
Model-Based Testing of
Software-Based System Functions

Imke Drave∗, Timo Greifenberg∗, Steffen Hillemacher∗, Stefan Kriebel†,
Matthias Markthaler†, Bernhard Rumpe∗, Andreas Wortmann∗
∗ Software Engineering, RWTH Aachen University, www.se-rwth.de

† Development Electric Drive, BMW Group, www.bmw.de

Abstract—Software is the most crucial innovation driver for
cyber-physical systems and validating its correct behavior is
crucial to many application domains from automated vehicles to
medical systems, smart homes, and smart cities. Typical for these
systems is that software errors can cause severe ramifications
and can be very costly to fix. Consequently, facilitating a priori
software validation and verification is of crucial importance for
cyber-physical system development. We hence present a model-
based method which facilitates test creation, test maintenance,
and improved test coverage in automotive software engineering.
To this end, we translate specification models used in the
BMW Group’s SMArDT engineering methodology into activity
diagrams, apply optimizations, and ultimately generate test cases.
We realize these transformations using the MontiCore language
workbench and report on ongoing evaluation at the BMW Group.
First results indicate that model-based test case creation can
provide great benefits to all stakeholders, once the initial learning
efforts have been mastered.

Keywords–Model-Based Testing, Test Case Creation

I. MOTIVATION

Engineering software-intensive cyber-physical systems
(CPS) is a tremendous challenge that often requires the partici-
pation of experts from multiple domains. Such domain experts
are rarely software engineering experts. Hence, their contri-
bution is hindered by the conceptual gap between problem
domains and the solution domain of software engineering.
Model-based software development aims to reduce this gap
by lifting models to primary development artifacts. As such,
they capture domain concepts and abstract from technical
details. As model artifacts, they are better comprehensible than
general-purpose programming language artifacts and enable
automated analysis and transformation.

Model-based testing (MBT) [1] employs models to gen-
erate test cases for software-intensive systems. Thereby, the
models themselves describe the behavior of the system under
test (system model), its environment (environment model), or
a process of possible test steps (test model).

Today, software is the most crucial innovation driver for
CPS [2], including autonomous robots, cars, medical systems,
smart homes, and smart cities. Typical for CPS is that software
errors can cause severe real-world ramifications and - due to
the entanglement of hardware and software - can be very
costly to fix. Consequently, facilitating an early validation
and verification is of crucial importance to CPS development.
At the BMW Group, MBT has become a mean of tackling
this issue. Besides, by deriving test cases from model-based
specifications, test engineers can benefit from automated test

case creation. Therefore, we developed a method for Model-
Based Test Case Creation (MBTCC) [3], based on a survey,
our experience and a close cooperation with test engineers.
In this paper, we present the detailed MBTCC method that
enables automatic generation of test cases from a system model
for verification of system behavior. Our method facilitates
test creation, test maintenance, and improved test coverage
for automotive software. To this end, we present a method
to transform the BMW Group’s SMArDT [4] (specification
method for requirements, design, and test) SysML [5] behavior
models into executable test cases. For efficient model trans-
formation and manipulation, the input models are translated
into UML/P activity diagrams (AD) [6]. With the UML/P
infrastructure for model analysis and transformation already in
place, engineering the required code generator and integrating
additional transformations requires little effort. Hence, the
contributions of this paper are

• A transformation from UML/P ADs into system level test
cases which can be executed on various test beds.

• A transformation from UML/P SCs into UML/P ADs
which enables MBTCC using SCs.

• A tool-chain to efficiently generate test cases for automo-
tive software.

In the following, Section II sketches the outline of our
method and its integration into the SMArDT methodology,
before Section III introduces preliminaries. Afterwards, Sec-
tion IV describes a method to derive test cases from UML/P
ADs. Section V leverages this to derive test cases from SCs
containing embedded ADs. Section VI presents lessons learned
from applying MBTCC, Section VII discusses our method, and
Section VIII highlights related work. Section IX concludes.

II. OVERVIEW

This section highlights the MBTCC processes at the elec-
tric drive development department at the BMW Group. The
department uses SMArDT [4], [7], a specification technique
for requirement, design, and testing of systems engineering
artifacts which fulfils ISO 26262. SMArDT applies modeling
techniques to describe functional behavior by means of SCs
and ADs. Moreover, the method supports a combination of
both, in which ADs describe entry, do, and exit actions of SC
states.

