
Model-Based Specification of Component Behavior with
Controlled Underspecification

Jan O. Ringert1 and Bernhard Rumpe2 and Andreas Wortmann2

Abstract: The development of distributed interactive systems is a challenging task. Hierarchical
decomposition of the systems’ functionality into components and explicit identification of their in-
teraction help to reduce this complexity. The behavior of components can be defined using automata
and specified and verified per component. However, some properties about the interaction behav-
ior of components in the context of larger systems are not easily specified on a component level
and might even crosscut their hierarchical decomposition. We present mechanisms that enable con-
trolled underspecification and allow component models to be used as behavior specifications for
complete systems and subsystems crosscutting hierarchical component composition. Behavior spec-
ification and implementation in the same modeling language enable a seamless development process
based on stepwise refinement following the FOCUS methodology. We have developed a specification
language to define crosscutting behavior relations and implemented a prototype for refinement and
equality checking using a reduction to the model checker Mona.

1 Introduction

Sophisticated software consists of collaborating distributed systems. Engineering such sys-
tems can be facilitated by structuring these as component and connector (C&C) architec-
tures [TMD09, Ma13]. C&C architectures describe the logical decomposition of a system
into components, to encapsulate functionality within well-defined interfaces, and connec-
tors, to enable component interaction. We consider a model-driven engineering (MDE) set-
ting where component behavior is defined by composition or modeled using automata. Ex-
amples of modeling languages supporting this setting are AutoFOCUS [HF07], Simulink
Stateflow [wwwa], UML/SysML [Ob12], and MontiArcAutomaton [RRW14]. MontiArc-
Automaton components support a type system with instantiation, yield stable interfaces
of sets of typed input and output ports, contain local variables, and are either atomic or
hierarchically composed.

The development of complex software components requires multiple steps: Initially, the
complete behavior of a component might be unknown and thus underspecified in early
development artifacts. During development and evolution information is added and un-
desired behavior is removed. Encapsulation mechanisms of components allow not only
modification of the behavior of a system but also of its logical structure. We adopt the
development methodology of FOCUS [BS01] which stipulates development of interactive
systems in a stepwise refinement process based on a system model of stream processing
components. Streams capture the behavior of components as their observable interaction.
1 Software Engineering, RWTH Aachen University & School of Computer Science, Tel Aviv University, Israel
2 Software Engineering, RWTH Aachen University

1

[RRW16] J. O. Ringert, B. Rumpe, A. Wortmann:
Model-Based Specification of Component Behavior with Controlled Underspecification.
In: Modellbasierte Entwicklung eingebetteter Systeme (MBEES’16), pages 1–12. GI, 2016.
www.se-rwth.de/publications

MDE advocates models as primary development artifacts for requirements specification,
testing, model checking, and code generation [Ru12]. We present extensions of MontiArc-
Automaton supporting the use of C&C models and automata for specification purposes.
Our contribution provides (1) mechanisms for automata that enable controlled underspec-
ification of component behavior and (2) a language for defining refinement and equality
relations of components crosscutting the hierarchical system decomposition.

Our mechanisms of controlled underspecification on the one hand allow to leave out im-
plementation details in early models of a software system. On the other hand, even for a
concrete implementation, they allows to focus on specific aspects of the system while leav-
ing the rest underspecified. The model-based specification techniques can thus be applied
by engineers for top-down refinement from an early specification to an implementation as
well as for writing specifications of properties an implementation should satisfy.

The underspecification mechanisms for automata are based on [Ru96] and include omit-
ting states, transitions, port assignments and variable assignments. They are controlled by
powerful completions. Our new specification language allows to relate behavior specifi-
cations to composed behaviors in the context of a complete software architecture. These
crosscutting specifications allow to assert behavioral properties of the current system com-
position and context that are otherwise not made explicit and might not hold in other com-
positions of the same components. Our work employs the FOCUS calculus [BR07, BS01]
on infinite discrete message streams for synchronous communication.

