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Abstract—Avionics is definitely a safety-critical application
domain. Software complexity is ever increasing together with
more autonomy as well as increased real-time based interaction
between airplanes, drones and potentially future air taxis.

This again raises the question, whether developing software
the same way as we did the last 30 years is still appropriate,
or in the times of much better formal methods and cheap
and powerful computational capabilities, it would be feasible
to use clear and model-based specification techniques for an
integrated systems engineering approach and formally verify any
physical and logical implementation of functionality, including
the software against that specification. This could be another
important step towards quicker development of highly safety-
critical systems.

I. INTRODUCTION

In this paper, we demonstrate early results on a small part
of this systems engineering approach, namely using a user-
friendly architecture description language [1], [2] and proving
safety-critical properties in the theorem prover Isabelle [3].
Because the theory and its underlying methodological concepts
are too much to be explained in this short paper, we highlight
a small example only, focusing on the demonstration of the
feasibility of formal verification of complex software.

Therefore, the paper demonstrates the use of the FO-
CUS framework [4]–[8] for specifying distributed interactive
systems and verifying safety-critical properties of real-time
critical software such as common in avionics systems. The
methodology is modular with respect to composition. A user-
friendly architecture description language (ADL) like Mon-
tiArc [1] serves as a developer frontend, allowing a state-based
specification of components [8] and enables the definition
of the desired safety-critical properties. An appropriate tool
maps the ADL model and its behavior specifications into
specifications and theorems in the theorem prover Isabelle
[3]. There, general composition operators exist that compose
specifications of the components into a specification of the
overall system. Properties can be specified on a global scale
and decomposed as well and proven on atomic components.
Composition of properties leads to globally correct software.

Furthermore, refinement of a component in a decomposed
structure automatically leads to refinement of the composition,
which allows to individually develop each component, but also
to replace variants of implementations along the life cycle of a
system. High-automation of the proofs, as well as the handling
of feedback loops, unbounded non-determinism, time-sensitive
specifications, safety and liveness properties, and refinement
checking are key for an efficient development process.

The rest of this paper is structured as follows: First, a
motivation for the methodology is given. Then, the underlying
theory is presented. Next, the tool chain consisting of the
frontend DSL, the mathematical backend, and the generator is
illustrated. Finally, the verification of a property of the running
example is demonstrated.

II. BACKGROUND

Designing distributed systems [6], [9] which react in real-
time, are dependable and fulfill safety and liveness require-
ments, is a challenging problem [10]. Formulating require-
ments only in natural language is still common in the em-
bedded industry and the challenging part is to early detect
and avoid ambiguity [11] and inconsistencies [6]. In safety-
critical systems errors might lead to injury or high costs
as consequences [12]. For this reason, formal methods, like
CSP [13], [14], FOCUS [6], CCS [15], Petri Nets [16], or
the π-calculus [17] are used to detect potential sources of
errors earlier [18], [19]. However, an important property which
makes the methodology of this paper stand out among the
competitors above is that refinement of a component in a
decomposed structure automatically leads to refinement of the
composition [7] (thus refinement is fully compositional).

Avionics have long life cycles and a lot of maintenance
is needed [20]. Further growth in flying vehicles, passenger
numbers and cargo is expected. Since the spatial expansion
possibilities of the system infrastructure are limited, the use
of correct software systems becomes vital [21]. It is thus not
without reason that the list of considerations for the production
of software for airborne systems named ED-12C/DO-178C has
as its motto: ”the greater the software development rigor, the
fewer errors occur in software design” [22].
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Safety-critical functionalities in avionics are usually treated
by a complex system management, which deals with fault
detection and redundancy management [23]. The increasing
complexity in avionics is heavily due to [24]:
• the increasing number of features,
• the internal complexity of each feature,
• interaction among features,
• better scientific instruments,
• processing large amount of data in real time,
• thousands of sensors and measurement devices,
• redundant components, ready to automatically configure

themselves in case of failures.
For a stepwise correct design of avionics systems, a model-

based methodology [25], [26] would be beneficial. A modeling
ADL offers the architect a way to express the knowledge about
a process, and the created models can be translated into other
models or executable code [27]. Most importantly, the models
of the software can be tested or verified, independent of the
hardware. By having testing or verification being performed
parallel to the software model design, before committing to
hardware, the likelihood that design errors are recognized late
and potentially bring high costs is reduced.

