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Abstract

In this paper a model-based verification approach for detecting potential safety or security vulnerabilities in
cyber-physical systems is presented. It addresses the question of how model-driven specifications (in particular
state-based style) combined with code generation and logic-based AI can be used for assuring safety and
security early in design. Currently, the common verification method in industry still remains testing and reviews,
but their costs grow overproportionally with the system size and they cannot achieve exhaustive coverage. To
overcome this, an extension of a model-based verification framework for safety-critical cyber-physical systems
is presented. A SysML profile is extended for supporting event-driven state-based specifications, including
corresponding encodings of the key structures in the theorem prover Isabelle and a code generator from SysML
to Isabelle. An evaluation on an avionics case study indicates that model-based approaches and logic-based
AI can be applied for lowering certification costs.
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1. Introduction
Currently, avionics accounts for over 30% of the aircraft development costs [1]. About 75% (of these
30%) goes into verification [4]. Safety considerations during design are necessary according to the
required certification, which is approved by EASA and FAA. As baselines for this, standards such as
RTCA [26] DO-178C or RTCA DO-254 are used during the development process.
But designing mainly with safety and not so much security in mind leads to one of the key system
design issues of nowadays. It is important to recognize that security and safety are strongly con-
nected and have to be carefully considered in advance. This means that not only safety, but also
security needs to be designed into avionics to demonstrate not just the initial airworthiness, but also
the maintenance of continuous airworthiness and protection from unauthorized interaction.
Organizations such as RTCA, the company ARNIC [2], or SAE International are responsible for cre-
ating and maintaining standards dealing with some of the most relevant aspects of our time such
as Cyber Physical Systems Security [30] or Artificial Intelligence in Aviation [29] etc. Seven levels
of security trustworthiness (Evaluation Assurance Level) [10] are used for system classification with
respect to criticality. A high criticality rises the demands on the depth to which the manufacturer must
describe and test his product. The highest level (so called level 7/7+) requires formal correctness
arguments, which is used in extremely high risk situations, in particular when the high value of the
goods justifies the higher costs.
Companies such as Airbus have successfully adapted formal methods for verifying properties on
the code level, using model-checkers and abstract interpreters e.g. for worst-case execution time
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analysis [22, 31], which is also regulated by the standard DO-333 formal methods supplement of DO-
178C. But when refining requirements from the system-level to higher-level abstract requirements
and then further to lower-level requirements, the most used technique continues to be testing and
reviews. Their costs grow overproportionally with the system size [4] though, and besides tests can
show the presence but not the absence of errors. So the question we will address is how can model-
based specifications (in particular a state-based style) and logic-based AI be leveraged to improve
safety and security of safety-critical systems.
Formal methods tackle some deficits mentioned about testing: high costs and exhaustive coverage.
Theorem proving, as the formal method offering the highest assurance, has been successfully used
to completely verify security and safety properties, such es the prominent example of exhaustively
verifying the entire kernel of an operating system [19], or other security-critical components [23]. One
can verify that a certain claim holds in the model or use the counterexample finder to generate an
attack scenario against the network that shows how the attacker penetrates the system. By con-
structing a threat model, security-critical honest components are composed with maximally hostile
untrusted environmental intruder-components in their most unrefined variant. Any refinement of an
untrusted component of the threat model represents the behaviour of a real component with which the
security-critical components may be composed in practice. Formalisms such as CSP (as was used
in [23]), CSS [21], pi-calculus [25], or FOCUS [6, 5] greatly assist this process, since they offer the
concepts of nondeterminism and underspecification, a notion of behavioral refinement, time-sensitive
specifications and hierarchical decomposition. In FOCUS, distributed systems consist of components
exchanging messages through unidirectional channels. The semantics of a component is a (set of)
stream processing functions. The most important reason that FOCUS is used in this paper is due to
the compatibility of refinement with composition. This means that when component B refines compo-
nent A (all behaviours of B are also behaviours of A), a system built by placing B in a particular context
(environment) will always refine the system built by placing A in that same context, for all possible
contexts. Hence, if it is proven that a security property holds for the composition of a security-critical
component with a maxically hostile component, it will also hold for any possible real instantiation of
hostile components. Secrecy (certain messages should not occur) or authentication (should occur
only under particular circumstances) properties can e.g. thus be checked. In the evaluation chapter
we will show for instance how the violation of a property of a component can be automatically checked
(the property states that certain messages should never occur in the output). Also, theorem provers
have an advantage (compared to the model-checking approach on CSP models in [23]) in partic-
ular when verifying software, since, despite some progress by so-called partial-order approaches
[11], model-checkers run into the well-known state-space-explosion, whereas proof complexity using
theorem provers grows only linearly with system complexity [18].
The contribution in this paper updates our previous works [27, 18, 17, 8, 16, 20], where the model-
based verification of several safety-critical properties can be found. In our latest work [18], we used
a time-synchronous behavior specification paradigm [12, 17], known to be well-suited for hardware
specification and verification [14], where model-checking techniques, unlike in software, can usu-
ally achieve an excellent exhaustive coverage. Meanwhile, in software, an event-driven paradigm
is much more common. Hence, in this paper, event-based automata are introduced for capturing
non-determinism and underspecification.
We thus extend our work by the following key novel contributions:

• SysML-Profile [32] for event-automata

• Event-automata encoding in the theorem prover Isabelle [24]

• Extending the code generator from SysML to Isabelle to support event-automata

• Evaluation on an avionics case study, by showing how properties of components specified by
event-automata can be checked.

This paper is structured as follows: The second chapter describes the basics of the event-driven
methodology and an avionics running example. In chapter three the frontend of the framework con-
sisting in the modeling language and the generator to the theorem prover is described. Then chapter
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four presents the encoding in the theorem prover of the basic dataflow structures, and of the new
introduced event-driven state machines. Chapter five evaluates the methodology by verifying a prop-
erty of the frontend model in the theorem prover, thus giving helpful information to the developer
about potential safety or security vulnerabilities. Finally, chapter six presents a conclusion of this
work.

2. Designing Event-Based Systems: An Introduction to Event-Automata
Specifying a system or a component in an event-driven way is a simple and understandable spec-
ification style. It allows reactive description for any single input event instead of needing to specify
reactions for any possible combination of input events arriving in a complete time-slice. The pilot
flying system (PFS) from Nasa and Rockwell Collins [9] (see fig. 1) is such an event-driven system.
It is comprised of redundant guidance systems on each side of the cockpit. The control of the plane
can be transferred across by flicking a switch. But the transfer may be subject to a errors such as
hardware fault of the communication bus or external disturbances of the guidance systems.
We use event-driven automata to define the behavior of atomic event-driven components. Unlike
timed port automata [12, 17] that react to the input on all channels once per time unit, an event-
automata reacts to every single input event arriving on any input channel. This matches the intention
of event-driven systems perfectly. Using this execution model, the event-automata for a flight con-
troller can then be constructed as shown in fig. 2.

Figure 1 – PFS System Figure 2 – Left Flight Guidance

Using event-driven automata for component behavior specification leads to a difficulty arising from
the component’s input interface, namely how does an automaton react, if two events on different
channels arrive at the same time. Since any event-driven automata reacts on any single input event
is can only react to two events in a serialized fashion. A serializing component for the input interface
is necessary, which forwards the input to the automaton. For a component with one input channel
this is trivial because the internal order of a history is well defined. For components with two or
more input channels like the guidance system the input histories must be merged into one history.
To allow such a serialization for bundles of input histories a generalized bundle merge component
which merges an arbitrary but finite amount of input histories is necessary. Underspecifying such a
bundle merge component allows it to produce any possible merged output stream and thus includes
any possible prioritization of channels as a refinement. Then, each event-based component specified
by an event-automata consists internally of a bundle-merge component and the event-automata.
To form a complete system, all its components must be composed regarding their channel con-
nections. Using FOCUS [6] as the underlying methodology, a systems composition maintains all
its sub-components properties. Especially noteworthy is that refinement is compositional. Thus, a
refinement of a sub-component automatically implies the refinement of the complete system [5].

