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Abstract—Model-Based Systems Engineering (MBSE) aims
to provide a systems engineering methodology that leverages
modeling methods to support design, analysis, verification, and
validation of systems. As such, methodologies for MBSE have
to be able to integrate heterogeneous engineering models from
a variety of domains, including mechanical engineering, product
design, legislation, and many more. Most research in this area
usually only focuses on general system descriptions of a step in
the system development process, without providing any interdis-
ciplinary or interprocess connections. Thus, the models created
by the domain experts are often unconnected and not suited
for automated model transformations. We present a method to
integrate abstract system descriptions in the Systems Modeling
Language (SysML) with Computer-Aided Design (CAD) models,
which are not only the primary model for geometrical hardware
descriptions but also the starting point of most process chains in
the context of virtual product development. The transformations
of our method are realized in a plug-in for the MagicDraw
modeling environment and support to generate parameters of
a parameter and constraint CAD modeling approach from a
SysML model. This automates the integration of abstract system
descriptions with design models to foster a coherent virtual
product development.

Index Terms—Model-Driven Systems Engineering, SysML,
CAD, Tool Integration

I. INTRODUCTION

The engineering of cyber-physical systems demands the
interdisciplinary collaboration of experts from a variety of
different domains, including mechanical engineering, product
design, legislation, etc. to produce software artifacts. However,
these are rarely software engineering experts and, hence, need
to overcome the conceptual gap [1] between their domain of
expertise and software development. Modeling languages [2]
can reduce this gap by using syntax and semantics closer
to the domain of interest than to computer programming.
Consequently, research and industry are increasingly turning
to Model-Based Systems Engineering (MBSE) to leverage
models for the description of systems, communication, and
discussion of designs, and exchange between experts. While
yielding advantages over “traditional” document-based sys-
tems engineering, praxis has shown the established use of
models in MBSE usually is too vague to leverage their
potential for automation [3].

In systems engineering, software, and hardware components
are often produced in parallel. Errors detected during their
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Fig. 1: A conceptual sketch of a Venturi nozzle showing the
most important flow parameters for the velocity, pressure, and
density

integration, hence, are more costly than errors detected ear-
lier. To overcome this problem, virtual product development
describes a practice to support all phases of the product
development process using a digital environment [4]. For
this aim, it applies computer-aided modeling methods in
all development-relevant phases of the product life-cycle to
simulate, verify, validate, and manufacture the product while
minimizing the creation of physical prototypes. The virtual
development process comprises three activities: (1) Develop-
ment of a virtual product design that describes the geometry
of hardware elements using 2D or 3D geometric modeling
environments e.g., by creating CAD models in a CAD suite.
(2) Virtual product simulation, which analyses the product in a
simulation environment; and (3) Virtual manufacturing creates
the actual hardware product.

While the connection between the virtual product design,
analysis, and digital manufacturing is a research topic in clas-
sical mechanical engineering [4], [5], the integration between
abstract artifacts created in MBSE often is underexplored
there. Therefore, we present a small Model-Driven Systems
Engineering (MDSE) methodology that aims to integrate
the functional SysML paradigm with the geometric CAD
paradigm. Our contribution, therefore, is

- a process to integrate SysML models in a virtual product
development environment,

- modeling methods to support this process,
- and a tool to implement the SysML-CAD connection of

this process.

In the following, Sec. II introduces a typical example
from mechanical engineering. Afterwards, Sec. III introduces
MDSE and virtual product development. Then, Sec. IV intro-
duces a method for virtual product design that uses process
chains to integrate SysML models with CAD models. Sec. V
describes how to apply newly developed and existing tools
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to our application example to create a virtual product design.
Finally, Sec. VI discusses observations, Sec. VII highlights
related work, and Sec. VIII concludes.

II. EXAMPLE

Consider the development of a Venturi nozzle that serves
as vacuum creator in the pneumatic system of an industrial
robot. This robot uses its pneumatic system to operate suction
cups for pick and place operations.

Fig. 1 shows a concept drawing and the primary model
parameters that are required to perform first mathematical
analyses and describe the essential physical principles. Nozzles
of this kind can serve as vacuum creators since the Venturi
effect causes that the static pressure p1 at the inlet section
of the nozzle with diameter D decreases to p2 when the
tube diameter is decreased to d. At the same time, the flow
speed v1 increases to v2. To simplify the simulations and the
definition we further assume that the flow is incompressible,
which means that the density ρ stays constant in all parts of
the nozzle.