The MBTCC method targets the system level of the
SMArDT development process, i.e., it aims at specifying the
system’s functional behavior and its high-level architecture.
Prior to MBTCC establishment, test cases at the system level

146

2018 44th Euromicro Conference on Software Engineering and Advanced Applications

978-1-5386-7383-6/18/$31.00 ©2018 IEEE
DOI 10.1109/SEAA.2018.00032

[DGH+18] I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, M. Martkhaler, B. Rumpe, A. Wortmann:
Model-Based Testing of Software-Based System Functions.
In: Conference on Software Engineering and Advanced Applications (SEAA'18), Aug. 2018.
www.se-rwth.de/publications/

Figure 1. Overview over the overall test case creation process.

were derived manually from requirements. With SMArDT at
hand, high quality function models are created as part of
the system requirements. Leveraging the formal nature of
the models enhances automated test case creation and yields
several advantages: (1) Test cases can be generated according
to the path coverage criterion. The generator produces a
minimal number of test cases fulfilling the coverage criterion.
This allows for systematic testing without overhead by exe-
cuting redundant test cases. (2) Test engineers can focus on
creating the most complex test cases, which are not available
as function models or cannot be created systematically; and
(3) automated MBTCC is faster than manual test case creation.
Hence, test cases derived from the latest development model
are instantly available independent of the state of the process
and thus, errors can be fixed at an early stage.

Figure 1 illustrates the quintessential activities and arti-
facts of MBTCC. First, the functional behavior models are
derived from customer requirements. They specify the black-
box behavior of the system, from a customer’s point of
view. Requirement engineers utilize ADs, SCs and Use Case
Diagrams for costumer requirement models. Among others,
SMArDT proposes ADs and SCs for functional specifications.
A functional behavior specification describes the activities,
actions, and states needed to fulfill customer requirements.
For example, a functional behavior model describes how a
car fulfills the customer requirement for a superior driving ex-
perience. Moreover, functional behavior models describe how
a car fulfills its functional requirements. These requirements
are linked to the corresponding models. Both, ADs and SCs,
can be used as input for MBTCC, which derives XML test
cases. Linking test cases to the functional requirements enables
horizontal traceability. For validating and and verifying system
behavior, the test case execution tool runs the test cases on
various test beds (system under test). The horizontal trace-
ability allows to backtrace test results to their corresponding
functional requirements.

The test case creation takes ADs as input. The respec-
tive model processing tool-chain comprises various model-
to-model (M2M) transformations and a model-to-text (M2T)
transformation from ADs to test cases, which is described
in Section IV. Afterwards, Section V describes an M2M
transformation from SCs to ADs. This supports integrated
model processing of both models, which reduces the number
of different tools necessary to generate test cases.

Figure 2. UML/P activity diagram presenting quintessential AD elements.

III. PRELIMINARIES

Our MBTCC method takes advantage of the benefits of the
MontiCore language workbench by applying its already im-
plemented UML/P AD language. The following two sections
introduce basics about the workbench and UML/P ADs.

A. MontiCore

MontiCore [8], [9] is an extensible workbench for engineer-
ing compositional, textual modeling languages. Developers de-
fine languages as context-free grammars that specify integrated
concrete and abstract syntax. MontiCore generates model-
processing infrastructure (e.g., parsers) with respect to the
grammar to facilitate model checking and transformation of the
language into code. Various MontiCore languages have been
engineered for and applied to different domains1, including
automotive, cloud computing, smart homes, robotics, and soft-
ware engineering itself. For the latter, we have developed the
UML/P family of modeling languages [10], which is a subset
of UML [11] that is refined to enable pervasive model-driven
engineering without the underspecification discrepancies of
UML. This subset includes activity diagrams, class diagrams,
statecharts, and sequence diagrams. All of them are well-
integrated with another and come with comprehensive tooling
(model checkers, model transformations, code generators, etc.).

B. Activity Diagrams

To leverage the benefits of MontiCore’s model processing
infrastructure, we chose to preprocess test case generation
by transforming the input SMArDT ADs into UML/P ADs.
This step enables to reuse tooling, such as model checkers
and transformations. Figure 2 shows an UML/P AD example
including all quintessential modeling elements. We describe
MBTCC for ADs, however, application to SCs is also possible
by a translation into an AD (cf. Section V).

For automotive software testing, it is crucial to validate
execution paths. As we deal with UML/P ADs, i.e., directed
graphs, it is possible to determine these paths by graph
traversal. In the following, we therefore consider an execution
path to be a path of the UML/P AD, which is a connected
sequence of nodes and edges starting with the initial node and
ending at the final node. A path may be split into concurrent

1See http://monticore.de/languages/

147

Figure 3. Deadlock: Exactly one token is placed at the initial node and no
elements create additional tokens. The join node waits until two tokens
arrive but will only ever receive one token. Thus it can never continue.

sub-paths by fork nodes. The sub-paths can be synchronized
by a join node or ended by a flow-final node. If one sub-path of
a concurrent region reaches the final node, all other concurrent
paths are aborted.