We provide a prototype for translating MontiArcAutomaton specification and implementa-
tion models into predicates for the Mona [EKM98] model checker to enable their analysis.

Sect. 2 gives examples of the analysis enabled by our framework. Sect. 3 presents the
MontiArcAutomaton ADL. Sect. 4 describes our approach and Sect. 5 provides infor-
mation on a prototype implementation. Sect. 6 discusses the prototype and performance
results. Sect. 7 highlights related work and Sect. 8 concludes.

2 Specification Modeling Example

We present an example for the development of a software controller for an elevator system
based on [SW99]. The elevator system comprises of three floors and the elevator car with
a motor and a door. The floors have buttons to request the elevator.

Engineers have developed a C&C software architecture of the system depicted in Fig. 1
and have defined basic responsibilities of the components. The system consists of a com-
posed component type ECS with two subcomponents floors and elevator. Subcomponent
floors contains three subcomponents of type Floor responsible for translating pressed but-
tons into requests for the subcomponent elevator and activating lights on respective floors.
Component type Elevator comprises of a subcomponent control that handles requests via
components motor and door depending on position information read from the environ-
ment. Once a floor is reached, control should emit a clear request to the corresponding
Floor component. In this architecture, the incoming port dist of component control is not

2

ECS

Floors floors

btn1
Floor

floor1li1

btn2
Floor

floor2li2

req1

clr1

Elevator elevator

Control

control

Motor

motor

Door

door

at1

at2

close

open

down

up

btn3
Floor

floor3li3

Clear clear

clr2clr3

at3

btn

btn

btn

req

req

req

req1

req2

req3

light

light

light

Distress dist

clr

clr

clr

req2

req3
DoorCMD

dCmd

MotorCMD

mCmd

YES

«enum»

Distress
«enum»

MotorCMD

UP

DOWN

STOP

Subcomponent instances
of component type Floor

Outgoing port mCmd
of type MotorCMD

Enumeration data
type Distress

Hierarchically composed
component of component type ECS

Subcomponent named sp
of component type Splitter

«enum»

Clear

F1

F2

F3

Splitter

sp

Fig. 1: The elevator system comprising of floors and an elevator with motor and door

mCmd

dCmd

StartWithOpenOrUp
«chaosCompletion»

at1 at1=true / OPEN

at1=true

/ UP, CLOSE

at1 at2

At1Request2Up

upreq1
at1=true,

req1=false,

btn2=true

/ true

«outputCompletion»
at1

btn
OK

(a) (b)

Fig. 2: Two specifications: Specification StartWithOpenOrUp (a) describes the initial behavior
of component Control and hence is connected its ports at1, mCmd, and dCmd. Specification
At1Request2Up (b) is connected to the ports at1 and req1 of component control, btn of compo-
nent floor2, and up of component motor to describe crosscutting behavior.

connected. In an extended variant control should stop the motors and open the door when
a distress message arrived on port dist. Ports are of type Boolean if not denoted otherwise
(e.g., port mCmd of component Control is of data type MotorCMD).

One requirement for the behavior of the elevator is that if it is initially on the first floor
it should either open the door or close it and move up. After moving up no behavior
is specified, yet. This requirement is formalized as the automaton shown in component
StartWithOpenOrUp Fig. 2 (a). In case the input at port at1 is true in the initial state
two alternative transitions may be executed. If no transition is enabled, i.e., no behavior
is specified, the future behavior is unrestricted (denoted by «chaosCompletion»). The re-
quired behavior only restricts component Control, the engineers thus assert that Control
refines StartWithOpenOrUp on common ports.

Another requirement is, that whenever the elevator resides at the first floor and there is
no active request for this floor, but one for the second floor, then the elevator will start
to drive upward. An engineer expresses the required behavior in form of the component

3

At1Request2Up shown in Fig. 2 (b), which specifies behavior crosscutting the C&C
model. Messages arriving on input ports at1, req1 of component control and the input
port btn of component floor2 determine the output on port up of component motor. The
stereotype «outputCompletion» in Fig. 2 (b) states that the component allows additional
transitions whenever the behavior of the component is not defined by an existing transition,
e.g., when the elevator car is not in the first floor.

