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Abstract. Digital Twins (DTs) of Cyber-Physical Production Systems
(CPPSs) enable the smart automation of production processes, collec-
tion of data, and can thus reduce manual efforts for supervising and
controlling CPPSs. Realizing DTs is challenging and requires significant
efforts for their conception and integration with the represented CPPS.
To mitigate this, we present an approach to systematically engineering
DTs for injection molding that supports domain-specific customizations
and automation of essential development activities based on a model-
driven reference architecture. In this approach, reactive CPPS behavior
is defined in terms of a Domain-Specific Language (DSL) for specifying
events that occur in the physical system. The reference architecture con-
nects to the CPPS through a novel DSL for representing OPC-UA bind-
ings. We have evaluated this approach with a DT of an injection molding
machine that controls the machine to optimize the Design of Experiment
(DoE) parameters between experiment cycles before the products are
molded. Through this, our reference implementation of the DT facilitates
the time-consuming setup of a DT and the subsequent injection molding
activities. Overall, this facilitates to systematically engineer digital twins
with reactive behavior that help to optimize machine use.

Keywords: Digital Twin · Injection molding · Cyber-Physical
Production System · Model-driven development · Reference
architecture

1 Introduction

DTs are an integral component of intelligent digitization [25] for smart manu-
facturing in Industry 4.0 [28]. Engineering DTs is time-consuming, complicated,
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and often not tightly integrated with the development of the system. The devel-
opment of DTs for CPPSs requires close collaboration across the production
and software domain. Misunderstandings between experts of the two domains
are a frequent source of error, especially when the developed systems become
increasingly complex. Model-driven engineering (MDE) bridges the gap between
the production and software domain by using models that describe the DT at
multiple levels of abstraction. The automated transformation of models into soft-
ware implementations can improve productivity and reduce complexity [6] and
opens the possibility to integrate information from other formal descriptions,
e.g., engineering models, into the software.

Injection molding is a manufacturing process to produce plastic parts by
injecting plasticized material into a mold. Determining an ideal operation point
usually requires experienced operators and extensive trials [23].

We propose a modeling method for DTs that automates engineering DTs
that react to changes in the system structure and to synchronize the DT with its
physical counterpart. To this end, we propose modeling the DT as a component
and connector architecture with UML class diagrams specifying the data types
of objects exchanged between components. Furthermore, we present a DSL to
describe events that the DT of a production system reacts to. Models of this DSL
are integrated into the software architecture model. From these, an integrated,
reactive DT is generated that automates the execution of a DoE on an injection
molding machine, learns about the current process characteristics, and optimizes
setting parameters. The presented architecture thereby gets evaluated in a real
CPPS. The key contributions of this paper, hence, are

1. a model-driven methodology to efficiently developing DTs for CPPSs,
2. a reference architecture for DTs evaluated in injection molding,
3. a DSL connecting digital twins to their physical counterparts, and
4. modeling techniques to specify a DT’s event-driven behavior.

In the following, Sect. 2 introduces preliminaries, Sect. 3 presents a motivating
example, and Sect. 4 explains the methodology. Subsequently, Sect. 5 describes
the required models and the realization, Sect. 6 describes the application of the
DT to the injection molding machine, and Sect. 7 discusses the reference archi-
tecture and methodology. Finally, Sect. 8 highlights related work, and Sect. 9
concludes.

2 Background

We realize a DT for injection molding based on our reference architecture that
we implemented in MontiArc (see Sect. 2.3) [2]. The DT controls the mold-
ing machine via Open Platform Communication Unified Architecture (OPC-
UA) [16].
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2.1 Digital Shadows and Twins

The term digital twin is broadly used to describe any form of data that describes
a physical system. We develop a digital twin that is partly derived from models
describing the system under development. Furthermore, the DT shall provide
services that allow interacting with the system or the DT itself.

Definition (Digital Twin (DT)). A digital twin of a system consists of a set of
models of the system, a set of digital shadows, and provides a set of services to
use the data and models purposefully with respect to the original system.