We need to impose strict well-formedness constraints on
the input diagrams to ensure correct path generation. Among
others, we require that SMArDT ADs are free of infinite
loops and deadlocks. The former occur whenever a node is
reachable from itself and no exit condition to leave the loop is
given. Finite loops, on the other hand, are allowed in MBTCC.
The latter arise in cyclic waiting situations, as illustrated in
Figure 3. The join node will continue iff two incoming flows
have arrived [12]. The absence of deadlocks and infinite loops
is required for the transformations performed on the ADs.

In SMArDT ADs which model functional behavior use
ports to define input and output signals for system functions.
Furthermore, local signals which are neither input nor output
and are only processed within a specific function of the
system can be defined. Transitions may hold guards in the
form of Boolean conditions, i.e., [expression], or signal
assignments that assign values to output or local signals, i.e.,
/signal = value. A combination of both is also possible,
i.e., [expression] /signal = value. For MBTCC,
we prescribe that the values of input signals are not changed
within the diagram.

We define the following AD correctness constraints:
(1) Names and IDs of nodes and edges must be unique.
(2) Diagrams may not contain deadlocks that occur in cyclic
waiting situations. Figure 3 illustrates an example where a join
node will continue if and only if two incoming flows have
arrived [12]. (3) Infinite loops cannot prevent path calculation.
They occur, whenever a node can be reached from itself and no
exit condition will ever come true. (4) Input signals values must
not be changed on any path of an AD. (5) Edges originating
from a DecisionNode need to always specify a Boolean
guard condition. (6) Branches must always be complete, i.e., its
guard conditions must cover the diagram’s entire value range.
This is necessary for path validation because branching is not
decidable otherwise.

The above-mentioned correctness constraints are imple-
mented as context conditions and checked prior to code gen-
eration. Consequently, erroneous models will not be released
for implementation before all guidelines are passed.

IV. FROM ADS TO TEST CASES

Figure 4 shows the steps of the automated MBTCC process.
First, two transformations are applied to simplify the diagram
and thus, enable easy path calculation. The optional value
collection step gathers all signals and possible values used in

Figure 4. AD showing the intermediate steps of the automatic test case
generation implemented by the test case generator.

the diagrams. Thus, it defines the data types used for path
validation. This step is only required when data types of the
signals are not available during the generation process. Path
calculation is performed according to the path coverage crite-
rion C2c [13] to prevent state state explosion. The following
path validation step checks whether an assignment of values to
input variables exists such that a given path will be executed.
If no such assignment exists, the respective path is declared
invalid and discarded. In the end, test cases are created for
each valid path using the calculated values for input signals. To
illustrate the test case generation process, the diagram shown in
Figure 2 will serve as running example throughout this chapter.

A. Hierarchy Resolution and Fork Flattening

We perform two transformation steps, Hierarchy Resolu-
tion and Fork Flattening, to enable a simplified path calculation
algorithm later on. First, the Hierarchy Resolution resolves
nested activities by integrating them into the uppermost ac-
tivity. The Fork Flattening transformation interprets parallel
flows modeled by fork nodes. As they simulate concurrent
flows in ADs, their order is interchangeable as long as the
sequence of each individual flow is preserved. Additionally,
we assume that parallel paths are linearly independent. The
high degree of abstraction of the diagrams allows to make
this assumption. Therefore, we apply a sequential arbitrary
order interpretation of concurrency to obtain a single flow.
In the following, we perform both transformations using the
example AD of Figure 2. The AD also contains a complex
fork-join structure with inner branching behavior which is
valid according to SysML although forked flows are not joined
at exactly one join node. SMArDT ADs often contain such
constructs and hence, need to be handled correctly by MBTCC.

Hierarchy Resolution resolves nested activities by remov-
ing the initial node of a nested diagram and adding a new edge
from the last node in the parent diagram to the first node of the
nested. Equally, it removes the final node of the nested diagram
and connects the last node of the nested activity to the first
activity after the nested node in the parent diagram. Multiple
hierarchy levels are resolved recursively. Figure 5 depicts this
step for the running example AD.

The Fork Flattening transformation applies a sequential
arbitrary order interpretation for parallel flows. For nested
fork nodes, it starts at the innermost fork node. Starting at
the first encountered fork node, the transformation traverses

148

Figure 5. The UML/P activity diagram of Figure 2 after the first step, the
hierarchy resolution transformation.