Some further reasons for the usefulness of testing or veri-
fying the software models are [24]:
• by verifying early in the life cycle before hardware is

available, one reduces the number of needed tests on the
physical system,

• software models can enable one to have access to sub-
modules and test those separately, whereas in hardware
this might be in some cases physically not possible,

• even if sometimes accessing hardware sub-modules might
be possible, it might mean causing damage to it,

• testing fault protection behaviors might be highly costly
and damaging.

Testing components, however, on all combinations of inputs
and states (represented by the variable values at a certain point
in time) might be not feasible. In addition, when comparing
testing strategies from the literature, it is usually hard to show
that one testing strategy would always detect more faults than
another one [28].

In this paper a methodology for specifying and verifying
distributed interactive systems is demonstrated and applied on
an example.

III. UNDERLYING THEORY

The methodology presented in this paper builds on the
mathematical underpinning FOCUS [6] and is implemented
as a tool chain depicted in Fig. 1, being particularly suited for
usage in safety-critical systems such as avionics. The frontend
of the tool chain MontiArc [1] (created with MontiCore [29],
[30]) is a developer-friendly domain-specific language for the
specification of component interfaces, their behavior and their
composition. A MontiArc model is transformed by a code
generator into an Isabelle automaton specification, and then
this (potentially non-deterministic) automaton is mapped to
its semantics, namely a (set of) stream processing functions.

Fig. 1. Verification tool chain

Components communicate through sending and receiving
messages through directed channels. A stream (a potentially
infinite sequence of messages from an alphabet) [6] represents
the communication history of a channel. The semantics [31]
of a (potentially non-deterministic) component is a (set of)
stream processing functions [8].

Since streams model history, not all functions over streams
model real-life interactions. Only a subset of these func-
tions fulfilling certain properties are suited to model real-
life components. A component cannot take an already emitted
message back. This means that an extension of the input can
only lead to an extension of an output. This is known as
monotonicity [8]. Second, to define liveness properties, one
needs infinite streams to describe full histories. It is however
not implementable to look at the complete (infinite) input
stream to emit an output message (which of course occurs
after a finite time). Enforcing this means restricting the set of
functions to the so-called continuous ones [4]. In addition to
restraining from reacting to infinity, continuous functions also
guarantee the existence and the inductive computation of least
fixed points, which is necessary to give meaning to feedback
loops [6], [8], [32].

All above mentioned domain-theoretical concepts has been
formalized in the theorem prover Isabelle/HOLCF (HOL
stands for higher-order logic, CF stands for computable func-
tions) in [33], [34] and [35] independently formalized parts
of FOCUS in Isabelle/HOL (without domain-theory). [36]–
[41] were some first results in formalizing streams in the
theorem prover Isabelle with domain-theoretical concepts, and
constitute the foundation of this paper. On the other hand,
the tool-chain named AutoFOCUS [42] has had early results
in using the HOL-formalization of FOCUS. A further related
work to formalize model component networks is the Ptolemy
Project [9], [43] where the authors create a framework for
actor-oriented design. Also, an approach to verify AADL-
models is presented in [44].

For simple event-based communication, an untimed stream
approach is sufficiently expressive to model an interactive
system. In real-time systems, however, a timed model is
much more appropriate. This allows software to react on
absence of messages and signals. A formal specification of
such a software component therefore does not only incorporate
reactive behavior, but also timing specification on both sides:
along with a component’s reaction, it is also considered how
long the neighbor systems, sensors etc. have time to respond.
One mathematically simple and powerful way to model time is
to extend the set of sent messages with a virtual element called
tick and enforce infinitely many ticks in each infinite behavior
observation. Two consecutive ticks describe an equidistant



time interval with only finitely many occurring messages. In
certain circumstances this observation may be reduced to at
most one or even exactly one message per time interval. Focus
is capable of handling all these variants even in combination.
Focus can also look at different time scales [45], [46] allowing
the developer to select the right time abstraction for each
component.