These models may be engineering models (e.g., CAD, Simulink) or software
models (e.g., UML, SysML, MontiArc), and the services may include monitoring,
optimization, projection, and visualization. Since the DT reflects a real system,
it must also provide data that describes the system. As CPPSs produce immense
amounts of data that often are too large to be fully processed by DTs, we
introduce the concept of Digital Shadows (DSs).

Definition (Digital Shadow (DS)). A digital shadow is a set of temporal data
traces and/or their aggregation and abstraction collected concerning a system for
a specific purpose with respect to the original system.

Thus, DS comprise the information that DT require for fulfilling their tasks.

2.2 Injection Molding

Injection molding represents a highly automated, but to the same extent, com-
plex manufacturing process to produce, e.g., plastic parts without the necessity
of post-processing. Different data sources, like machinery or peripheral sensors,
cavity sensors, or quality control systems, enable gaining knowledge about the
process. Due to complex interactions of production assets and setting param-
eters, determining settings of an ideal operation point at a specific machine
is a challenging task. A well-experienced operator is capable of respecting the
machine-specific characteristics in process setup as each machine differs in its
respective process behavior. Differences in the process behavior exist even for
machines of the same type or manufacturer due to wear of machine components
or alternating control loops [14].

The injection molding process consists of cyclic process phases for plasticiz-
ing the granular material, injecting it into a mold according to a specific injec-
tion flow profile, and solidifying it under a set holding pressure until a molded
part can be ejected. Via standardized communication protocols like OPC-UA,
machine movements, and sensor data from the machine and its subordinated
components are accessible. Thereby, relevant process parameters like tempera-
tures, current volume flow, or injection pressure get monitored to build up an
extensive knowledge base for a DT to use.

The machine initializes an OPC-UA server during production start and noti-
fies the server about changes in monitored items due to machine movements. For
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data gathering and accessing the OPC-UA server, the OPC Foundation provides
standard libraries to develop connectors. The connector acts as OPC-UA client
and subscribes to the server to monitor specific parameters of consideration via
so-called Node-IDs. Gathered data is then passed on to a message broker. Apache
Kafka [27] is a communication platform that receives messages from a connec-
tor, acknowledges the receipt, stores the messages in a save log file, and delivers
messages in case of a request.

2.3 MontiArc

MontiArc is an architecture description language [17]. Its principal modeling
elements are component types with interfaces of typed and directed ports. The
components either are atomic, and feature a behavior model or General Pur-
pose Language implementation, or composed. Composed components contain a
topology of subcomponents that exchange messages via unidirectional connec-
tors between the ports of their typed, directed interfaces. Their behavior emerges
from the behavior of their hierarchically contained subcomponents.

Fig. 1. MontiArc model of a simplified injection molding control flow showing injection
molding machine components involved in the process

Figure 1 illustrates the quintessential modeling elements of MontiArc
by example of an injection molding machine. The component type
InjectionMoldingMachine hierarchically contains subcomponents of types
PlasticizingUnit, InjectionControl, Timer, and MachineMechanics. The
subcomponent plastUnit of component type PlasticizingUnit is composed
again and features three subcomponents itself. At the core of the model is
the component controller of type InjectionControl that interacts with
plastUnit and mechanics and manages the injection molding process.
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3 Example and Challenges

Several setting parameters like the volume flow profile, the ideal switchover vol-
ume for switching from the injection phase to the holding pressure phase, as well
as the right processing temperatures influence the reproducibility and the prof-
itability of the current operating point in injection molding processes. To produce
plastic parts with high quality, the interdependencies of these parameters need
to be respected during setup. However, a correlation of setting parameters to the
final part quality is, in most cases, only possible implicitly as the settings induce
a specific process behavior – represented via process models – that results in pro-
cess data like a respective cavity pressure. A quality model afterward describes
the correlation of process data to the final part quality [13]. To determine the
ideal operating point, a well-experienced operator is necessary or an extensive
DoE that uncovers correlations by statistical analysis of targeted trials. As an
operator does not always have extensive knowledge in statistical analysis [5],
DoE generation, conduction, and analysis need to be automated e.g., by a DT.

