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Abstract
Model-driven systems engineering relies on software lan-
guages that support different stakeholders. These languages
often operate in different technological spaces. Checking
consistency, tracing, and change propagation of models de-
veloped by different stakeholders, thus demands methods to
bridge the gaps between these spaces. Research on the inte-
gration of heterogeneous software languages often considers
heterogeneity within specific technological spaces only. We
outline a systematic method to translate grammars between
the technological spaces of the MontiCore and Xtext lan-
guage workbench (LWB) and report observations on general
grammar translation challenges. We have realized this trans-
lation in an automated toolchain and present lessons learned
along the way. This can significantly facilitate bridging dif-
ferent technological spaces and, thus, improve model-driven
systems engineering.
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1 Introduction
Large-scale model-driven systems engineering (MDSE) [18]
often involves the collaboration of experts from various do-
mains across space and time. These experts use various mod-
eling paradigms, software languages, and tools that oper-
ate in different technological spaces. Translating models
from one technological space into another is crucial for the
seamless and automated model processing required to make
MDSE projects successful.
Software language engineering (SLE) is the discipline of

conceiving, engineering, maintaining, and evolving software
languages [9]. Its subjects are software languages in differ-
ent shapes, including graphical, textual, and projectional
languages. Textual languages, i.e., languages whose models
are represented textually, have been successful in a variety of
domains, including automotive [5], cloud systems [26], robot-
ics [19], and software engineering [21]. Such languages often
are defined in terms of (context-free) grammars [8, 25, 28]
that define their structure (abstract syntax) and presentation
(concrete syntax) in an integrated fashion.

Automating translation of textual models between differ-
ent technological spaces leveraging SLE techniques can be a
greatly facilitate automating model analyses and syntheses
in MBSE projects. We, therefore, investigate the challenges
of translating the concrete syntax and the abstract syntax of
grammar-based languages between different technological
spaces. To this end, we discuss challenges in their trans-
lation, achievable language equivalencies, and discuss the
translation of various grammar constituents between the
technological spaces of MontiCore and Xtext. The contribu-
tions of this paper, hence, are:

• A discussion of grammar translation challenges.
• A systematic investigation of grammar translations
based on the technological spaces of MontiCore [8]
and Xtext [28].

• Lessons learned about such transformations
The insights reported in this paper can support language
engineers in systematically developing translations between
other technological spaces by shedding light on typical chal-
lenges for these.
In the remainder, Section 2 illustrates the challenges by

example. Section 3 introduces preliminaries before Section 4
discusses forms of model conservativity that imply different
challenges for grammar translation. Afterward, Section 5
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grammar org.Automata with Terminals
Automaton : 'automaton' name=ID '{' (st+=State | tr+=Transition)* '}';
State      : 'state' name=ID '<initial>'? '<final>'? ';' ;
Transition : from=ID '-' input=ID '->' to=ID ';' ;
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automated
translation

XG

package org;
grammar Automata extends MCBasics {

Automaton = "automaton" name:Name "{" (st:State | tr:Transition)* "}";
State      = "state" name:Name "<initial>"? "<final>"? ";" ;
Transition = from:Name "-" input:Name "->" to:Name ";" ;

}

MCG01
02
03
04
05
06

Xtext grammar

MontiCore grammar

production rule

production rule

Figure 1. Xtext grammar (top) for a simple automata DSL
with states and transitions. Automatic translation into a cor-
responding MontiCore grammar (bottom).

discusses various cases of grammar element translation and
outlines a systematic methodology for their translation. Sec-
tion 6 illustrates its application via a case study and Section 7
presents lessons learned. Section 8 discusses observations,
Section 9 highlights related work, and Section 10 concludes.

2 Example
Consider a DSL for describing state-based behavior automata
in the development of cyber-physical production systems
(CPPS) as identified in [31]. There are various LWBs (e.g.,
MontiCore [8], Neverlang [25], Spoofax [15], or Xtext [28])
that support engineering such DSLs. Figure 1 (top) depicts
a simplified grammar for automata that was developed us-
ing the Xtext LWB as Xtext automatically generates editors
for models of the DSL. Furthermore, Xtext operates in the
technological space of Ecore [22], therefore model compar-
ison tools [24], execution engines [2], and much more are
available. In this DSL, an automaton has a name and consists
of multiple states and transitions (l. 2). States again have a
name and can be marked as initial or final (l. 3). Finally, tran-
sitions go from one state to another (identified via the state’s
name) and have an input that defines on which pattern the
transition is triggered (l. 4). But if the CPPS should change
to support real-time operations, the DSL needs to change as
well to support timing constraints. To systematically migrate
existing models of the DSL, these need to be augmented with
timing information carefully. To prevent doing this man-
ually for hundreds of models, the CPPS expert modelers
should provide suitable model-to-model (M2M) transforma-
tions. Instead of forcing these to learn ATL [14] or a similar
generic model transformation language, they should be en-
abled to use the syntax of the automata DSL within the
transformations. Domain-specific transformation languages
(DSTL) enable this by using their base DSL’s syntax in the
pattern and replacement parts of transformations [6]. Within
the technological space of Xtext, DSTLs are not available,
whereas in the technological space ofMontiCore, they are. To
transform these models using a DSTL, the DSTL first needs
to be derived from the base DSL, for which its representa-
tion as a MontiCore grammar is necessary. However, the