As said, specifications of component behavior are math-
ematically formalized as a set of functions mapping timed
input streams to timed output streams. To model correct
behavior (i.e. not looking in to the future), some restrictions,
such as weak-causality or even embodying some delay in
form of strong-causality e.g. to avoid the Brock-Ackermann
anomaly [6], [47] in feedback compositions. The concept
of monotonicity, continuity and causality are often generally
referred to as realizability or interactive computability [48],
the equivalent concept to computability of partial functions
carried over to interactive systems.

To support system decomposition, operators for sequential,
parallel and feedback composition are encoded in Isabelle, as
well as a general composition operator [7], [49]. A high-level
API is provided in this work to hide fixed-point theory from
the user.

One of the strengths of the methodology of this work is that
by using a variant of non-deterministic and thus underspecified
state machines with input/output [8] to define the components
behavior, the system is by construction realizable [6], [50].
Those state machines receive their semantics as sets of stream
processing functions [8] and are thus fully integrated into the
refinement and composition framework that FOCUS provides
within Isabelle. These realizable stream processing functions
are an abstraction to the automata with input/output from [7],
[8] in the same way that partial functions are an abstraction
to the Turing machines.

One important particularity of this methodology is that the
composition of realizable functions is realizable as well [7],
[49]. So a realizable composed system can be hierarchically
decomposed into a collection of realizable components, each
represented by a (set of) stream processing functions. This way
a complex architecture can be built in a fully compositional
way.

As already mentioned, sets of functions are used to give
specifications a meaning allowing multiple behaviors, either
due to potential non-determinism of the components, or due
to insufficient information during development.

Refinement is used to make underspecified components
specifications more precise along the development process.
Underspecified behavior can be refined towards an implemen-
tation. Refinement of non-deterministic automata is semanti-
cally represented by set inclusion of sets of stream processing
functions [7], [8]. A number of important refinement tech-
niques, such as transition refinement and state decomposition
are formalized in order to automate the checking of refinement
correctness. Transition refinement means that by removing one
of a set of alternative transitions, the set of behaviors becomes
more precise. State refinement allows e.g. splitting states by

inserting substates.
The most important property which makes this methodology

stand out among competitors (like CSP [13] [14], CCS [15],
Petri Nets [16], or the π-calculus [17]) is that refinement of
component specifications is semantically reflected by the con-
cept of set inclusion between function sets and that refinement
of a component in a decomposed structure automatically leads
to refinement of the composition [7]. That means, refinement
is fully compositional. This property is a major reason why
this proposed methodology is well-suited to specify larger
and complex distributed systems, because it allows to scale
a specification from atomic components to large systems,
such as airplanes. One can specify a system, decompose the
specification, refine the individual sub-systems until an im-
plementation is reached, and then have the guarantee that the
composition of the implementations is correct by construction.

Furthermore, a component library with popular components
(NOT, AND, OR, NOR, XOR, ADD, Delay, variants of
a transport medium, counters, timers, etc.) was created to
support specifications. For example the transport medium-
components have an abstract non-deterministic specification
(the set of implementations describing their possible behaviors
is even uncountable) and also a number of refined behaviors,
resembling special characteristics such as liveness properties.
In essence, without going deeper in details in this short
paper, the formalization of refinement checking of (potentially
unbounded) non-deterministic specifications consisted in the
encoding in Isabelle of the corresponding refinement calculus
from [8]. The correctness of the refinement steps is also
used to show that the system doesn’t gain new, potentially
undesired, behaviors and the properties of the initial system
are automatically derived for the refined system as well (the
user is thus relieved from the necessity to prove these again for
the new system). Along with the specification, a set of useful
theorems and their proofs are generated for each component,
which increases the automation of the proof of the desired
system property.

