/display/CSM190SP4/Cameo+Systems+Modeler+Documentation
https://docs.nomagic.com/display/CSM190SP4/Cameo+Systems+Modeler+Documentation
http://doi.org/10.4208/cicp.OA-2017-0263

	Introduction
	State of the Art
	Function-Oriented Model-Based Systems Engineering
	Integration and Coupling of Simulation Models

	Research Question
	System Element Parameter Concept
	Model Signature for Domain Models
	Domain Model Requirements for the Model Signature
	Proposal of a Model Signature for Domain Models

	Discussion, Conclusion and Outlook
	Discussion
	Conclusions
	Outlook

	References