Figure 6. Excerpt of the first intermediate fork flattening step. Based on the
UML/P AD of Figure 2 the ForkNode2 is transformed into a basic node.

The two forked paths are connected at their common join node JoinNode2

.

the AD recursively until it finds the innermost fork node. All
parallel paths originating from this node are calculated. The
transformation takes two parallel paths and connects them at
their first common join node until only one path is left. UML/P
AD semantics prescribe that a path starts at the initial node and
ends at the final node. Hence, in a well-formed AD, parallel
paths must be synchronized at some join node prior to the final
node. However, if no such node can be found, either one of
the parallel paths must end at a flow final node or both must
end at the final node. In the first case, the flow final node
simply marks the end of that forked path. Therefore, it can be
connected to the other by changing the target of its last edge
to the first node of the other path. The second case is handled
similarly by changing the target of the last edge of either one
of the parallel paths. The final or a flow final node, therefore,
may also be taken as a synchronization point.

Considering the example in Figure 2, the transformation
flattens ForkNode2 first as it is the innermost fork node of
the AD (cf. Figure 6). Flattening is possible at JoinNode1
by changing the target of the edge from AN2 to AN3 and
removing the edge from ForkNode2 to AN2.

Flattening continues at ForkNode1. As the bottommost
fork also contains a branch which is not merged, this fork
will be considered last in the flattening process. We find the
first common join node of the other two forks at JoinNode2
and connect them in the same manner as before, illustrated
in Figure 7. This leaves two forks (cf. Figure 8, top). One
branch of the decision node shares JoinNode2 with another
fork while the other edge of the branch leads to the final node
which will end all running threads immediately. Thus, it is

Figure 7. Excerpt of the second intermediate fork flattening step.
ForkNode1 is flattened.

Figure 8. Excerpt of the resulting fork flattening process, resolving
ForkNode1 and JoinNode2.

correct to connect node AN4 to the decision node, as shown
in Figure 8.

After performing both transformations, nested activities,
join and fork nodes have been eliminated, which allows
presuming with the test case generation.

B. Value Collection, Path Calculation and Validation

The next step of the MBTCC process is the optional
value collection. This step collects signals and possible values
to calculate data types (i.e., possible ranges of values) for
signals. This compensates for unspecified data types of signals
in input ADs. In SMArDT, ADs may contain signals for
which no value specification in a global system scope is
present due to the high abstraction level. Consequently, the
generator creates test cases based only on values present within
the input diagram. The value collection collects all possible
values for each of the diagram’s signals, by traversing the
diagram. During this traversal, ports, guards, and assignments
are checked for the needed information. For signals, the set of
possible values is complemented by the corresponding value
once the variable appears in a guard or an assignment. In
case a signal is assigned to another signal, e.g.,, signalA
= signalB, the data-type of signalA is extended by
that of signalB. If a data-type contains only one element,

149

Variable Actual Value Range Negation
in1 true false
in2
out1 true, false
out2 active not_active

TABLE I. Result of the value collection shown in Figure 2.

the algorithm automatically adds a negated value, which is
necessary to handle [else] guards in a correct way.

For Figure 2, the value collection returns the results
presented in Table I. The diagram contains a single guard
condition that holds whenever in1 is set to true. The value
collection adds this value to the value range of in1. In the end,
it also appends the negation false, as only one value for in1
is present in the diagram. As in2 is not used within a guard or
assignment, its value range remains empty and the generator
warns about an unused input. For out1, there are two values
present in the diagram, hence no negations are added by the
value collection. For out2 the procedure generates the value
range active and adds not_active as its negation.

Next, paths are calculated according to a path coverage
strategy. A Depth First Search graph traversal algorithm, re-
trieves all paths of the graph. Test cases are only generated for
valid paths. An AD path is valid if all its guard conditions can
be satisfied. Checking whether a signal interpretation exists,
such that a path is valid corresponds to a Boolean satisfiability
problem. The Boolean formula to be satisfied is given by the
conjunction of all guard conditions and assignments of a path.
If the value of a signal is changed multiple times on a path,
this is handled by creating multiple versions of the signal for
each assignment. The Boolean formula is built up according
to the version of the signal along the specific path. Hence,
after changing the value of a signal, the rest of the formula
is built by substituting each occurrence of the variable by its
new version. We use the Z3 solver [14] to solve the problem,
which outputs a value for each variable used in the formula.

In Figure 2, the diagram contains four paths. The upper
path will be taken iff in1 == true and out1 != false.
The expected values for the output variables out1 and out2
can be retrieved by evaluating the actions in ANa, which sets
out1 to true and AN5 setting out2 to active.