Finally, abstract theorems are provided to enable an auto-
matic checking of safety and liveness properties. We under-
stand informally by

• safety: properties that can be falsified by finite streams.
• liveness: properties that can be falsified only by infinite

streams.

The methodology is demonstrated in this paper on a feature
interaction scenario of a light control, which is actually
taken from the automotive domain, but we expect that the
avionics domain could be very similar. The (small part of the)
system and a desired property are defined through an explicit
specification and the desired safety-critical property is proven
at the push of a button. The full-automation is the result of:

• the encoding of thousands of general, case study inde-
pendent theorems for interactive components and their
composition in Isabelle,

• a library of common generic reusable components to-
gether with proven properties over these,



• the development of the corresponding code generator for
all mathematical structures introduced above.

This case study demonstrates the correct encoding and
usage of a general composition operator, dealing in particular
successfully with feedback cycles by generating appropriately
a delay, as well as handling time-sensitive specifications.

IV. THE DEVELOPER-FRIENDLY ADL MONTIARC

A user friendly domain specific ADL is presented, to
enforce the specification of realizable-per-construction compo-
nents [1]. It enables the high-level specification of composed
systems, as in Fig. 2. A running example dealing with com-
municating controllers in vehicles is used to ilustrate this.

Fig. 2. Communicating controllers in vehicles

In a black box view a component is defined by its input
and output channels. Each channel is identified by a name and
the data type of the messages allowed to flow in it. Generic
data types are supported in order to facilitate reuse. Composed
systems are defined by importing the subcomponents and
connecting the channels. Output channels of a component can
be connected to input channels of the same or of other com-
ponents. It is allowed to use the same subcomponents multiple
times. Generic data types can be instantiated multiple times.
Additional information can also be added to the model. For
example invariants of components, or whether the component
is deterministic or not.

The depicted controller InteriorLightArbiter controls the in-
terior light of a car. The description of the formal specification
of interfaces, behavior and composition will be introduced
later. As can be seen, this system produces its output based
on the light switch, the car’s doors and the alarm system.
Depending on these inputs, it emits a command to turn the
interior light on or off. For example it evaluates the light
switch status by simply forwarding its status. The interior light
is also switched on if the door is opened, and goes out a
short while after the door has been closed again. A closed
door only changes the light status if the door is closed since 5
seconds. If the alarm system is active, the interior light blinks.
As long as its incoming signal value is on, the Flasher outputs
alternatingly on and off values.

Chosen safety-critical property informally: The alarm
system always has highest priority. So if the alarm is activated,
the interior light will turn on, no matter how both the door
status and the light switch behave.

V. MONTIARC IN ISABELLE

An untimed stream is a (potentially infinite) sequence of
messages over a carrier alphabet M. Mω denotes all streams
and is the union of M∗ the finite ones and M∞ the infinite
ones. To construct streams, the constructor ” : ” with signature
M ⇒ Mω ⇒ Mω is defined. The operator _ denotes the
concatenation of two streams [6]. Based on the construction
operator on streams, we can define an ordering v on the set
of streams. The prefix ordering [8] on streams v is defined
such that the following holds:

∀x, y ∈Mω. x v y ⇔ ∃s ∈Mω. x _ s = y

Please note that the prefix order defines a partial order on
streams [8] and that Mω completes M∗ to a complete partial
order [34] with respect to prefixing.

To specify time-sensitive behavior, timed streams are used
(in our case study the so-called time-synchronous streams
variant). For this, the message alphabet is extended by a
dummy element ∼ (read eps). In this interpretation we assume
a discrete global clock and each element of the stream is either
a message arriving during each (equidistant) time frame, or an
∼ (interpreted here as ”no message has arrived”, having also
the length of one time frame).