The phases of the cyclic process require specific values that – in most cases
– refer to basic estimations. The clamping force, for example, is necessary to
keep the mold closed during injection and to hold against the injection pressure.
Therefore, basic estimations refer, e.g., to a known specific clamping force (e.g.,
3.0–6.5 kN/cm2 for a standard polypropylene) multiplied by the projected area
of the part geometry and the number of cavities inside the mold [20]. However,
high values for the clamping force can lead to high energy consumption and
increased wear of the mold that can be avoided by an adaption to the realized
injection pressure during injection. Nevertheless, feedback of the machine data
for automated adaption to current process behavior is rarely implemented.

The actual injection is one of the most crucial process phases as it determines
crucial quality aspects like weld lines, incomplete filling, or burners. Therefore
an operator needs to set an injection flow profile [cm3/s] in accordance with the
respective part geometry. Due to differences in the wall thickness of the part
and the overall part geometry, the melt front velocity tends to accelerate or
decelerate if the screw induces a constant volume flow. A constant melt front
velocity inside the mold, on the contrary, is beneficial to realize high quality
for the molded parts. Cavity pressure sensors are capable of monitoring the
characteristic volume flow as a constant melt front velocity results in a linear
slope of the pressure curve during the injection. A digital twin thereby might
be able to analyze the incoming digital shadow from the filling process as data-
trace from cavity pressure sensors and adjust the volume flow profile to realize
a constant melt front velocity for high-quality parts.

4 Methodology

In the industry, there are DTs of products, CPPSs and their services, and com-
plete production facilities. We present a reference architecture for DTs and a
development process that facilitates adaptivity and extensibility.
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Fig. 2. Architecture that enables self-adaptation based on digital shadows.

4.1 Digital Twin Reference Architecture

We describe the reference architecture for DTs as a component and connec-
tor architecture in MontiArc to specify explicit and typed interfaces between
the DT’s components. MontiArc realizes the FOCUS semantic, which supports
refinement along the development process from abstract requirements to very
fine-grained technical specifications, and to compose existing components to new
software solutions [21]. Figure 2 depicts the reference architecture and its layers:
cyber-physical layer, data layer, connection layer, and application layer.

Cyber-Physical Layer. The cyber-physical layer describes the CPPS that the DT
controls. The architecture requires the controlled system to provide at least inter-
faces through which data qualifying the process can be accessed and commands
sent to the system. This general component representing the CPPS may be hier-
archically composed of more specific components describing the physical system
and its functionality.

Data Layer. The Data Lake [9] is an extensive data storage consisting of multiple
databases or other data providers and is situated in the data layer. It stores data
from a wide variety of sources, e.g., sensors inside of the CPPS in a raw format
or a preprocessed form. It can contain both unstructured and structured data.
To support reusability, the data is annotated with metadata containing semantic
information. Data Lakes also offer logic for data preparation and processing that
is realized by suppliers, thus we do not model its components here, but specify
that the DT can query the data within the Data Lake.



Model-Driven Development of a Digital Twin for Injection Molding 91

Connection Layer. The connection layer contains a Data Processor and an
Executor. The Data Processor links the Data Lake with components at the
application layer. It creates DSs that encapsulate exactly the information that
is required by components at the application layer. The Data Processor con-
tains two inner components. The Data Processor Logic receives DS queries of
the application layer, transforms these into data requests, and creates DSs from
the results of these requests. The Data Processor Adapter transforms data
requests into queries for specific databases within the Data Lake. It receives a
solution from the application layer that describes how the CPPS should behave.
To realize this behavior, it requires knowledge about the system and its struc-
ture that is available in the Knowledge Base. The Executor has two inner com-
ponents: the Execution Logic and the Execution Adapter. The Execution
Logic derives a solution that shall be executed at the CPPS and its surround-
ing systems. The Execution Adapter sends commands to specific parts of the
CPPS and thus controls the next actions. Feedback about the success of these
commands is also processed and handed back to the application layer.