manual transformation between both LWBs is usually time-
consuming and error-prone. DSL developers would have to
ensure soundness and completeness of the translation, i.e.,
that theMontiCore language depicts exactly the set ofmodels
that the Xtext language recognizes. Hence, they would have
to be experts in both technological spaces. To mitigate this,
we investigate on bridging technological spaces for textual
DSLs while considering the intricacies of the correspond-
ing language workbenches. For instance, Figure 1 (bottom)
shows a MontiCore grammar that recognizes models that
are syntactically identical to the original Xtext grammar. Ob-
taining this representation systematically and automated
enables leveraging the combined advantages of both tech-
nological spaces, i.e., benefiting from the editors generated
for the Xtext version of this DSL and from the DSTLs at the
same time. This increases efficiency and productivity and
thus, fosters software language engineering [10].

3 Preliminaries
MontiCore [8] is a workbench for engineering and compos-
ing textual DSLs and facilitates language development by em-
ploying context-free grammars (CFGs) for the integrated def-
inition of abstract and concrete syntax. From a CFG, Monti-
Core generates model processing infrastructure, comprising
corresponding abstract syntax classes and a parser, as well as
symbol tables, visitors, model checking and code generation
infrastructure. Models that adhere to a grammar definition
are parsed into corresponding abstract syntax trees. After-
ward, their symbol tables are created, which store essential
information of model elements as symbols for easy access.
Their well-formedness is checked via handcrafted context
conditions usingMontiCore’s model-checking infrastructure.
To facilitate modular DSL development, MontiCore supports
language composition of language constituents via language
extension, embedding, and aggregation [8].

Xtext [28] also is a workbench for engineering textual soft-
ware languages that is part of the Eclipse Modeling Frame-
work (EMF) [23]. In Xtext, a language is defined by a gram-
mar that simultaneously defines abstract and concrete syn-
tax. From such a grammar, Xtext infers a metamodel and
generates a parser translating models into abstract syntax
trees. Furthermore, Xtext provides additional language in-
frastructure, e.g., hooks for well-formedness rules, and ed-
itors including syntax highlighting, auto-completion, and
refactoring. As abstract syntax trees in Xtext are instances
of Ecore models, Xtext facilitates integrating of EMF-based
tooling, such as Sirius [27] for graphical modeling or EMF
Compare [3].

4 Classifying Language Translations
A grammar translation is a function from one grammar meta-
language to another. The translation takes a grammar of one
metalanguage (e.g.,MontiCore) and translates it to another.
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Usually, this entails a translation between different techno-
logical spaces.

Equivalence Two grammars are equivalent if they repre-
sent the same language [11]. The problem of whether two
context-free grammars represent the same language is un-
decidable. Furthermore, when translating domain-specific
languages, we also have to consider the translation of well-
formedness rules and generators to ensure that semantics are
maintained. As equivalence between MontiCore and Xtext
languages can generally not be achieved if our translation
only works for grammars, we focus on conservatism a less
strong characteristic of a translation.

Conservative Translation We derive the term conserva-
tive translation from the established term of conservative
extension. A conservative extension [8] is an extension of a
grammar that introduces new model instances into the ex-
tended grammar and enables reusing of all original models
within the extended grammar. Similarly, we define a con-
servative translation. An abstract syntax (AS) -conservative
translation of a grammar preserves all nonterminals, cardi-
nalities, as well as semantically relevant terminals. It, how-
ever, is allowed that additional semantically relevant entities
extend the AS of the translated grammar. For example, a
translation could introduce new nonterminals. The goal that
is achieved by AS-conservation is that all functionalities for
the original AS still exist in the translated AS. A conservative
translation of the concrete syntax preserves and only extends
the concrete syntax of a language. A concrete syntax (CS)
-conservative translation of a grammar results in a grammar
that represents all models that the original grammar can
represents but might also represent more models. Thus all
models that conform to the original grammar can be reused.
This entails that for any class of the input grammar’s AS,
there is a class in the output grammar’s AS such that the out-
put grammar’s AS contains at least the same information of
the input grammar’s AS. If concrete and abstract syntax are
preserved during a translation, but the AST representation
of the same model differs in the original and the translated
language, we cannot reuse tooling that was developed for
the original language. CS-AST-compliance enforces that the
same model results in the same abstract syntax tree.