C. Test Cases

Test cases always correspond to one execution path of the
activity diagram and are structured in three blocks containing
preconditions, actions, and postconditions, which is common
practice in software testing [15].

Within the preconditions, additional conditions required
before executing the test case can be specified. The test case
will not be executable if the precondition does not hold.
Postconditions contain test steps to check value assignments
to output signals. Specific pre- and postconditions are not
derived from the diagrams, but can be added manually after
the generation process finished. The action block will contain
test steps to set all calculated input values and to check the
assignments of intermediate results. Thus, each of the test
steps comprises an access action, i.e., setting or reading signal
information, the signal name and its current or expected value.

Test Case 1
Action Name Value Expectation
set out2 active
set in1 true
set out1 true
check out1 true

Test Case 2
Action Name Value Expectation
set out2 active
set in1 false
set out1 false
check out1 false

TABLE II. Result of the test case generation. It belongs to the two valid
paths in the AD shown in Figure 2.

Figure 9. SC to be transformed into an AD.

The test case can be expressed in a tabular format, which is
parsed into XML.

For the AD in Figure 8, two test cases will be generated,
as the diagram comprises only two valid paths. The first path
starts with AN5 after the initial node, which sets the output
variable out2 to its value active. At the first decision node,
either in1==true or in1!=true must hold. The conditions
are checked in one test case each. The tables of Table II
show the resulting test cases in a simplified way. Each of
their rows represents one test step executable on several test
beds. The other two paths have been marked invalid. Since in
case in1 == true holds, the else condition of the following
decision never holds. Analogously, if in == false, out1
== false can never be true.

V. FROM SCS TO TEST CASES

In addition to ADs, SMArDT allows SCs to describe
functional behavior to lay focus on different states of a system
and their transitions. We therefore designed our MBTCC
method such that it is also applicable to SCs. In contrast to
regarding ADs and SCs separately, our approach also supports
a combination of both model types. This is advantageous
because modelers can integrate specific purposes of both
diagram types. While SCs describe the states of a system with
its transitions, developers can use ADs to describe the internal
behavior of the states. This enables a more detailed function
behavior modeling than just using one of the diagram types.

Figure 9 shows an example of an SC that contains all
quintessential modeling elements. The SC comprises input
ports and output ports, states and transitions. Each state can
feature an entry, do, and an exit action. These actions can
either be assignments, analogous to signal assignments as
described in Section IV, or contain internal ADs. Similar to
edges and guard conditions in ADs, a transition in an SC holds

150

Figure 10. AD generated from the SC of Figure 9.

a condition described inside brackets (cf. Figure 9) and allows
further assignments.

Depending on the current state and the conditions of its
outgoing transitions, the SC determines which transition fires.
We assume that outgoing transitions of a state are always
deterministic, i.e., it is not possible for any two transitions
to fire at the same time. To reuse the AD-MBTCC approach
presented above, we transform SCs to ADs prior to the actual
test case generation. This also facilitates test case generation
for combinations of both diagrams. Figure 10 shows the AD
derived from the SC of Figure 9. The figure depicts the rep-
resentation of states and transitions of the SC within the AD.
The main idea of this transformation is to store the information
about the current internal state of the SC in the AD. Therefore,
the AD contains designated ports to determine the current
state of the SC. The new ports are denoted internal (cf.
Figure 10).

Depending on the current state of the SC, different paths
through the transformed AD are possible. That is, the paths
through the AD represent the transitions of each state of the
SC. The transformation from SC to AD also takes entry, do
and exit actions of each state into account and adds them to
the transformed AD. First, the transformation adds a decision
node with an outgoing edge for every state of the SC. Each
outgoing edge of this decision uses the internal port in
its condition to determine the current SC state in the AD.
Afterwards, the transformation adds the do action of each state
to the corresponding edge in the AD. Next, the transformation
models the outgoing transitions of each state using decision
nodes. If the SC transitions into a new state, the exit action of
the current state, the assignment of the respective transition,
and finally the entry action of the new state are added. The
transformation also takes into consideration that none of the
outgoing transitions fires.

When describing state behavior by means of ADs, any
of the entry, do or exit actions may be linked to an AD.
Furthermore, any information about signals used in the parent
SC, including their possible values, is also available in the
respective AD. Hence, the nested ADs can influence which
outgoing transition of a state fires. This is important when
creating a functional model using SCs combined with ADs.
Model correctness is given, if signals and their data types are
consistent throughout the parent SC, its child ADs and vice
versa. This consistency between SCs and ADs ensures the
accurate description of the corresponding functional behavior
and the correctness of the generated test cases.