Even though this simple mechanical component has no
complex interactions with software or electrical parts, the
models to describe, simulate, and manufacture this component
are surprisingly diverse and complicated. The main challenge
of this example is that these various models are usually
created by different engineers of heterogeneous domains, using
multiple modeling tools and techniques. For systems, such as
the pick-and-place robot, often SysML models are used to
describe an abstract view of this system.

Based on this description, CAD models have to be created
to describe the hardware design in a graphical 2D or 3D
environment. Hence, in addition to the heterogeneity of the
models, also the model creation tools that are used in different
engineering domains are heterogeneous.

Thus, many engineers of different domains use various
modeling tools to create multiple model-views on different
abstraction levels. While mechanical engineers mostly use
CAD modeling tools such as PTC Creo, CATIA, or Autodesk
Inventor, visual modeling tools for software and systems
such as PTC Modeler, Enterprise Architect, or NoMagic’s
MagicDraw are often used by software and systems engineers
to describe abstract system designs. For that reason, it becomes
necessary to exchange parameters between these different
modeling tools to distribute (and validate) the information
among various domain experts.

We present a method to exchange important model pa-
rameters such as dimensions between a MagicDraw SysML
model and Autodesk Inventor CAD model. Additionally, we
use this CAD model to simulate the behavior of the system
and produce a hardware prototype.

III. PRELIMINARIES

Our method for MDSE aims to facilitate consistency check-
ing between functional SysML models and geometric CAD
models by enabling bidirectional transformations between both
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Fig. 2: An iterative system development process that uses
SysML as starting point to enable CAx process activities

paradigms. There are various definitions for systems engineer-
ing [6]–[9]. Some emphasize its focus on a whole system
in contrast to its parts [6], whereas others describe it as an
iterative top-down process that aims at developing a system
that fulfills all requirements [7], or as an interdisciplinary
approach for developing successful systems [8]. Model-Based
Systems Engineering (MBSE) is a novel paradigm of sys-
tems engineering that applies formalized modeling principles,
methods, languages, and tools to the entire life-cycle of com-
plex systems [10]. In contrast to traditional document-based
engineering, in MBSE models are the primary development
artifacts. Such models can use domain terminology the experts
are familiar with. They are more abstract than documents to
facilitate reuse, and more formal to enable automated analysis
and consistency checking. Model-Driven Systems Engineering
(MDSE) even extends the idea of MBSE and aims at automat-
ing parts of the development process leveraging models. To
achieve this aim, models of a MDSE methodology must not
only be the key artifacts of the engineering process but also
sufficient to generate (e.g., by model refinement or transfor-
mation) other descriptions that address system requirements,
design, analysis, verification, and validation activities.

The OMG Systems Modeling Language (SysML) [11] has
become a de-facto standard for specifying system parts in
the development process [12], [13]. SysML is a graphical
modeling language that enables engineers to model the system
architecture and facilitates the application of MBSE, e.g.,
by supporting engineers in defining the system structure,
dependencies between system parts, the system behavior, and
connecting these with requirements.

SysML is a subset of the Unified Modeling Language
(UML) [14] extended with functionality for systems engineer-
ing that is realized as a graphical modeling language. It enables
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Fig. 3: The CAD profile extension that includes «CAD Ele-
ment» and «CAD Parameter» into SysML

engineers to model the system architecture and behavior and
facilitates the application of MBSE, e.g., by supporting the
integration of structure with behavior and constraints. Hence,
the SysML features four diagram types: (1) Structure: Block
Definition Diagrams (BDDs), Internal Block Diagrams (IBDs),
and Package Diagrams; (2) Behaviour: SysML provides Se-
quence Diagrams, State Machines, and Activity Diagrams;
(3) Parametrics (constraints): parametric diagrams to specify
physical properties and dependencies between parameters; and
(4) Requirements: diagrams that provide a graphical notation
to capture requirements of a system.

The Computer-Aided x (CAx) paradigm describes various
computer-aided methods, which enable system engineers to
define concrete products in their respective engineering do-
main. Typical CAx models are for example, CAD, Computer-
Aided Engineering (CAE), and Computer-Aided Manufac-
turing (CAM) models. Because CAD models describe the
geometry and design of a product, they are the main artifact of
a virtual product design process. Based on the CAD model, the
CAE models analyze the product design concerning different
engineering analysis criteria by using simulation methods
such as Finite Element Method, Computional Fluid Dynamics
(CFD), or Multibody Dynamics. Because simulations are
the primary methods that engineers use in this context, the
CAE analysis is strongly connected with the virtual product
simulation. Finally, the CAM summarizes all computer-aided
methods that are usable to manufacture the product and is
related with digital manufacturing activities.