Streams have been encoded in the interactive proof assistant
Isabelle [51]. The proofs, data structures as well as functions
are there formalized in so-called theory files, which have the
following structure:

t h e o r y ExampleTheory
i m p o r t s Main
b e g i n
(* d e f i n i t i o n s and lemmas *)
end

The implementation in the theorem prover Isabelle of the
data type stream is, apart from some technical domain-
theoretical details [37], similar to lazy lists of (say) Haskell.

domain ’ a s t r e a m =
l s c o n c ” ’ a ” ( l a z y ” ’ a s t r e a m ” )

The keyword domain [34] generates the prefix ordering
and a bottom element (the empty stream). The constructor
lsconc appends an element to the rest of the stream.

Fig. 3 gives an overview of our theories, such as Stream
Bundles (SB), stream processing functions (SPF), and sets of
functions denoted as stream processing specifications (SPS).
Foundamental theories such as LNat (lazy natural numbers,
where the set of naturals is extended with an element denoting
infinity), or SetPcpo (sets are enhanced with a subset-order)
are needed as well. Theory imports are represented as arrows
in the Figure. These mathematical structures will be briefly
described later.



Fig. 3. Structure of the theories

The extension to time-synchronous streams is also done
similarly as one would extend a data type in Haskell: given
the type stream over a parametric type-variable ′a, and a
constructor for messages Msg, one can then define:
datatype ′a tsyn = Msg ′a | ∼
An instance of a stream of natural numbers over tsyn would

then be e.g: Msg 1, ∼, Msg 2, ∼, ∼,.... This is read as: the first
time slot sees the message 1 arriving; in the second time slot
no message arrives; in the third one the message 2 arrives,
and after that no more messages arrive. The granularity of
each time interval can be set depending on the case study
(say ”minutes”, if we are modeling bus arrival times, or say
”milliseconds”, if we are modeling communication inside a
computer processor.)

In our light controller the elements of the streams flowing
in the channels are from the carrier set B ∪ {∼}.

VI. STREAM BUNDLES AND STREAM PROCESSING
FUNCTIONS

To facilitate composition, we enhance our modeling of com-
ponent networks by naming channels and defining composition
operators which connect channels of the same name and type.
The user can then define the type of a channel via a function
which for each channel returns a set of allowed messages,
i.e., the domain of the channel type. To model the input (or
output) streams of a component, we work with an isomorphic
transformation of the tuples of streams (instead of just working
on tuples): namely with mappings from channel names to
streams. Such a mapping is then called Stream Bundle [8]
if the messages of the streams mapped to the channels are
allowed to flow on it. Thus, we can compose components and
define generalized composition operators [7] connecting same-
named/same-typed channels without worrying about setting
preconditions for the interface compatibility. In the case of
(say) an addition component, the encoding in Isabelle of the
interface of the input would be the structure of the form
[channel1 7→ stream1, channel2 7→ stream2] (instead of
the intuitive tuple (stream1, stream2), which does not offer

the flexibility in defining general composition over arbitrary
number of channels).

A deterministic component is modeled by a stream(bundle)
processing function (the type denoted as SPF), which is then
a continuous function mapping stream bundles to stream
bundles. The semantics of a non-deterministic automaton is a
set of stream processing functions (the type denoted as SPS).

VII. STATE-BASED MODELING

As mentioned, state-based modeling is used to enforce the
specification of realizable-per-construction components. We
demonstrate an example by specifying the behavior of the
DoorDelay component in Fig. 4:

Fig. 4. Behavior of DoorDelay as Automata

This figure is a graphical representation of the behavior
represented by the following MontiArc textual description.
The time model in the textual description is set to time-
synchronous (sync). Then the interface of the component
(ports and input/output channels) is defined. A variable delay
is used to represent the states. Finally the behavior description
is given by listing the transitions. Transitions are enhanced by
input/output.

component DoorDelay {

t i m i n g sync ;

p o r t
i n b o o l e a n i ,
o u t b o o l e a n o ;

i n t d e l a y ;

au tomaton DoorDelay {
s t a t e S ;
i n i t i a l S / { d e l a y =0} ;