The test generation strategy for SCs in our approach is

different to the one applied to ADs. For test case generation
from SCs, each transition is covered by exactly one test
case and each test case covers exactly one transition. As a
consequence, sequences of transitions, i.e., paths through the
SC, are not regarded.

To illustrate the test strategy for state transitions, we look at
the transition from State2 to State3 as shown in Figure 9.
Assuming that the current state is State2, with regard to the
AD of Figure 10, the do action of this state is covered. If an
outgoing transition fires, the exit activity of State2 will also
be covered. Subsequently, the current state of the SC changes
to State3 and the respective transition is covered. Finally, in
case State3 contains an entry action, it is also covered.

In general, the test case calculation works as follows:
(1) Determine the current state of the SC. (2) Cover the do
action of this state. (3) Depending on its outcome, determine
which transition fires. If none can fire, the current state does
not change. (4) If one of the outgoing transitions fires, first
cover the exit action of the current state. Afterwards, cover the
corresponding transition. (5) Finally, cover the entry action of
the target state of the transition.

The test cases derived from an SC cover all transitions and
all ADs nested within its states. Thus, in cases where ADs
serve as input in addition to SCs, a single transition can be
tested by more than one test case. As a consequence, the actual
number of generated test cases heavily depends on the nested
ADs of the states. Since Section IV already explained test case
generation for ADs in more detail, it is easy to see that nested
ADs, with a high number of decisions, yield a higher number
of test cases generated out of SCs.

VI. LESSONS LEARNED FROM APPLYING MBTCC

The close cooperation with the BMW Group broadly
enhanced the conception and development of our MBTCC
method. Immediate feedback given by practical application of
the automatic test case generation by developers showed its
advantage in the ongoing development process. In this section,
we present the resonance within BMW and our experiences
from applying MBTCC.

In its introduction phase MBTCC faced organizational
challenges. As specified in BMW’s development process, a
development branch of the main productive model contains
the inputs of for MBTCC. In this branch, elements cannot
be linked to their corresponding requirements, as this would
increase maintenance efforts. This prevents automatic linking
of the generated test cases to the respective requirements which
would be necessary for regular reports on test coverage of
requirements. BMW plans to integrate models into the main
productive model as soon as a first draft has been accepted
by a committee of responsible authorities and test engineers.
On the main branch, links are maintained which enables the
test case generator and automatic requirement test coverage
reports.

As mentioned before, current input models do not contain
complete data-type information for all signals. We therefore
developed the value collection workaround. However, when
considering individual points of view, this step might not
mirror what is intended by the modeler. An example is given by

151

Figure 11. Problem of condition understanding: the generator’s proposed
value collection (color==white || color==red) versus modeler’s

point of view (else).

Figure 11 which shows two similar activity diagrams. To the
domain expert modeler, the expression color == white
|| color == red is equivalent to else. However, since
the diagram is not complemented by color’s data-type, the
test case generator will assume it to be fully represented
by the set blue, not_blue. In a realistic test, however,
the system’s behavior should be tested in case color ==
white and color == red. Instead of three test cases, the
generator is only able to produce two where one of them
puts a value, that is not realistic due to the lack of data-type
specification. This challenge can be overcome by establishing
and maintaining a central database containing signals and their
data-types. Additionally, such a database would also facilitate
maintenance of diagram consistency within SMArDT.

MBTCC application at BMW faces other challenges in
providing support for platform specifications. Different test
platforms may require specific pre- and postconditions which
are valid only for a certain pair of system and test platform. For
example, conditions for Vehicle in the Loop or hardware system
information for Hardware in the Loop still need to be added
manually by test engineer. Providing this information together
with the productive model would enable automatic processing
of test platform and system specific pre- and postconditions.

Within the BMW group, our method has been perceived
positively among engineers. Current experiences show that
semi-automatic MBTCC as proposed here is capable of re-
ducing test case creation times and whenever the linked
requirement set is complete and well-formedness is ensured.
The generator validates input models by means of efficient
model checking and thus, reveals modeling mistakes which
are not visible to the human’s eye even if it belongs to an
experienced modeler or test engineer.