Application Layer. The application layer contains the smartness of the DT. The
Evaluator analyzes DSs and detects events that occur within the system or its
context. To decide on which events it must react, it refers to design-time models
that describe the expected behavior of the system and also possibly erroneous
behavior. The Evaluator also relies on knowledge from the knowledge base to
decide when an event is considered negative and must be handled. Depending
on the system’s state and evaluation results, the Evaluator creates goals that
it sends to the Reasoner. The Reasoner receives goals that specify what should
be changed in the system’s state. The Reasoner uses the knowledge contained
in the Knowledge Base to create a solution that realizes these goals.

4.2 Model-Driven Development of a Digital Twin

We develop a model-driven methodology that facilitates the automatic genera-
tion of DTs from models describing a CPPS and its domain. Figure 3 describes
the development and adaptation process for developing DTs that ground on our
reference architecture. The reference architecture is implemented in MontiArc
but leaves domain-specific decisions open. Thus, software engineers can adapt it
to various domains by refining the components specified in the reference archi-
tecture. If the functionality of components is not required in the target domain,
it is also possible to replace those components. MontiArc supports both the
refinement and composition of components.

The first activity when developing the DT is to create a domain model that
describes the structure of data that components of the DT exchange. As the
DT monitors the system’s state, the next step is to decide what kinds of events
occur in the system and how the DT should react if they occur. To this end, we
developed a domain-specific language that facilitates the specification of events
and actions. An event describes a situation in the real system, e.g., a monitored
parameter reaching a threshold. Actions specify the DT’s reaction to an event.
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Fig. 3. Activity diagram of the development process of DSs based on our reference
architecture and tooling.

Rules link events and actions. Thus, if an event occurs, the DT reacts with one or
multiple actions. Events reference classes of the domain model that specify the
structure of data that the event processes. The state-defining attribute specifies
on which changes of the system’s data the event should be evaluated.

The event language is developed in MontiCore and integrated with MontiArc.
Thus, events and related actions describe the behavior of the DT’s components.
As MontiCore has a strong focus on extension, we can extend the DT in two
ways: First, we can extend the model and add new events to react to situations
that are domain-specific and not specified by the reference architecture. Second,
we can also extend the event language and add new features to describe events
and reactions for new domains. For example, we could integrate an event that
requires the evaluation result of a neural network.

The next activity in designing the DT is to specify how the DT obtains
DSs describing the current state of the physical system. Tagging [8] the domain
model enriches it with specific data retrieval information. We developed a tag-
ging schema that adds information for data retrieval from a Kafka broker. This
schema provides tags to add information about data access via Kafka to the
domain model. In case another platform is used, it is sufficient to create a new
tagging schema with that facilitates the description of this platform and add
respective tags to the domain model. For sending commands to the CPPS the
DT relies on a specification of the machine interface. We developed the OPC-UA
Description Language to specify the communication interface to the CPPS. If
the production system provides an OPC-UA interface, it suffices to specify the
endpoint, credentials, and nodes to realize the executor. Else the component for
communication with the CPPS must be handwritten.
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Fig. 4. Behavior description defining events, rules, and actions based on class diagrams.
Additionally, showing that the structure of the DS is determined by the behavior
definition.

We developed a generator that parses the models describing the DT MontiArc
architecture, domain, data processor, and executor and creates Java code for the
DT. The generation step is performed once at design time and creates the DT’s
logic for data retrieval, communication with the CPPS, evaluation of DSs, and
reaction to these. Finally, the software engineer adapts the generated code where
necessary. As the domain model centrally specifies the parameters relevant for
the process and the control and the other models reference these, only one model
has to be adapted when changes occur. The generator links information from
all models and derives Java artifacts for the DT. This way, we can ensure that
component implementations always stay consistent.