S [ ! i && de lay >0] /
{ d e l a y = de lay −1, o= t r u e } ;

S [ ! i && d e l a y ==0] / {o= f a l s e } ;
S [ i == n u l l && de lay >0] /

{ d e l a y = de lay −1, o= t r u e } ;
S [ i == n u l l && d e l a y ==0] / {o= f a l s e } ;
S [ i ] / { d e l a y =5 , o= t r u e } ;
}
}



As a contrast to state-based specifications, a specification
such as DoorDelay[a : b : c : d : e : xs] = f(a, b, c, d, e, xs)
for some function f , messages a, b, c, d, e, and sequence of
messages xs might lead to non-realizable behavior, since one
can make use of (say) b in the first output time slot before it
has arrived as input.

The behavior of the AND, OR, and NOT components is a
straightforward lifting from booleans to streams of booleans
and the boolean values have priority over ∼.

The behavior of a MontiArc component is specified as
automata with input/output [8]. Automata with input/output
consist of states and transitions. The states of the automaton
are used to save information about the current state of the
computation. In addition to states java-variables can be used
in MontiArc.

Transitions help define the behavior of a component. A
transition describes the output and new state of a component.
Non-determinism can be modeled by multiple transitions or
by a single transition with a set as result.

Each automata is translated in a final step into (sets of)
stream processing functions, which constitute their semantics
[8]. The Isabelle theory of stream processing functions is rich
with theorems, which increase the automation of the proofs.

VIII. COMPOSITION AND FEEDBACK LOOPS

To decompose and then re-compose components in a de-
velopment life cycle, special composition operators of Fig. 5
were encoded using the notations as described in [7]

Fig. 5. Special Composition Operators

Serial composition in a) is quite straightforwardly overtaken
from function composition in mathematics, and parallel com-
position in b) creates a new component with an extended
interface.

The µ-operator for feedback in c), such as the one occurring
in the Flasher-Component, is defined as follows: for streams
x, y, z we have (z, y) = (µf).x, if (z, y) is the least fixed
point of the equation (z, y) = f(x, y).

Streams flowing on feedback loops are defined as least fixed
points of the corresponding equations [5]. Monotonicity is
neccesary for least fixed points to be unique.

A general composition operator f ⊗ g was encoded [5],
[7], [39] as well, covering all possible combinations of the

above mentioned special operators as shown in Fig. 6, where
c1...c8 denote here the channel names.The general operator is
equally powerfull to the combination of all special operators.
The generated stream processing functions are automatically
connected by this operator. The proof of commutativity and
associativity [6] of this operator is also encoded in Isabelle.
This means that the order of composition of a list of compo-
nents does not matter.

Fig. 6. General Composition Operator

IX. NON-DETERMINISTIC SPECIFICATIONS

Our mathematical model is expressive enough to model
interesting aspects of software development such as underspec-
ification and refinement as well. From a user’s point of view, it
is not distinguishable, whether a system is underspecified (fur-
ther refinement steps during the development process can make
specifications more precise), or it makes non-deterministic
decisions on runtime. In the introduction of this paper, we
already mentioned that components may be under-specified
or non-deterministic. Thus, a single deterministic SPF is not
sufficient to describe all possible component behaviors, and
instead a set of stream processing function must be used to
model the component behavior properly [49]. Nevertheless,
the input and output channels of components are fixed, thus
all stream processing functions in such a set must have the
same input and output channels.



X. CODE GENERATOR FROM MONTIARC TO ISABELLE

To verify the properties of user-defined component systems,
they are automatically transformed to specifications and theo-
rems in Isabelle.

The equivalence of the user-specification and the generated
Isabelle-specification is imperative for any logical reasoning. A
complex generation process could lead to different semantics.
To reduce complexity of the transformation, MontiArc-ADL
and Isabelle-Specification are using similar concepts.

An automata [8] is first transformed from the MontiArc
model to an automata in Isabelle. The abstract syntax of
automata is encoded in Isabelle as well. In a second step the
automata is mapped to its semantics, a set of stream-processing
functions [8]. The second step is entirely within Isabelle and
its correctness is proven.