The combination of CAD, CAE, and CAM in the context of
virtual product development leads to the so-called CAx process
chains. A CAx process chain is a modeling or programming
method to build a digital representation, to calculate visual-
izations, analyses, simulations, optimizations, or control data
[5]. In these process chains, the CAD model has an important
role, since it provides the digital hardware descriptions, which
serve as the base of the data transformations that the CAx
process chain performs.

IV. MODELING PROCESS AND METHODS

In order to combine the advantages of a MDSE approach
with the benefits of virtual product development, this section
aims to introduce a development process based on process
chains and describes methods to implement this process.
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Fig. 4: The general Venturi nozzle BDD with parameters
specifying its geometric dimensions (left) and concrete Venturi
nozzle instance (right)

Therefore, we connect the idea of CAx process chains with
SysML models created using the Object-Oriented Systems
Engineering Method (OOSEM) [15].

The resulting process that Fig. 2 presents as SysML Activity
Diagram, renders a coherent virtual product development
approach. Using this process systems engineers are enabled
to describe the system in SysML and integrate this model
into CAx process chains for virtual product development. For
this, the process starts with a SysML modeling activity, in
which the systems engineer creates an abstract system model
by using BDDs to specify elements of the physical parts
of the system. Next, the process forwards parameters of the
BDDs that are relevant for the CAD modeling activity. By
using the resulting CAD model in combination with additional
information from the SysML diagram, the process enables
the engineers to perform additional CAE analyses and CAM
modeling in the respective activities based on CAD-CAE
or CAD-CAM process chains. Typical additional information
is, for instance, dimension parameters for geometric models,
environment information for simulation, or materials and tol-
erance information for the production. Since the first drafts
of the product might not meet the requirements or are not
manufacturable, the activity diagram from Fig. 2 has decision
nodes which lead back to the SysML Modeling activity to
implement an evolutionary development.

Since the connection between CAD, CAE, and CAM is
already covered in the context of CAx process chains [4],
[5], we will focus on the implementation of this SysML-CAD
connection in the following.

As the process depicted in Fig. 2 forwards the relevant
parameters from SysML to CAD, it is necessary to identify a
construction theoretical foundation for the creation of the CAD
model. Since parameter and constraint modeling techniques
enable engineers to store the dimension parameters indepen-
dently from the geometrical product description models [5],
this construction theoretical approach seems to be suited for
connection dimension parameters from a SysML model with
a graphical representation. By this, it is possible to separate



Name Causality Value Type
Venturi Nozzle Flow Analysis
A1 target 0.002 m2

A2 target 2.087 · 10−4 m2

C given 0.98 −
D given 0.05 m
d given 0.0163 m
p1 given 594, 037.000 Pa
p2 target 12, 016.428 Pa
ρ given 1.225 kg/m3

v1 given 101.619 m/s
v2 target 980.084 m/s

TABLE I: Flow analysis results of the concrete Venturi nozzle
design from Fig. 4

parameter names, their value or expressions describing their
value, and their unit from the actual geometric model. Addi-
tionally, we have to keep in mind that it might be unrealistic to
assume that the dimension parameters for the CAD model and
the object geometry are modeled entirely independent from
each other. Thus, it might be helpful to include a reverse
direction in this process, which allows returning parameters
from a CAD model to SysML again.

Because not all instances of system blocks must represent
hardware elements with a corresponding CAD model, we
require a method to mark the blocks and their value properties
of a BDD as parameters. To implement this, we can use
specific profiles that introduce new stereotypes for SysML
elements. Fig. 3 presents a SysML profile extension, which
enables systems engineers to mark blocks as «CAD Element»
to indicate that this block also requires the creation of a
CAD model. Besides, not all value properties of the block are
necessarily relevant parameters for the CAD model as well,
hence the «CAD Parameters» stereotype for value properties
indicates that this property is a CAD parameter.