Note the difference between the first refinement example for component Controller and
the second example crosscutting many components of the C&C model. For the specifi-
cation At1Request2Up it is important to check refinement in the context of the overall
system. For example, the check would fail if Distress messages stop upward movements.

3 Components and Automata in MontiArcAutomaton

MontiArcAutomaton is a C&C ADL developed with the language workbench Monti-
Core [KRV10] for modeling hierarchically composed components with unidirectional con-
nectors between typed input and output ports of components. Components have a set of
input and output ports and are either composed or atomic. Composed components have
subcomponents and connectors. Atomic components have a set of local variables and an
automaton describing component behavior. Ports and variables have a name and a type.
For detailed definitions and well-formedness rules see [HRR12, RRW14, Ri14].

Atomic components embed automata to describe component behavior. An automaton com-
prises a finite set of states, initial variable values, a set of initial states with optional outputs,
and a set of transitions. Every transition has a source state, a pattern of values read on input
ports (inputs) and local variables, a target state, values written to output ports (outputs),
and values assigned to local variables (assignments). Inputs, outputs, and assignments may
refer to values read on input ports and values of variables.

A semantic domain for MAA automata are predicates over infinite discrete streams fol-
lowing the FOCUS paradigm [BS01, RR11]. Component semantics are predicates over
one input stream for every input port of the component and one output stream for every
output port.

All components are executed synchronously to the tick of a global clock and the position
t ∈ N in a stream contains the message transmitted at time point t. We distinguish weak
causality, where a component can instantaneously react to an input received at time t,
from strong causality, where a reaction happens at t +1 or later [BS01] (also called strict
causality). Frameworks allowing weakly causal behavior typically require engineers to
add at least one strongly causal component to every feedback cycle. We give semantics of
MAA automata in Sect. 5 that lead to strongly causal behavior if the component specifies
initial outputs and weakly causal behavior otherwise.

The first elements on the output streams are, if provided, the initial outputs of the au-
tomaton. Inductively, the current state and inputs at positions t ∈ N∞ of the input streams
and the values of local variables determine the enabled transitions of the automaton. The

4

execution of a transition determines the state, variable assignments, and values of the out-
put streams at positions t + 1 for strong causality and t for weak causality. References to
ports and variables are interpreted as their values at time t. Nondeterminism is induced by
free choice among enabled transitions and expressed in I/O relation semantics as multiple
possible output streams (complete definitions available from [Ri14]).

4 Specification Driven Architecture Modeling

We use automata and composition for the specification and implementation of behavior.
Underspecification of component behavior is supported by various mechanisms: nondeter-
minism of transitions, incomplete patterns for enabling transitions, incomplete definition
of outputs and variable assignments, and several variants for a completion of the transi-
tion system in cases where no transition is enabled. The specification for a component
may refer to a subset of input and output ports of the implementation as in the example in
Sect. 2 for component StartWithOpenOrUp restricting only messages on some ports of
component Controller.

These model-based specification techniques can be applied by engineers for top-down
refinement from an early specification to an implementation as well as for writing specifi-
cations of properties an implementation should satisfy.

Transition System Completions to Control Underspecification

Automata inside MontiArcAutomaton components may describes a superset of the behav-
iors allowed by a component or subsystem implementation. Except for the source state all
elements of transitions are optional. This possible incompleteness is interpreted as under-
specification. MontiArcAutomaton uses stereotypes to control underspecified behavior by
completions of the transition systems of automata. The specification framework supports
the stereotypes «nilCompletion», «chaosCompletion», and «outputCompletion». We de-
scribe the intuition of completions. Definitions are available from [Ri14].