5 Technical Realization

The DT reference architecture presented in this paper is built to be flexible by
using exchangeable components implemented in MontiArc and a model-driven
approach for describing CPPS-specific properties. Our DT detects and reacts
to patterns gathered from CPPS data. The Event Language (EL) supports the
formulation of events based on attributes of class diagrams (CDs). A generator
then produces code that comprises the logic for checking events and performing
the related actions.

Figure 4 shows an excerpt of the behavior definition of the phases of an
injection molding machine, which contains the event plasticizingEnd, and
the action startInjectionPhase. The keyword for (l. 2) indicates the cor-
responding domain class whose information is used to check the event. A
stateAttribute is an attribute whose value is stored, and the corresponding
event is only triggered if the evaluated value of the state attribute has changed
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Fig. 5. Fully factorial design of experiment for varying switch-over volumes and nozzle
temperatures.

compared to the last event trigger. The event definition block contains expres-
sions about the values of the DT, such as external calls (l. 4), logical expressions
( &&, ||, !), and value comparisons (l. 6). The rule (l. 11) links the event and
the corresponding action. The right side of the figure shows the corresponding
DS, which are used to either check the event or perform the action. Type safety
is ensured by the CD. The @-notation specifies the point in time from which
the value is queried. @(0) specifies the current value, whereas @(−1) specifies
the previous value of a parameter. A tagging language [8] is used to add data
retrieval information to the CD while at the same time keeping it clean. Hence,
the tagged values are available for the DataProcessor. When configuring the
injection molding machine for production, the optimal values of the parameters
highly depend on the wear of the machine, and environmental influences. To this
end, usually, a series of experiments with varying parameter values are evaluated.
The DT architecture automates the design of such experiments by providing the
modeling language DoE. The language supports the fixed or variable assignment
of parameter values, optionally configuring the number of adjustment and mea-
suring cycles, and several factorial design methods, including fractional factorial
designs [4]. When a DoE model is provided, the Reasoner manages the optimal
and automated execution of the trials.

Figure 5 shows the DoE for varying the switchover volume (l. 5 first stage)
and the nozzle temperature (l. 7). As the factorial design method is set to fully
(l. 2), the plan represents 32 = 9 (all combinations of three variable values for the
two parameters) different parameter settings. A value can be assigned directly
to a parameter or is described variably with a minimum, an intermediate value,
and a maximum. The intermediate value is inferred as the average if only a mini-
mum and maximum is specified (l. 7). Furthermore, in practice, some parameters
are finely adjustable in several stages. BackPressure (l. 11) has a value of 150
bar in the first stage and 145 bar in the second stage. The Reasoner orders all
resulting parameter settings such that the overall number of changes in temper-
ature values between consecutive settings is minimized to reduce the number
of cycles until the machine reaches a steady state. Closely related to the DoE
is the configuration and accessibility of the parameters on the actual machine.
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Fig. 6. OPC UA Description Language model describing OPC object nodes.

The provided interfaces across different machines and domains vary, but more
and more machine manufacturers implement OPC-UA or a respective specifi-
cation as the standard communication interface. We developed the OPC-UA
Description Language that supports the definition of OPC object nodes. Addi-
tionally, the model designer has the option to specify connection information,
including authentication and encryption aspects.

Figure 6 shows the parts of the OPC-UA interface of an all-electric injection
molding machine of the type ARBURG ALLROUNDER 520 A 1500 that is
used in the field test. Login, endpoint, and encryption information are stated
to enable establishing a connection to the machine (ll. 2–8). An OPC object
node is also provided (ll. 10–20). It comprises all important information about
the node, such as the nodeID and the type. The min and max properties help
the Reasoner and Executor to detect any invalid value before sending it to
the machine. The manufacturerID is not required for communication with the
machine but usually known and used as a term by the machine operator and
mechanical engineers. The node InjectionFlow1 (l. 10) corresponds to the first
stage of the DoE in Fig. 5 (l. 7, first value). Both models, DoE and OPC, are
automatically linked in the Executor based on the names of the DoE parameters
and OPC nodes.