V. CASE STUDY AND TOOL PRESENTATION

To visualize and apply the methods we developed in the
previous chapter, we modeled the Venturi nozzle as described
in Sec. II. Additionally, we describe how newly developed and
already existing tools support the CAx process we presented
in Fig. 2. We began the modeling process of the Venturi nozzle
example by creating a block definition diagram for a general
nozzle and extended this abstract description in a second step
to a concrete Venturi nozzle design using MagicDraw as shown
in Fig. 4. To derive a concrete instance of the Venturi nozzle,
we modeled the physical flow in the nozzle in a parametric
diagram. This parametric diagram enables us to express pa-
rameter relationships and descriptions we require to run first
simulations to estimate dimension parameters that create a
sufficient vacuum to operate a specific suction cup. Based on
the relationships described in the parametric diagram, we then
used MagicDraw’s ParaMagic plug-in and the OpenModelica
solver to determine and test multiple designs until we found a
suited Venturi nozzle design. The results of this computation
for the final design are given in Fig. 4.

In parallel, we developed a MagicDraw plug-in which
exports instances of «CAD Element» blocks into a parameter
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Fig. 5: Technical drawing of a Venturi nozzle with parameters
as dimension placeholders

description file and imports updates of this file again into
the MagicDraw block instances. The plug-in is structured
according to the component diagram Fig. 7 presents. This
CAD plug-in for MagicDraw subdivides into a MDHandler
component that processes the model tree MagicDraw provides,
a SIUnits component that converts units from and to repre-
sentations of other tools, and a ParameterExport compo-
nent that is responsible for creating the actual parameter file.
On the other side, parametric CAD suites such as Autodesk
Inventor provide methods to handle and import parameters,
create geometries that use these parameters, and to create
technical drawings as standardized model representations.

To process the Venturi nozzle instance Fig. 4 presents, the
MagicDraw plug-in searches all CAD elements in the project
and generates for each instance a parameter exchange file,
which contains the parameter name, its value, and its unit. By
connecting this file with a part drawing in Autodesk Inventor,
we then modeled the geometry of the Venturi nozzle as shown
in Fig. 5 and used the exchange file to define and compute
the concrete instance of the Venturi nozzle based on the
parameters.

To further verify the results of the Venturi nozzle, we then
used Autodesk CFD to simulate the geometric model of the
Venturi nozzle as a part of the CAE process. The results of this
simulation splits into the flow velocity that Fig. 6a presents
and the pressure, which Fig. 6b visualises. If we compare these
results of the CFD analysis with our initial analysis based on
the SysML model, we can see that the results are principally in
the same range, but provide more detailed information about
the velocity and pressure distribution in the nozzle design.

Finally, we used a 3D printer to print a hardware prototype
of the Venturi nozzle, which we only used to check the
functionality of the result, as the print quality and the lack
of suited measurement technology did not allow any further
validations about the simulation or the manufacturability of
this hardware model.

VI. DISCUSSION

The presented approach addresses several problems from
multi-paradigm modeling, such as the handling of hetero-
geneous models and modeling languages by introducing a
process chain that connects heterogeneous system models. An
advantage of our integration is that it supports an evolutionary
system development without breaking the traditional process
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Fig. 6: Autodesk CFD Analysis Results of the Venturi Nozzle
Design based on the Parameters specified in the instance from
Fig. 4

of virtual product development design, simulation, and man-
ufacturing. An evolutionary approach enables the continuous
improvement of the system design over multiple iterations.
Thus, the development information is not only forwarded
to the next process activity but may also flow back from
each development step to the previous process activity. By
this, the engineer can iteratively improve the design based on
flaws that the next process activity uncovers and even perform
subsequent development steps in parallel. Since the connection
between the SysML and the CAD model enables reimporting
changed parameters from the CAD model into SysML again,
the created models are reusable for the next development
iteration. If the engineer that creates the SysML model forgets
to define a parameter the engineer for the CAD model requires,
the later can specify this parameter himself and use the CAD
plug-in to reintegrate this parameter to the SysML model.
Hence, it is possible to synchronize the SysML and the CAD
model with reduced overhead compared to a manual update
process. Moreover, this approach could be extended with
additional automated checks for model consistency to decide
whether the change the CAD engineer made are valid.

One issue we did not solve yet is that no data is returned
from the CAE and CAM to the SysML model, to improve
the quality of the next development iteration. Additionally,
the usability of our process would improve even more, if
requirements and general model sanity checks for the SysML-
CAD process chain would be performed e.g., by automatically
checking whether all dimensions are within certain bounds and
fit in their assembly based on given requirements.