The default completion for automata used as implementations is «nilCompletion». Unde-
fined behavior (no enabled transition) preserves the state, preserves variable values, and
sends empty messages.

Chaos completion of MontiArcAutomaton automata allows arbitrary outputs on ports with
previously omitted outputs for initial states and existing transitions. In addition, a new
state Chaos is added and the transition relation is completed with arbitrary transitions for
cases where no existing transitions was enabled. Choosing arbitrary transitions produces
a chaotic component state, hence we denote it as chaos completion. Chaos completion is
applied to the automaton shown in Fig. 2 (a).

Output completion is a refinement of chaos completion that allows arbitrary outputs in
case no behavior is defined by the original automaton. In contrast to chaos completion the
automaton remains in its current state and preserves all variable values. It thus resumes in
the most recent state when it encounters input patterns for which its reaction is defined.

5

Output completion is applied to component At1Request2Up (Fig. 2 (b)). Applying chaos
completion instead would have restricted behavior only in the initial state.

Component Composition and Exhibiting Internal Channels

Semantics of atomic and composed MontiArcAutomaton components are defined as pred-
icates over input and output streams following [BS01]. Component composition is simply
defined as the conjunction of the subcomponent predicates over common channels. Com-
position yields again a predicate over input and output streams. For a uniform handling
of atomic and composed MontiArcAutomaton components we denote the semantics of a
component c by JcK. The predicate semantics of the composed component ECS shown in
Fig. 1 is defined via the semantics of its subcomponents Floors and Elevator as:

JECSK(btn1, . . . ,at1, . . . , li1, . . . ,open,close,up,down)⇔
∃req1 ∈ B∞,req2 ∈ B∞,req3 ∈ B∞,clear ∈ Clear∞ :

JFloorsK(btn1, . . . ,clear,req1, . . . , li1, . . .)∧
JElevatorK(req1, . . . ,at1, . . . ,clear,open,close,up,down) (1)

For a component c and a set of ports P we define JcKP as component semantics that in
addition exhibits the streams on ports P inside the component composition. We identify
ports by their qualified name starting from the parent component. This notation allows to
expose the messages sent or received by all nested (sub-)components. In the example above
the predicate JECSK{elevator.req1} exposes the stream sent on port req1 of subcomponent
elevator of component ECS.

Refinement on Common Channels

Refinement between two specifications states that the refining specification obeys all prop-
erties that the refined specification has promised, but it may be more deterministic and
more detailed in certain behavior. Subsequent refinement finally leads to a sufficiently de-
tailed implementation. We use components as specifications. Formally, a component c′

refines a component c if all I/O histories i,o that c′ allows are also allowed by c, schemat-
ically, ∀i,o : Jc′K(i,o)⇒ JcK(i,o).

Our framework supports classical behavior refinement and also interface refinement where
the implementation might have a reduced input interface and an extended output interface
and can thus replace the component it refines [Br93]. For specifications defining partial
behavior, we also support the case where a specification constrains a subset of the input and
output streams of a system. This is a special case of upward simulation [Br93]. In addition
to refinement we also consider also equality. Equality requires that all I/O histories in the
semantics of one component are exactly those in the semantics of another.

An example of refinement on a subset of input and output streams has been presented
in Sect. 2 for ECS and At1Request2Up shown in Fig. 1 and Fig. 2 (b). We state the
refinement given in the example below. It requires component ECS to exhibit the internal

6

stream on port ECS.elevator.req1 as universally quantified variable req1′.