3. Model-driven and Generative Approach: The Frontend
Systems and their requirements are typically formulated as (structured) text. From this, one can de-
rive models in some modeling language (for the purpose of this paper we assume the correctness of
this step). Our framework then transforms those models into a knowledge base representation suited

3



Model-Based Development and Logical AI for Secure and Safe Avionics Systems

for automated reasoning and verification [18]. Previously, the only state-based behavior specificaton
we supported were timed port automata. To enable the use of event-driven behavior, we extended
our model-driven approach in three key areas: 1) recognizing event triggers in the modeling lan-
guage (SysML), 2) transforming into an event-driven intermediary representation (build on [18]), and
3) appropriate encoding in the knowledge base (Isabelle).

3.1 Intermediary Representation & Encoding
Our framework is designed to be modeling language agnostic. Concepts, mapping, and encoding
are shared between different languages. To achieve this, model artifacts describing architecture,
behavior, and requirements are first transformed into a common intermediary representation [18].
Our representation for timed port automata based behavior consisted of the following: a statespace,
a set of intial configurations, and a set of transitions. Event-driven automatas introduce two types
of events. Message events represent the receipt of a message on a particular input channel. Time
events represent the passing of time. Time passes on all channels equally. These two event types
lead to two types of transitions required for event-automata: messageTransitions and timeTransitions.

Figure 3 – Main concepts of the intermediary representation for automata

The intermediary representation was extended by an abstract concept Automaton that re-uses ex-
isting StateSpace and Configurations. Both the TimedPortAutomaton and EventAutomaton are con-
crete instances of this abstract concept. The TimedPortAutomaton employs a simple list of Transitions
[18]. EventAutomatons manages two transition types: messageTransitions are triggered by message
events on a particular channel and can only process that message. timeTransitions are triggered by
time passing on all channels and cannot process any message.
The intermediary representation is then encoded into the knowledge base implemented in Isabelle.

3.2 Modeling Language
To model systems and requirements, we use a final draft version of the SysML v2 [32] in accordance
with the most recent publications of the SysML Submission Team (SST) [33]. SysML v2 provides so
called state definitions for state-based behavior descriptions. State defintions mainly consist of states
and transitions. Each transition defines a starting state, an optional guard, an event trigger, an action,
and a target state [18]:

1 t rans i t ion f i r s t Transmi t t i ng / * s t a r t i n g s ta te * /
2 accept i npu t / * message event t r i g g e r * /
3 do action { send inpu t to output ; } / * ac t i on * /
4 then Er ro r / * t a r g e t s t a te * /

Triggers allow us to specificy the type of the event and on what input channel it occured. A message
event on a particular channel is denoted by the channel name. A time event is denoted by –.

4. Semantic domain in Isabelle: The Backend
Formally analyzing a system is only possible by giving it clear semantics [13]. To automate this
semantics giving process, FOCUS based structures are implemented in the theorem prover Isabelle
[8]. This encoding of a semantic domain acts as a target for the system model transformation process.
The following listings show important parts of the Isabelle structures slightly simplified.
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The most important datatype is the domain of streams. A stream is a sequence of elements over
an alphabet and describe the history of channels. Every stream is either empty or defined as head
element and its rest of the stream, similar to lists in Haskell. The keyword domain defines the stream
datatype in Isabelle and associates it a chain-complete partial order (the prefix order) with a smallest
element [15]. This ensures the existence of a least fixed point (the infinite stream is thus approxi-
mated by its finite prefixes). This in turn enables us to define a semantic for iterative processing of
infinite streams, e.g., event-automata. Infinite streams are included via the well-known concept of
lazy evaluation.

1 domain ’m stream = cons ( head: : " ’m " ) ( lazy r e s t : : " ’ a stream " )

The event datatype is defined as a message or the passage of time modeled by a tick (
√

). With the
stream and event datatypes it is now possible to define event streams.