VII. DISCUSSION

The hierarchy resolution and fork flattening transforma-
tions (cf. Section IV) require strict adherence to the correctness
constraints described in Section III, i.e., logical correctness
needs to be assured and is therefore checked prior to test case
generation. The generator rejects models which are not well-
formed, which is a major advantage because even invisible
modeling errors can be detected at an early stage of the
development process. Within SMArDT, erroneous models can
be detected at its second stage, i.e., before test cases are
generated. Thus, no testing activities are required to detect

logical mistakes which might not have been detected until
later in the system development process without MBTCC.
Currently, our tool-chain only supports flat SCs without nested
or concurrent states. The limited support for only basic SC
elements suffices to describe function models in MBTCC.
Generally, as discussed in [10], it is possible to transform SCs
into a reduced form which only contains the basic elements the
prototype already supports. This transformation can be done
without the loss of information. Hence, the application of this
pre-existing transformation enables the prototype to support
all UML/P statecharts if needed. Also, our approach for SCs
supports test case generation based on single transitions only.
While this suffices for current SMArDT function models, we
also look into extending the test case generation to full path
coverage. As a first step, we plan to generate test cases for
successive transitions.

VIII. RELATED WORK

Most approaches for MBTCC focus on deriving test cases
from a specific diagram type only. Some studies also generate
test cases from ADs [16], [17]. The authors of [16] present
a direct technique, which ignores the state of objects during
system execution. The method only regards external input
and output signals, but disregards internal or local signals.
Therefore, the generated test cases do not allow to investigate
system behavior in case of internal errors.

Generating test cases from SCs has also been subject to
current research. As such [18], [19], [20] have developed
approaches based on a transformation of SCs into extended
finite state machines (EFSM) [21], [18]: The transformation
proposed by [21] eliminates events after broadcast and flattens
hierarchical and concurrent structures of states. Test case
generation based on this transformation targets class level
testing only and is not suitable for system level testing.
The approach proposed by [18] translates an EFSM into an
extended flow control graph prior to the generation process.
Incomplete guard conditions are handled by changing the field
variable or choosing appropriate parameter values obtained
from a database. The approach does not overcome the data
type underspecifications as present in our input models and
is thus not applicable. The approach presented here, is able
to overcome data type underspecification in an efficient and
understandable way.

The MBTCC method proposed here is able to handle
ADs and SCs as well as a combinations of both which is
not addressed by existing research. Using different diagram
types within SMArDT allows to leverage their strengths to
model specific system attributes and behavior. Thus, models
are created to be more comprehensible, less complex and to
contain clear system specifications.

Approaches which leverage UML diagram syntheses for
test case generation exist, as presented in [22], [23]. Another
recent approach takes ADs combined with sequence diagrams
as input [22]. The approach takes the AD and transforms it
to a directed graph and the sequence diagram into a sequence
graph. A combined activity sequence graph is taken as source
for the generated test cases. [22] enables concurrency testing in
activity and sequence diagrams separately which would not be
able to handle concurrent joining constructs as presented here.

152

Such structures, however, conform to the SysML specification
and should therefore not be prohibited to preserve modeling
liberties. Furthermore, the approach presented here, is able to
handle else guard conditions by complementing incomplete
data types.

Transforming integrated ADs and SCs into the intermediate
representation of state activity diagrams (SADs) prior to test
case generation [23] is closely related to MBTCC. Based on
the resulting SAD, path operations and test case generation
according to coverage criteria can be executed. In contrast
to [23] for cluster-level and integration-level testing of soft-
ware, our approach targets testing on a level where software
and hardware are already combined in a real-world system
or subsystem. The test cases in [23] are derived from a fault
model whereas our approach takes the actual productive system
model as input.

IX. CONCLUSION

We have presented a systematic method to derive test cases
for automotive software from specifications already present
through the BMW Group’s SMArDT method. As these specifi-
cations can be statecharts with conceptually embedded activity
diagrams, they are homogenized into UML/P activity diagrams
first. Afterwards, the resulting activity diagrams are optimized
and transformed into a tabular, XML-based format providing
the individual test actions and variable valuations in an ex-
ecutable format. Using a modular transformation tool-chain
based on the language workbench MontiCore, our approach is
easily extensible for future challenges in automotive software
testing and first results from evaluating it at the BMW Group
indicate that all stakeholders expect it to deliver great benefits
in test case creation.

REFERENCES

[1] S. R. Dalal, A. Jain, N. Karunanithi, J. Leaton, C. M. Lott, G. C. Patton,
and B. M. Horowitz, “Model-based testing in practice,” in Proceedings
of the 21st international conference on Software engineering. ACM,
1999, pp. 285–294.

[2] M. Broy, “Challenges in Automotive Software Engineering,” in Pro-
ceedings of ICSE 2006, 2006.

[3] S. Kriebel, M. Markthaler, K. S. Salman, T. Greifenberg,
S. Hillemacher, B. Rumpe, C. Schulze, A. Wortmann, P. Orth,
and J. Richenhagen, “Improving model-based testing in automotive
software engineering,” in 40th IEEE/ACM International Conference on
Software Engineering: Software Engineering in Practice Track, 2018.