∀btn1, ..,down,req1′ :

JECSK{elevator.req1}(btn1, ..,req1′)⇒ JAt1Request2UpK(at1,req1′,btn2,up) (2)

MAA Specification Checks

To describe intended relations and their checks we introduce specification checks. A check
can optionally be negated and express equality or refinement. A mapping of port names
relates the I/O histories of (sub-)components on the left side of the check to ports of com-
ponents with possibly different interfaces. The refinement example At1Request2Up in
Sect. 4 is expressed in the next line and followed by a port mapping:

ECS refines At1Request2Up where
elevator.control.req1 -> req1, btn2 -> btn;

MAA specification checks define a mapping of ports between two behavior models (typ-
ically implementation and specification). This mapping allows the specifier to focus on
specific parts of the system and analyze them in the context of the overall composition.
A default mapping is based on same named ports of compared components, e.g., ports
up and at1 in the above example. Some interesting cases occur when not all ports on the
left and right are mapped. In our example (Sect. 2) the specification constrains a subset
of the inputs and outputs of the system. Here, for all input received on unmapped ports
the output of a component has to be allowed by its specification. The output produced on
unmapped ports is not relevant for satisfaction of the check. Checking refinement for sub-
stituting a component c′ by c sometimes allows c to ignore inputs and produce additional
outputs [Br93]. In a corresponding MAA specification check c refines c′ inputs of c′ and
outputs of c might be unmapped. For all additional inputs c′ might have, c has to produce
output allowed by c′.

5 Specification Checking using Mona

We have implemented a prototype to check MontiArcAutomaton specifications based on
a translation of components into weak monadic second order logic with one successor
(WS1S) implemented in the model checker Mona [EKM98]. Elements of WS1S formulas
are natural numbers (first order) with the successor function and finite sets of natural num-
bers (second order) with usual set operations. The syntax of Mona allows the definition of
predicates and the inclusion of declarations from external files. Mona can compute (mini-
mal) assignments of free variables in the formula for its satisfaction or non-satisfaction. A
key idea of our solution is the representation of FOCUS semantics of components, i.e., rela-
tions of input and output streams, as predicates over sets of natural numbers. This enables
a compositional translation of components, declarative support for chaos, output, and nil
completion of transition systems, and checking of specifications.

7

Mona

1 var2 clear_F1 , clear_F2 , clear_F3 ;
2 a s s e r t clear_F1 i n t e r (clear_F2 union clear_F3) = empty ;
3 a s s e r t clear_F3 i n t e r clear_F3 = empty ;

Listing 1: The stream clear ∈Clear∗ encoded in Mona
Mona

1 pred At1Request2Up (var2 r eq1_fa l s e , var2 req1_true ,
2 var2 btn_fa lse , var2 btn_true , var2 at1_fa l s e , var2 at1_true ,
3 var2 up_false , var2 up_true , var2 al lTime) =
4 ex2 OK: #s t a t e o f automaton
5 al lTime sub OK & # de f ined s t a t e at l e a s t f o r a l l po in t s in time
6 (0 in OK) & #i n i t i a l s t a t e / output
7 a l l 1 t : t in al lTime =>
8 (t in OK & t in at1_true & t in r eq1_ fa l s e & t in btn_true
9 & t in up_true & t+1 in OK)

10 #u n r e s t r i c t e d output i f no t r a n s i t i o n i s enabled
11 | (~(t in OK & t in at1_true & t in r eq1_ fa l s e & t in btn_true)
12 & sameNextValue (OK, t)) ; # stay in same s t a t e

Listing 2: Translation of At1Request2Up shown in Fig. 2 (b) (ll. 11-12 shortened)

Streams in Mona

We adapt an encoding of message streams in Mona from [Sc09]. The type of a streams
may only have finitely many values. For every finite stream s ∈ T ∗ and each value v ∈ T
we declare a set variable in Mona, i.e., a set of natural numbers, which contains a number
t ∈ N iff the stream s has the value v at time t. An example for the encoding of the stream
clear ∈Clear∗ to specify on which floor to clear the light (values F1, F2, F3) is shown in
Lst. 1. One set (var2) per value is defined in l. 1. The assertions in ll. 2-3 require that the
stream has never more than one value at any point in time. The absence of t ∈ N from all
sets is interpreted as an empty message.