1 datatype ’m event = Event ’m |
√

A component often has more than one input and output channel. A tuple representation of compo-
nent interfaces hinders the formalization of a composition operator which should work with arbitrary
component interfaces. Instead, a function mapping channel labels to streams associates specific
histories to components inputs or outputs is a better choice. This is called bundling streams. The
function representation is also necessary for defining an input stream merging component for gen-
eral component interfaces introduced in section 2.. But since channels allow only certain messages,
a function is not necessarily a wellformed stream bundle. The messages of each channel inside the
bundle must be a subset of the allowed messages on that channel.

1 def in i t ion wel l formed : : " ( ’ c s ⇒ M stream ) ⇒ bool " where
2 " wel l formed f = ∀channel . messagesOf ( f channel ) ⊆ allowedOn channel "

Using the wellformed predicate, the pcpo of bundles is defined using the pcpodef keyword. This lifts
the prefix order on streams point-wise to bundles and allows a composition operator definition as a
fixed point calculation.

1 pcpodef ’ channe l bundle ( " ( _Ω " )
2 = " { f : : ( ’ channe l ⇒ M stream ) . wel l formed f } "

Having defined bundles for describing input and output interfaces and histories of components, any
deterministic component is a continuous function that maps input bundles to output bundles. These
functions are called stream processing functions (SPFs) in the semantic domain.

1 type_synonym ( ’ I , ’O ) spf = " ’ I Ω →’OΩ "

Underspecified components have many possible implementations. It is fittingly defined as a set of
SPFs called stream processing specification (SPS). A singleton SPS is equivalent to a SPF and thus
deterministic. An empty SPS is called an inconsistent (not implementable) specification.

1 type_synonym ( ’ I , ’O ) sps = " ( ’ I , ’O ) spf set "

An event-automaton then consists of a state-space, an input message type, an output channel set,
a transition function and initial configurations. Sets are used to encode nondeterminism in initial
configuration and transition results.

1 record ( ’ s t a t e , ’message , ’ou tchanne l )
2 Automaton =
3 t r a n s i t i o n s : : " ’ s t a t e ⇒ ’message ⇒ ( ( ’ s t a t e × ’ ou tchanne l Ω ) se t ) "
4 c o n f i g u r a t i o n s : : " ( ’ s t a t e × ’ ou tchanne l Ω ) se t "

We have encoded the bundle merge component in Isabelle. It is defined as a nondeterministic com-
ponent that maps bundles to event streams. Since event-based automata may react differently on
events from different channels the merged output stream additionally transmits its messages channel
origin. Each possible bundle-merge component has to fulfill two properties: 1) It must transmit no
more and no less than all complete time-slices of the input bundle, and 2) filtering the output stream
for messages of a specific channel must result in a prefix of the channels history.
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Notation Signature 1 Functionality
#√ streamTicks:: Mω ⇒ N∞ Returns number of

√
s occuring in a stream

#√ minBundleTicks:: CSΩ ⇒ N∞ Minimum number of
√

s occuring in any stream
map:: (M1 ⇒ M2) ⇒ Mω

1 ⇒ Mω
2 Applies function to every event of a stream

filter:: (M ⇒ B)⇒ Mω ⇒ Mω Filters events of a stream according to a predicate
⊑ prefixOrder:: Mω ⇒ Mω ⇒ B Checks if first stream is prefix of second stream

messagesOf:: Mω ⇒ P(M) or CSΩ ⇒ P(M) Set containing all occurring messages
. bundleGetCh:: CSΩ ⇒CS ⇒ Mω Returns stream from a specific channel of a bundle

1: N∞ = Natural numbers inclusive infinity, Mω = event stream over messages M, CSΩ = bundle over channel set CS

Table 1 – Functions implemented in Isabelle

1 def in i t ion bundleMerge:: " ( ’ c s Ω →( ’ c s × M) event stream ) set " where
2 " bundleMerge ≡ { f | f . ∀bundle . #√bundle = #√ ( f bundle ) ∧
3 (∀channel . map snd ( f i l t e r (λ ( c , _ ) . c=channel ) ( f bundle ) ⊑ bundle . c } "

Each event-automaton can be mapped to an SPS by effectively applying fixed point iterations over
the transition function [28]. The event-automata and bundle merge implementations in Isabelle define
the semantics of any component realized by an event-driven automata in SysML. The next step is
to evaluate the encodings of event-based components and systems in Isabelle and the automatic
transformation process to Isabelle.