6 Case Study

Injection molding requires time-consuming experiments to determine the ideal
settings to run a reproducible and high-quality production process. A cen-
tral composite design for three variating parameters already takes 15 operat-
ing points, each with several process cycles to run until the injection molding
machine reaches a steady state and additional process cycles and parts pro-
duced for the actual measuring of data and quality criteria. Therefore, a DT is
necessary that is capable of generating and executing DoEs autonomously and
evaluating the resulting influences.

The proposed architecture supports the desired purpose as the developed DT
is capable of performing experiments autonomously. Based on an analysis focus
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for specific parameters, the DT generates a DoE and suggests appropriate upper
and lower values for variation. Additionally, the DT arranges the planned trials,
as, e.g., temperature variations require some time for balancing and, thus, should
be avoided in performing the DoE. At the current proof-of-concept status, the
DT implementation accesses the control of the injection molding machine by
ARBURG. Via OPC-UA, it sets the respective values for running an operating
point of the DoE. For data gathering, the DT connects to Kafka and gathers
data about, e.g., injection pressure and the volume flow in the injection phase
as a digital shadow.

In our case study, the DT investigates the optimal values injection phase,
where the significant parameters are the injection flow, nozzle temperature, and
switchover volume. The injection flow defines how fast the machine injects plas-
ticized material in terms of volume per time. The nozzle temperature describes
the temperature at the nozzle through which the machine injects material into
the mold cavity. The switchover volume specifies the volume for a phase transi-
tion from injection to holding pressure to occur. The DT automatically designs
experiments variating the injection flow from 30 cm3/s to 50 cm3/s, the noz-
zle temperature from 220 ◦C to 260 ◦C, and the switchover volume from 10 cm3

to 20 cm3. In the upcoming developments, the DT will analyze the machine
and process data it gets from Kafka and parameterizes a static process model
(e.g., regression model). The first estimation for a local optimum can thereby be
derived and set as an operating point with ongoing data monitoring as a continu-
ous digital shadow. However, further CPPS components like the linear handling
robot and the weight control need, therefore, to be automated and modularly
integrated into the DT architecture.

7 Discussion

The presented methodology and reference architecture enable the generation of
a DT for setting up and executing a DoE on an injection molding machine.
Currently, a parameter change within the controlled CPPS required a new gen-
eration of the DT. Future work will be operating on interpreted models such
that redeploying the DT is not necessary.

The DT gathers relevant data and transmits commands to the machine to
change to the machine configuration. The DT is thus capable of detecting events
within the machine or its operating context and reacting to these. Unfortunately,
as the machine denies starting the production process without a machine oper-
ator supervising the machine, starting the production fully automated is not
possible yet. However, if the machine is already running the DT can change the
settings. The current technical implementation thereby only covers a proof-of-
concept state. Further integration of and interconnection with additional assets,
like a tempering unit or weight control, needs to follow, as must enhance automa-
tion, to give the DT extensive control access.
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Furthermore, the adaptability of the reference architecture and development
process must be evaluated in other domains and for different CPPSs. The cur-
rent state works on standardized communication interfaces like OPC-UA. The
DT setup relies on an open communication capability to be applied to further
machines or domains in production technology. As OPC-UA establishes itself to
be a manufacturer-independent interface, the proposed approach is transferrable
but requires the machine to provide such an OPC-UA interface. Other communi-
cation protocols are not supported yet. However, the model-driven methodology
supports exchangeability and flexibility, as the components building the DT can
be exchanged. For example, a new Executor supporting another communica-
tion technology can be added. By specifying events that the DT should react to,
software engineers can adapt the DT’s behavior. The DOE language focuses on
requirements that are raised by the injection molding use case. In other scenarios,
DTs serve other purposes; thus, this language will not be applicable.