Please note that all sets in WS1S are finite but unbounded. We can thus only represent finite
streams T ∗ instead of infinite streams T ∞. The time-synchronous model of streams used
in our semantics, however, requires infinite streams. For proving refinement and equality
for infinite streams in Mona we adopt a well-known result form model checking that finite
trace containment of finite transition systems implies also containment for infinite traces
(see, e.g., [BK08, Ch. 3]) to lift analysis results to infinite computations.

Components, Automata, and Completions in Mona

All MontiArcAutomaton components are translated to Mona predicates with parameters
for their input and output streams. Translation of the atomic component At1Request2Up
depicted in Fig. 2 (b) is shown in Lst. 2. The head of the predicate in ll. 1-3 defines pa-
rameters for the input streams on ports at1, req1, and btn and the output stream on the
port up. The parameter allTime is used for synchronization of all components on a global
time. The body of the predicate (ll. 4-12) starts with declaring a sequence of states (ll. 4-5).
Line 7 restricts the constraints implied by the transitions of the automaton to a synchro-
nized finite time (the times t in allTime).

8

Constraints implied by the transition of the automaton are defined in ll. 8-9. The constraints
relate state and input at time t to output at time t (weak causality) and state at time t+1.
Output completion is defined in l. 11 as negation of enabled transitions and preserving the
current state. This translation into a declarative logic prevents the explicit expansion of the
transition system as defined for the completions.

Composed components are uniformly and systematically translated into predicates with
signatures based on their input and output ports. The body of the predicate is the instantia-
tion of the predicates of subcomponents as in Eqn. (1). Importantly, this uniform handling
allows compositional and incremental generation of Mona predicates, except for cases of
exhibiting streams on internal ports.

The translation of a check into a Mona formula is straightforward: equality or refinement
translates into implication for refinement as in Eqn. (2) and equivalence for equality. The
mapping of ports defines the parameters for the instantiation of the component predicates
on the left and right side of the check.

6 Performance Results on Example Systems and Discussion

We have started evaluation of the performance of the specification checking process, based
on systematic checks for six software architectures of three example systems:1 First ex-
ample is the elevator system introduced in Sect. 2. It consists of 8 component definitions,
with 3 composed components, and 5 components with automata. The second example
comprises four architectures of a mobile robot [RRW13], consisting of 15 component def-
initions with 7 composed components, and 6 atomic components with automata. Third
example is the architecture of a pump station taken from AutoFOCUS [HF07] consisting
of 14 component definitions with 3 composed components, 10 atomic components with
automata, and 1 component with manual implementation.

For each component we defined three specification checks: (ES) checks a component’s
equality to itself; (RC) checks refinement of a component with arbitrary behavior (chaos);
(EC) checks equality with arbitrary behavior. We measured verification times of the gen-
erated Mona programs. For the experiments, we used a computer with 2.7 GHz Intel Core
i7 CPU, 16GB Ram, Windows 7, and Mona 1.4-13.

Specification checks for the elevator system took 49-70ms (ES), 58-123ms (RC), and 59-
120ms (ES) when they completed. The checks RC and ES failed for the components ECS
and Floors due to lack of memory. All checks for the mobile robot succeeded in 55-78ms
(ES), 53-157ms (RC), and 58-143ms (EC). Specification checks for the pump station ex-
ample took 50-123ms (ES). Checking (RC) took 50-1290ms and failed for two specifica-
tions. The (EC) checks required from 52-1616ms and failed for two specifications.

This evaluation shows that the Mona implementation handles small examples fast. How-
ever, it also shows clear limitations on examples with many streams or large domains. In

1 All software architectures and specification checks are available from [wwwb].

9

particular, the analysis does not take longer time but simply fails due to memory limita-
tions. We conclude that the current prototype can not be applied to real examples.