In order to improve our approach, future works could
investigate the mathematical connection between the different
abstraction levels further, for instance by taking additional
works about the theory behind systems engineering [16], prin-
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ciple solutions for the design of technical products [17], multi-
view modeling and graph transformations for MBSE [18],
[19], or system and simulation theories for multi-paradigm
modeling [20] into account.

Finally, digital mock-ups could serve as virtual prototypes
that are usable in all stages of the virtual product development
approach [4]. An extension of the process developed in this
work could be to investigate how this integration could make
use of digital shadows and twins. By developing an integrated
toolchain and connecting knowledge, we ultimately take steps
towards a digital twin that could adapt automatically depend-
ing on the system’s state and suggest design improvements.

VII. RELATED WORK

Model integration in the MBSE process is subject to ongo-
ing research. Our work relates to multiple research domains,
such as systems engineering, virtual product design, and multi-
paradigm modeling.

The approach presented in [21] employs SysML to orga-
nize and integrate heterogeneous models that contribute to
a common system model. Relationships and dependencies
between these models are formulated in SysML to achieve
a consistent model. Similar to our solution, this approach
involves constructing a high-level system model in SysML
for integrating CAE methods. Additionally, they address the
connection of SysML with simple engineering constraints and
requirements for a CAE analysis. However, they do not address
the creation of concrete CAD models, nor do they provide any
tools to automate the integration.

Another methodology is more focused on virtual product
development [4] and provides an extensive overview of model-
based virtual product development methods. It is not only re-
stricted to the modeling aspects of mechanical engineering but
also introduces methods for the development of electrical or
software systems. The processes cover a considerable number
of modeling techniques for virtual product development and
systems engineering. However, they do not render a general
methodology to systematically integrate models, described in
a systems modeling language such as SysML, with other
artifacts of the virtual product development process.



In addition to the generative aspects, the approach in [22]
explains how MBSE provides models to handle design in-
formation created and processed by multiple stakeholders of
the systems engineering process. To achieve this goal, they
use multiple tool plug-ins to generate and exchange model
information between different tools automatically. Although
the approach presents some general aspects, the developed
tools mainly focus on the usage at Johnson Space Center and
are not a general methodology.

Another elaboration provides a general overview of multi-
paradigm modeling in combination with simulation [20]. Es-
pecially the concept of multi-formalism modeling is described,
where interacting constituents are modeled using different
formalism in a coupled model. Multi-formalism modeling
is applied, when it is convenient or necessary to address
several concerns within particular formalisms and to bridge
different abstraction levels. Our method to integrate SysML
diagrams and CAD models of the CAx process corresponds
to this approach. SysML and CAD correspond to different
formalisms, which together contribute to a target component.
Connecting SysML and CAx thus enables the development of
integrated heterogeneous models.

VIII. CONCLUSION

We presented a MDSE methodology for virtual product
design and demonstrated its feasibility for virtual product
development by modeling a small case study from mechanical
engineering.

Our methodology consists of a general process for virtual
product development, of which the SysML-CAD process chain
has been implemented to support the creation of a virtual
product design based on parameters specified in the SysML
model. To establish this process chain, we created a SysML
profile, which enables systems engineers to mark blocks
of a SysML Block Definition Diagram as «CAD Element»
and value properties that should serve as parametric design
parameters as «CAD Parameter».

To automate the exchange of model information in the
SysML-CAD process chain, we implemented a MagicDraw
plug-in that exports and imports model information into a
format Autodesk Inventor can process to set the dimensions
of a concrete nozzle design automatically.

Since this information exchange only represents the first
step of a virtual product development, we applied additional
methods from virtual product design such as different simu-
lations to analyze and manufacture a prototype of a concrete
Venturi nozzle design.

For this, we analyzed the created Venturi nozzle design by
a CFD simulation model based on the Venturi nozzle design
specification in the CAD model. By this, we were able to
refine the flow simulation results of the Venturi nozzle we
already started in the SysML based on parametric diagrams
and their analysis. Finally, we used a 3D printer to create a
first hardware prototype.

In conclusion, we presented a SysML-CAD process chain
and embedded it into a virtual product development environ-

ment. For this purpose, we developed a process to connect
instances of hardware describing elements in SysML with
CAD models, which themselves are integrated into CAx
process chains. Moreover, we provided methods and tools to
automatically exchange parameters between these instances
and an external geometry description of a parametric CAD
model in the context of a MDSE methodology.
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