5. Integration and Validation
To demonstrate the generative model-based approach, we model the PFS using SysML v2 from
which the Isabelle code is automatically generated (for core Isabelle source code please see [8] and
for more on the generator please see Appendix of [18]). We show the effectiveness of our encoding
by formally analyzing a property of the avionic bus which is described by an event-automaton.
First, we exemplarily show a possible SysMLv2 state definition of the avionic bus. The bus automaton
has one input and one output port. Furthermore it has two states named Transmitting and Error. After
every received input event the underspecified bus decides nondeterministicly to assure or disturb the
next transmission. This decision is specified by having transitions leading to the different bus states.

1 state def Bus ( in i n p u t : Status , out o u t p u t : Status ) {
2 entry ; state Transmi t t i ng ;
3 / * shorthand where source s ta te i s the l e x i c a l l y prev ious one ( Trans . ) * /
4 t rans i t ion accept i npu t do action { send inpu t to output ; }
5 then Transmi t t i ng ;
6 t rans i t ion accept i npu t do action { send inpu t to output ; }
7 then Er ro r ;
8 t rans i t ion accept −− then Transmi t t i ng ;
9 t rans i t ion accept −− then Er ro r ;

10
11 state Er ro r ;
12 t rans i t ion accept i npu t do action { send Confirmed to output ; }
13 then Er ro r ;
14 t rans i t ion accept i npu t then Er ro r ;
15 t rans i t ion accept −− then Er ro r ;
16 t rans i t ion accept i npu t then Transmi t t i ng ;
17 t rans i t ion accept −− then Transmi t t i ng ;
18 }

Listing 1: A bus event-automaton SysML specification

The bus component should never alter messages, despite being disturbed. The property to be
checked restricts the buses output to only contain messages received as input. Please note that
proving this property would provide us a necessary but not sufficient information, since the bus might
still alter messages by exchanging them with previously received messages. To show this necessary
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requirement, a theorem is formulated in Isabelle. It states that for every possible SPF (implemen-
tation) in the buses SPS (specification) and for every input bundle (contains only one stream), the
messages of the output bundle occur in the messages of the input bundle.

1 theorem "∀ spf bus∈ spsbus , i npu t∈ I Ω .
2 l e t output = spf bus i npu t in
3 messagesOf output ⊆ messagesOf i npu t "

The automatical provers and counterexample-finders are then left to run in parallel for a few sec-
onds. It turns out that this property does not hold. By automatically checking for counterexam-
ples, the couterexample tool "Quickcheck" [3, 7] provides the user with an example input stream
< [Inhibited, Inhibited]> where the output is evaluated to < [Inhibited,Con f irmed]>. This violates the
theorem statement. The transition in line 12 & 13 of listing 1 is faulty and allows sending message
Confirmed if the automaton is in state Disturbed.
After deleting the faulty transition, the property can be shown. Furthermore, because of the compo-
sitionality of FOCUS the property immediately holds for any system the bus might be used in. Thus,
the complete PFS system is validated in regards to the bus theorem.

6. Conclusion
We extended a model-based verification framework by allowing event-driven system specifications
and reasoning. By detecting a non-conformance between the implementation and the abstract spec-
ification using formal counterexample finding, one can provide hints for potential developer mistakes
or detect potential security vulnerabilities early at design time. In general, we observe an increasing
maturity and feasibility in the application of formal methods in safety-critical systems, as it is possi-
ble by following the RTCA DO-333 standard, which can help to replace or complement many tests.
Please note that the formal specification might create some additional effort when considering the
overall benefits over testing. However, they overcompensate later significantly, since technical flaws
at the beginning may result in highly expensive deficits, and the later the errors are corrected, the
more expensive they are.
Acknowledgements: Thanks to Sebastian Stüber for helping with the encoding of event-automata in
Isabelle.
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