Bijectivity Our translation works in both directions, that
means we can translate from Xtext to MontiCore and vice
versa. When translating a grammar fromMontiCore to Xtext
and back to MontiCore we want to obtain exactly the gram-
mar that we started with. Therefore, we define bijectivity.
The translation is bijective if and only if for any grammar
in the source technique and for any grammar in the tar-
get technique the translation is surjective and injective [30].
This requires that every grammar in the source technique
is mapped to exactly one grammar in target technique and
vice versa. Hence, neither in the source nor in the target

technique, there exist grammars that are not mapped to a
grammar in the other technological space.

Convergence Bijectivity is hard to achieve as soon as the
translation between meta-languages requires transforma-
tions since then there exist two concepts in the source gram-
mar that map to the same concept in the target grammar. A
transformation is, for example, the reduction of a language
concept that the target language does not support into an
equivalent statement that is translatable. If it is not possi-
ble to achieve bijectivity, there is a gap between the source
and the resulting grammar. To measure the quality of the
translation, it is relevant to investigate whether this gap is in-
creasing when applying the translationmultiple times.When
concatenating translations from one technological space to
another we analyze whether the translation achieves bijec-
tivity at some point. If we can find a maximal number of
translations, we call the translation to be convergent. Con-
vergence after 0 steps gives us a bijective translation. Con-
vergence after 1 step is a translation between languages that
are not fully compatible. Convergence in more than 1 step
should be further investigated because it means that concepts
are translated ambiguously. A non-converging translation
is either an incorrect translation or concepts are translated
cyclically. While this cyclic translation is not problematic by
itself, it shows that there are two equal concepts that could
be reduced to one.

5 Translating Grammars Across
Technological Spaces

We developed a tool to realize a bidirectional translation be-
tween MontiCore and Xtext grammars. During developing
the grammar translation, we identified different concepts
that are part of grammar definitions and must be considered
when translating grammars between different LWBs in gen-
eral. In the following, we present these cases and discuss
how we solved them in our translation. We distinguish eight
different cases and the translation results based on whether
we have to add transformations before the translation or if
we generate additional well-formedness rules.

1. Base Rules Every metagrammar has basic concepts for
defining productions and terminals. The standard for this
is the extended Backus–Naur form (EBNF) [12]. EBNF is a
metalanguage for context-free grammars. Since EBNF sup-
ports the definition of arbitrary CFGs, it is possible to reduce
any context-free grammar to EBNF. If possible, we try to
maintain as much of the original grammar as possible when
translating between Xtext and MontiCore and thus preserve
the original structure of the language. Base rules, according
to EBNF, can be translated directly as depicted in Figure 2.
Furthermore, MontiCore and Xtext both support the defini-
tion of lexer rules. Lexer rules are rules that a lexer breaks
up an input stream of characters into vocabulary symbols
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Automaton = (State | Transition)* ;01 MCG

Automaton: (states+=State | transitions+=Transition)* ;01 XG

alternatives in MontiCore and Xtext iterations

Figure 2. Translating EBNF-conform productions between
MontiCore and Xtext.

for the parser. In MontiCore they are called tokens and in
Xtext they are called terminals. Thus, we translate lexer
rules also directly as Figure 3 shows.

grammar UntilGrammar {  
StartElement = (element:UNTIL_ELEMENT);    
token UNTIL_ELEMENT: 'x' .*? 'y';  
token WS = (' '|'\t'|'\r'|'\n')+ : -> skip;

}

01
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05

MCG

grammar de.se_rwth.babel.UntilGrammar hidden(WS)
StartElement: (element=UNTIL_ELEMENT);
terminal UNTIL_ELEMENT: 'x' -> 'y';
terminal WS: (' '|'\t'|'\r'|'\n')+;

01
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XG

Figure 3. Bijective translation of tokens in MontiCore and
Xtext terminals.