All DSLs that we introduced are tailored to support the specification of
DTs, but in other domains, different notations might be standard, and therefore,
modeling relevant data elements and behaviors might be challenging. So far, no
human interaction with the DT is considered. Since domain experts usually
have domain knowledge that can help the DT to react appropriately to events,
integrating such knowledge at runtime will be future work.

8 Related Work

In the field of Industry 4.0, the Internet of Things and Internet of Produc-
tion, there exist various application domains of DTs. In the automotive domain,
among others, [7] presents the DT approach addressing safety, maintenance, and
reliability of parts or built-in systems of vehicles. Furthermore, the prediction
of potential future actions of neighboring vehicles in order to increase safety is
presented in [3]. [1,25,29] on the contrary address smart shopfloor management.
Linking of human-based production tasks [18], geometry assurance in individ-
ualized production [24], and parallel controlling of smart workshops [15], and
the integration of edge, fog and cloud computing in smart manufacturing [19]
shows the diversity of DT in manufacturing. All DTs mentioned above repre-
sent specific and individualized solutions to the respective problems. Contrary
to this, the DT reference architecture presented in this paper is highly flexible
and supports reusability for different use case scenarios. It is adaptable to all
kinds of problems and domains. The model-driven development process enables
automating major parts of the development process and thus reduces the manual
effort for adapting the DT for new CPPSs.

Injection molding represents a relevant use case for realizing smart produc-
tion processes. Previous work in the Cluster of Excellence at RWTH Aachen
University and at the Institute for Plastics Processing have already elaborated
data-driven approaches for process setup [10–12,26]. Artificial Neural Networks,
therefore, are trained with simulation data to learn about parameter correla-
tions from engineering models. Each process point of the previously simulated
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DoE is conducted at the real production system. The resulting data is then fed
back to the Neural Network for post-training and adjusting the estimations. The
methodology has already been implemented as a closed-loop system that uses
autonomously conducted DoEs for targeted data gathering and post-training
[22]. However, the implementation caused high effort for a single application
scenario that serves now as a starting point for autonomous code generation and
for developing self-adjusting DTs.

9 Conclusion

We have presented a reference architecture and DSLs to realize reactive DTs
for CPPSs. The reference architecture is specified in MontiArc and thus facili-
tates the exchangeability of components of the DT. The presented method relies
on models describing the DT’s situations (events) and reactions. We, therefore,
introduced a DSL to specify events that occur in the CPPS and how the DT
reacts to these events. Furthermore, we presented a DSL for specifying the com-
munication with the CPS via OPC-UA. We evaluated the described methodology
for automating experiments that determine an ideal operating point for an injec-
tion molding machine. Thus, we showed that the DT reference architecture serves
as a starting point for systematically developing DTs for injection molding. In
the future, we plan to apply our reference architecture and its DSLs to different
manufacturing domains to improve the usage of manufacturing equipment and
resources to reduce resource consumption, manufacturing time, and cost.

References

1. Brenner, B., Hummel, V.: Digital twin as enabler for an innovative digital shopfloor
management system in the ESB logistics learning factory at Reutlingen - Univer-
sity. Procedia Manuf. 9, 198–205 (2017)

2. Butting, A., Kautz, O., Rumpe, B., Wortmann, A.: Architectural programming
with montiarcautomaton. In: 12th International Conference on Software Engineer-
ing Advances (ICSEA 2017), pp. 213–218. IARIA XPS Press, May 2017

3. Chen, X., Kang, E., Shiraishi, S., Preciado, V.M., Jiang, Z.: Digital behavioral
twins for safe connected cars. In: Proceedings of the 21th ACM/IEEE International
Conference on Model Driven Engineering Languages and Systems, pp. 144–153.
ACM (2018)

4. Choudhury, I., El-Baradie, M.: Machinability assessment of inconel 718 by facto-
rial design of experiment coupled with response surface methodology. J. Mater.
Process. Technol. 95(1–3), 30–39 (1999)