We had chosen Mona for the prototype because of the natural formulation of streams and
components in WS1S. These notions coincide with the formal definitions of the FOCUS
framework and thus reduce the translation complexity while supporting readability and
manual validation. Although the complexity of solving W1S1 problems is non-elementary,
the benefits of a fully automated decision procedure and example computation legitimize
to use Mona as a research prototype. The results of our evaluation however show limita-
tions of the prototype for practical evaluation and application. It is important to note that
the non-elementary complexity of the prototype is not the complexity of the refinement
problem which is PSPACE-hard and can thus be solved in exponential time. We consider
reformulating MAA specification checks in other formalisms to apply solvers with lower
space and time complexities.

7 Related Work

We briefly mention underspecification and refinement mechanisms in state-based formal-
isms and analyses of modeling languages similar to MontiArcAutomaton. A more thor-
ough discussion of related work can be found in [Ri14].

Many types of automata provide their own mechanisms for composition and refinement.
Modal transition systems [La89] define may and must transitions with a number of refine-
ment definitions [LNW07] for preserving must-behavior and allowing to remove may-
behavior. Refinement for interface theories [Al05] is defined for equivalent signatures
(similar to our component interfaces) based on alternating simulation with contravariant
input and covariant output in similar states. Most refinement notions for modal transition
systems rely on simulation relations [LNW07]. In modal transition systems and interface
theories behavior is modeled explicitly where our approach offers completions. We rely
on I/O streams containment as refinement following the FOCUS theory because it natively
combines automata and component composition with theories of interface and behavior
refinement [BS01].

Combinations of C&C modeling and automata are available in many languages, e.g.,
SysML’s [Ob12] internal block diagrams, in the AutoFOCUS IDE [HF07] and in Simulink
Stateflow [wwwa]. Formal analysis approaches for these languages exist, mainly based on
model checking [HSE97, Sc09, LMÁ09, ERB13] for consistency against temporal logic
constraints. We are not aware of approaches supporting crosscutting specifications and
analysis as in MAA specification checks.

8 Conclusion

We presented mechanisms for controlled underspecification of behavior provided by Monti-
ArcAutomaton and its embedded automata. These mechanisms fully support component

10

instantiation and composition and enable the specification and stepwise refinement of com-
ponent behavior. Importantly, specifications may crosscut the component hierarchy to de-
fine properties of components in the restricted setting of their current composition. A pro-
totype implementation for defining and evaluating specification checks provides a seam-
less model-based integration in the MontiArcAutomaton framework from specification to
implementation. The current prototype suggests future work on improving scalability.

References
[Al05] de Alfaro, Luca; da Silva, Leandro Dias; Faella, Marco; Legay, Axel; Roy, Pritam; Sorea,

Maria: Sociable Interfaces. In: Frontiers of Combining Systems, 5th International Work-
shop, FroCoS 2005. 2005.

[BK08] Baier, Christel; Katoen, Joost-Pieter: Principles of Model Checking. The MIT Press,
2008.

[Br93] Broy, Manfred: (Inter-)Action Refinement: The Easy Way. In: Program Design Calculi.
1993.

[BR07] Broy, Manfred; Rumpe, Bernhard: Modulare hierarchische Modellierung als Grundlage
der Software- und Systementwicklung. Informatik Spektrum, 2007.

[BS01] Broy, Manfred; Stølen, Ketil: Specification and Development of Interactive Systems. Fo-
cus on Streams, Interfaces and Refinement. Springer Verlag Heidelberg, 2001.

[EKM98] Elgaard, Jacob; Klarlund, Nils; Møller, Anders: MONA 1.x: new techniques for WS1S
and WS2S. In: Computer-Aided Verification, (CAV ’98). 1998.

[ERB13] Elberzhager, Frank; Rosbach, Alla; Bauer, Thomas: Analysis and Testing of Matlab
Simulink Models: A Systematic Mapping Study. In: Proceedings of the 2013 Interna-
tional Workshop on Joining AcadeMiA and Industry Contributions to Testing Automa-
tion. 2013.

[HF07] Hölzl, Florian; Feilkas, Martin: AutoFocus 3 - A Scientific Tool Prototype for Model-
Based Development of Component-Based, Reactive, Distributed Systems. In: Model-
Based Engineering of Embedded Real-Time Systems. 2007.