A composed specification is realized through the general
composition operator [39]. Since the general composition
operator can only connect channels with the same name,
internal channels are used. These internal channels are not
visible in the public interface of the component.

XI. VERIFICATION OF PROPERTIES

MontiArc invariants are mapped to Isabelle lemmata. Sim-
ple properties can be proven automatically, whereas more
complex properties might require user interaction. To simplify
any manual proof, additional lemmata are generated. One
can specify his desired (potentially safety-critical) property
in MontiArc. The framework is extended sufficiently with
abstract theorems, such that most simple properties will be
checked on the push of the button. This is also the case for
the chosen property of this work, thus showing promising
results about the feasibility of the approach. It is shown that
the alarm status has priority over other inputs and it guarantees
the turning on of the light, no matter how both the door status
and the light switch behave.

Let snth n denote the time slot of a message in a stream
for some natural n, AlarmStatus the input stream of
the light controller, and OnOffCmd the output stream of
the light controller. The theorem is then formulated as follows:

theorem: ∀ n ∈ N : snth n AlarmStatus = True ⇒
((snth n OnOffCmd = True) ∨ (snth (n − 1) OnOffCmd =
True))
< proof >

The proof is automatically generated.
Here is a proof sketch. First one checks the correctness

of the single components. The Flasher is trickier, since it
contains a feedback loop. It was first shown, that the output
stream of the Flasher corresponds to the certain desired least
fixed point. The proof of correctness for components with
feedback loops and for those with a state(such as DoorDelay)
takes usually the majority of effort to automatize. The correct
behavior of the OR-component is also proven. The relation
between the AND-Component and the Flasher is mapped to a
general composition AND ⊗ Flasher. Then this composition

is proven to be reducible to a parallel composition between
these. As a next step, the composition Flasher ⊗ OR is shown
to be reducible to a serial composition. These reductions are
recognized automatically by investigating the shared channels
between components. The large amount of encoded theorems
about the special operators, as well as the extension of the
code generator with common component-specific properties,
take care of the rest, making this property proven at the push
of a button.

XII. CONCLUSION

In this paper, we have seen that there is an appropriate
theory, namely Broy’s streams [6], which is able to describe
behavior of real-time capable distributed and complex software
in a hierarchically decomposable form. Furthermore, along the
development process refinement of underspecified component
behavior is possible and is fully compatible with the compo-
sition operators. That means decomposed subcomponents can
be individually implemented and desired properties proven on
local components thus that the overall composed system is
then correct by construction.

Correct by construction means that there is no complicated
integration phase with lots of errors only identified late in
the development process. Instead a rather agile development
process could become possible: It has an always integrated
composed system with individual subsystems hierarchically
decomposed and individually refined along the development.

The encoding of Broy’s Stream Theory in Isabelle and the
available comfortable modeling techniques, such as an ADL as
well as state machines are an important step towards a rigorous
development process based on model-based specifications and
formal verification.

However, there are still a lot of steps to do. (1) The
integration of modeling techniques as developers frontend
needs to be tighter and potentially also handle other forms
of modern specification languages. (2) The library of avail-
able predefined components and their specifications must be
intensively extended. (3) The proof assistant system needs to
be robust and as automatic as possible in any kind of potential
situations. Ideally the proof assistant is so highly automated,
that ordinary software developers do not explicitly have to
cope with proving activities at all, but can concentrate on spec-
ifying behaviors on different levels of abstraction, while the
underlying proof assistant tells the developers automatically,
whether their development steps have been correct. This would
lead to a continuous verification system quite like the currently
already existing continuous integration environments [52] for
compilation, generation and testing.

Of course, in practice a combination of all these techniques
is desired. Based on our experiences, we believe that formal
verification should actually be a strong tool in the toolbox of
a mature Software Engineering discipline. However, Software
Engineering is still not mature and only future research and
industrial applications can show whether and how formal
verification tools will be part of our future toolbox.
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