5. Fei, N.C., Mehat, N.M., Kamaruddin, S.: Practical applications of Taguchi method
for optimization of processing parameters for plastic injection moulding: a retro-
spective review. ISRN Ind. Eng. 2013, 1–11 (2013)

6. France, R., Rumpe, B.: Model-driven development of complex software: a research
roadmap. In: 2007 Future of Software Engineering, FOSE 2007, pp. 37–54. IEEE
Computer Society, Washington, DC (2007)



Model-Driven Development of a Digital Twin for Injection Molding 99

7. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and us
air force vehicles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures
Conference 14th AIAA, p. 1818 (2012)

8. Greifenberg, T., Look, M., Roidl, S., Rumpe, B.: Engineering tagging languages
for DSLs. In: Conference on Model Driven Engineering Languages and Systems
(MODELS 2015), pp. 34–43. ACM/IEEE (2015)

9. Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIG-
MOD Conference (2016)

10. Hopmann, C., Heinisch, J., Tercan, H.: Injection molding setup by means of
machine learning based on simulation and experimental data. In: ANTEC 2018
Conference and Tradeshow, Orlando, Florida, USA (2018)

11. Hopmann, C., et al.: Combined learning processes for injection moulding based on
simulation and experimental data. In: Proceedings of the 33rd International Con-
ference of the Polymer Processing Society (PPS33). Polymer Processing Society,
Cancun (2017)

12. Hopmann, C., et al.: Flexibilisation of injection moulding manufacture through
digitisation. In: 29th International Colloquium Plastics Technology. Shaker Verlag,
Aachen (2018)

13. Klocke, F., et al.: Approaches of self-optimising systems in manufacturing. In:
Brecher, C. (ed.) Advances in Production Technology. LNPE, pp. 161–173.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12304-2 12

14. Kudlik, N.: Reproducibility of the plastic injection moulding process. Dissertation,
RWTH Aachen University, Verlag Mainz, Wissenschaftsverlag (1998)

15. Leng, J., Zhang, H., Yan, D., Liu, Q., Chen, X., Zhang, D.: Digital twin-driven
manufacturing cyber-physical system for parallel controlling of smart workshop. J.
Ambient Intell. Humaniz. Comput. 10(3), 1155–1166 (2018). https://doi.org/10.
1007/s12652-018-0881-5

16. Mahnke, W., Leitner, S.H., Damm, M.: OPC Unified Architecture. Springer, Hei-
delberg (2009). https://doi.org/10.1007/978-3-540-68899-0

17. Medvidovic, N., Taylor, R.: A classification and comparison framework for software
architecture description languages. IEEE Trans. Softw. Eng. 26, 70–93 (2000)

18. Nikolakis, N., Alexopoulos, K., Xanthakis, E., Chryssolouris, G.: The digital twin
implementation for linking the virtual representation of human-based production
tasks to their physical counterpart in the factory-floor. Int. J. Comput. Integr.
Manuf. 32(1), 1–12 (2019)

19. Qi, Q., Zhao, D., Liao, T.W., Tao, F.: Modeling of cyber-physical systems and
digital twin based on edge computing, fog computing and cloud computing towards
smart manufacturing. In: ASME 2018 13th International Manufacturing Science
and Engineering Conference, pp. V001T05A018–V001T05A018. American Society
of Mechanical Engineers (2018)

20. Rao, N.S., Schott, N.R.: Understanding Plastics Engineering Calculations: Hands-
on Examples and Case Studies. Hanser and Hanser Publications, Munich and
Cincinnati (2012)

21. Rumpe, B., Wortmann, A.: Abstraction and refinement in hierarchically decom-
posable and underspecified CPS-architectures. In: Lohstroh, M., Derler, P., Sirjani,
M. (eds.) Principles of Modeling. LNCS, vol. 10760, pp. 383–406. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-95246-8 23
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