[4] Stefan Kriebel, Vincent Moyses, Georg Strobl, Johannes Richenhagen,
Philipp Orth, Stefan Pischinger, Christoph Schulze, Timo Greifenberg,
Bernhard Rumpe, “The next generation of bmw’s electrified power-
trains: Providing software features quickly by model-based system
design,” 26th Aachen Colloquium Automobile and Engine Technology,
2017.

[5] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language. Morgan Kaufmann, 2011.

[6] H. Grönniger, D. Reiß, and B. Rumpe, “Towards a Semantics of Activity
Diagrams with Semantic Variation Points,” in Conference on Model
Driven Engineering Languages and Systems (MODELS’10), ser. LNCS
6394. Springer, 2010, pp. 331–345.

[7] S. Hillemacher, S. Kriebel, E. Kusmenko, M. Lorang, B. Rumpe,
A. Sema, G. Strobl, and M. von Wenckstern, “Model-Based Devel-
opment of Self-Adaptive Autonomous Vehicles using the SMARDT
Methodology,” in Proceedings of the 6th International Conference
on Model-Driven Engineering and Software Development (MODEL-
SWARD’18). SciTePress, 2018, pp. 163 – 178.

[8] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Völkel, and A. Wortmann, “Composition of Heterogeneous Modeling
Languages,” in Model-Driven Engineering and Software Development,
ser. Communications in Computer and Information Science, vol. 580.
Springer, 2015, pp. 45–66.

[9] R. Heim, P. Mir Seyed Nazari, B. Rumpe, and A. Wortmann, “Com-
positional Language Engineering using Generated, Extensible, Static
Type Safe Visitors,” in Conference on Modelling Foundations and
Applications (ECMFA), 2016.

[10] B. Rumpe, Modeling with UML: Language, Concepts, Methods.
Springer International, 2016.

[11] O. M. Group, “OMG Unified Modeling Language (OMG UML),
Infrastructure Version 2.3 (10-05-03),” 2010.

[12] P. Sugunnasil, “Detecting deadlock in activity diagram using process
automata,” in 2016 International Computer Science and Engineering
Conference (ICSEC), 2016, pp. 1–6.

[13] P. Liggesmeyer, Software-Qualität: Testen, Analysieren und Verifizieren
von Software. Springer Science & Business Media, 2009.

[14] L. de Moura and N. Bjørner, “Z3: An efficient smt solver,” in Tools and
Algorithms for the Construction and Analysis of Systems. Springer
Berlin Heidelberg, 2008, pp. 337–340.

[15] A. Spillner and T. Linz, Basiswissen Softwaretest. dpunkt, 2012.

[16] Generating test cases from UML activity diagram based on Gray-box
method: 11th Asia-Pacific Software Engineering Conference, 2004.

[17] H. Kim, S. Kang, J. Baik, and I. Ko, “Test cases generation from
uml activity diagrams,” in Eighth ACIS International Conference on
Software Engineering, Artificial Intelligence, Networking, and Paral-
lel/Distributed Computing (SNPD 2007). IEEE, 2007, pp. 556–561.

[18] M. Shirole, A. Suthar, and R. Kumar, “Generation of Improved Test
Cases from UML State Diagram Using Genetic Algorithm,” in Pro-
ceedings of the 4th India Software Engineering Conference. ACM,
2011, pp. 125–134.

[19] J. Offutt and A. Abdurazik, “Generating tests from uml specifications,”
in UML 99 — The Unified Modeling Language: Beyond the Standard
Second International Conference Fort Collins, CO, USA, October 28–
30, 1999 Proceedings. Springer Berlin Heidelberg, 1999, pp. 416–429.

[20] J. Offutt, S. Liu, A. Abdurazik, and P. Ammann, “Generating test
data from state-based specifications,” Software Testing, Verification and
Reliability, 2003, pp. 25–53.

[21] Y. G. Kim, H. S. Hong, D. H. Bae, and S. D. Cha, “Test cases generation
from uml state diagrams,” IEE Proceedings - Software, 1999, p. 187.

[22] Monalisha Khandai, Arup Abhinna Acharya, and Durga Prasad Mo-
hapatra, “Test case generation for concurrent system using uml com-
binational diagram,” International Journal of Computer Science and
Information Technologies, 2011, pp. 1172–1181.

[23] S. K. Swain, D. P. Mohapatra, and R. Mall, “Test case generation based
on state and activity models,” The Journal of Object Technology, 2010.

153