[HRR12] Haber, Arne; Ringert, Jan Oliver; Rumpe, Bernard: MontiArc – Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical report, RWTH Aachen,
2012.

[HSE97] Huber, Franz; Schätz, Bernhard; Einert, Geralf: Consistent graphical specification of dis-
tributed systems. FME’97: Industrial Applications and Strengthened Foundations of For-
mal Methods, 1997.

[KRV10] Krahn, Holger; Rumpe, Bernhard; Völkel, Steven: MontiCore: a framework for compo-
sitional development of domain specific languages. STTT, 2010.

[La89] Larsen, Kim Guldstrand: Modal Specifications. In: Automatic Verification Methods for
Finite State Systems. 1989.

[LMÁ09] Lucas, Francisco J.; Molina, Fernando; Álvarez, José Ambrosio Toval: A systematic re-
view of UML model consistency management. Information & Software Technology,
2009.

11

[LNW07] Larsen, Kim Guldstrand; Nyman, Ulrik; Wasowski, Andrzej: On Modal Refinement and
Consistency. In: CONCUR 2007, Lisbon, Portugal, Sept. 3-8, 2007. 2007.

[Ma13] Malavolta, Ivano; Lago, Patricia; Muccini, Henry; Pelliccione, Patrizio; Tang, Antony:
What Industry Needs from Architectural Languages: A Survey. IEEE Trans. Software
Eng., 39(6):869–891, 2013.

[Ob12] Object Management Group (OMG): , OMG Systems Modeling Language (OMG
SysML). http://www.omg.org/spec/SysML/1.3/, 2012. Accessed 3/2014.

[Ri14] Ringert, Jan Oliver: Analysis and Synthesis of Interactive Component and Connector
Systems. Aachener Informatik-Berichte, Software Engineering, Band 19. Shaker Verlag,
2014.

[RR11] Ringert, Jan Oliver; Rumpe, Bernhard: A Little Synopsis on Streams, Stream Processing
Functions, and State-Based Stream Processing. International Journal of Software and
Informatics, 2011.

[RRW13] Ringert, Jan Oliver; Rumpe, Bernhard; Wortmann, Andreas: From Software Architecture
Structure and Behavior Modeling to Implementations of Cyber-Physical Systems. In:
Software Engineering 2013 Workshopband. 2013.

[RRW14] Ringert, Jan Oliver; Rumpe, Bernhard; Wortmann, Andreas: Architecture and Behavior
Modeling of Cyber-Physical Systems with MontiArcAutomaton. Aachener Informatik-
Berichte, Software Engineering 20. Shaker Verlag, 2014.

[Ru96] Rumpe, Bernhard: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Herbert Utz Verlag Wissenschaft, 1996.

[Ru12] Rumpe, Bernhard: Agile Modellierung mit UML. Springer, 2 edition, 2012.

[Sc09] Schätz, Bernhard: Model-Based Development of Software Systems: From Models to
Tools. Technische Universität München, 2009. Habilitation Thesis.

[SW99] Strobl, Frank; Wisspeintner, Alexander: Specification of an Elevator Control System.
Technical report, Technische Universität München, 1999.

[TMD09] Taylor, Richard N.; Medvidovic, Nenad; Dashofy, Eric: Software Architecture: Founda-
tions, Theory, and Practice. Wiley, 2009.

[wwwa] MathWorks Simulink and Stateflow. http://www.mathworks.com. Accessed 3/2014.

[wwwb] MontiArcAutomaton Verification website. http://www.monticore.de/languages/
montiarcautomaton/verification/. Contains supporting materials for this paper.

12

http://www.omg.org/spec/SysML/1.3/
http://www.mathworks.com
http://www.monticore.de/languages/montiarcautomaton/verification/
http://www.monticore.de/languages/montiarcautomaton/verification/