2. Simplification Rules Because a grammar that consists
only of EBNF rules can get complicated and unreadable, ad-
ditional concepts are introduced in the respective language
workbenches that increase the structure and readability of
the grammar. One example of a simplification rule in Monti-
Core is the definition of interfaces. If an interface is declared

StartRule : interfaceProds+=InterfaceProd*;
FirstImpl : "first" name=Name;
SecondImpl : "second" name=Name;
InterfaceProd : firstImpl=FirstImpl|secondImpl=SecondImpl;

01
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03
04

XG

StartRule = InterfaceProd*; 
//implementing nonterminals must have a name   
interface InterfaceProd = Name; 
FirstImpl implements InterfaceProd = "first" Name;  
SecondImpl implements InterfaceProd = "second" Name;}
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05
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Figure 4. Translating interfaces from MontiCore to Xtext,
by introducing an alternative with all productions that im-
plement the interface in MontiCore.

and used at different points in the grammar, at every point
the interface is used, all implementing productions are valid
options for the parser. Xtext does not support interface pro-
ductions. Therefore, our translator transforms grammars
that contain interfaces before translating them to Xtext. An
example is depicted in Figure 4. The grammar fragment con-
sists of an interface InterfaceProd that is implemented by
the two productions FirstImpl and SecondImpl. The Name
on the right hand side of interface InterfaceProd ensures
that all implementing nonterminals contain a name. After
applying the upon stated transformation, the interface is
converted into a regular production with two alternatives.
A simplification in Xtext grammars are unordered groups.

All elements of an unordered group need to appear exactly
once but in arbitrary order. For an unordered group of size
n, we need n! many alternatives in EBNF. MontiCore does
not provide an equivalent language concept. Hence, we need
a transformation. When translating a grammar containing
unordered groups from Xtext to MontiCore, our translator
creates a list in MontiCore to enable the occurrence in ar-
bitrary order and adds an AST rule that ensures that each
element of the list appears exactly once Figure 5.

Modifier         = (a:ModifierA|b:ModifierB|c:ModifierC)+;
astrule Modifier = as:ModifierA min=0 max=1 

bs:ModifierB min=0 max=1    
cs:ModifierC min=1 max=1;

ModifierA = "static";
ModifierB = "final";
ModifierC = Visibility;
enum Visibility  = public | private | protected;

01
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Modifier: 
static?='static'? & final?='final'? & visibility=Visibility;
enum Visibility: public | private | protected;

01
02
03

XG

astrule ensures that each

element occurs at most once

in the model

Figure 5. Translating unordered groups fromXtext toMonti-
Core, by introducing a list and an ast-rule that ensure that
each element of the list occurs exactly once.

3. Expressions A standard task for every LWB is the defi-
nition of expressions. An expression is a type of rule or rule
set that calls itself recursively. The most standard case are
algebraic expressions. Expressions always bring two prob-
lems to the language engineer. Concerning parsing, she has
to consider left (or right) recursion and left or right associa-
tivity. Xtext bases on ANTLR3, and hence, does not support
left recursion. MontiCore, on the other hand, uses ANTLR4
which already supports left recursion. Therefore, when our
translation encounters left recursion in a MontiCore gram-
mar, it first transforms the left recursive rules. Figure 6 shows
how we transform a left recursive grammar in MontiCore be-
fore we can translate it into Xtext according to [11]. First we
identify all nonterminals that are unambiguous, for example
because they have a terminal prefix that identifies them. Our
translator groups these nonterminals into a new nontermi-
nal called UnambiguousExpr. Next, the rule with the lowest
priority is moved to the top. In the example, the AddExpr
is moved to the top and its righthand side is expressed as a
sum of MultExpr. The right-hand side of MultExpr is also
changed to UnambiguousExpr which is the expression with
the highest priority.

4. Decision Rules for the Parser It is sometimes impos-
sible to write unambiguous grammars. For example, a pro-
duction with two alternatives that are both applicable at
a point in the parsing process is ambiguous because the
parser can take both parsing paths. Therefore, it is necessary
to specify decision rules, usually in the form of predicates.
Translating predicates is very hard because the underlying
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grammar Expressions extends Basic{
Expr            = MultExpr | AddExpr | UnambiguousExpr ;
MultExpr = Expr "*" Expr ;
AddExpr = Expr "+" Expr ;
UnambiguousExpr = BracketExpr | Number ;
BracketExpr = "(" Expr ") " ;

}
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grammar Expressions extends Basic{
Expr            = MultExpr | AddExpr | BracketExpr | Number ;
MultExpr = Expr "*" Expr ;
AddExpr = Expr "+" Expr ;
BracketExpr = "(" Expr ")" ;

}
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MCG

nonterminals Number and
BracketExpr are unambiguous

grammar Expressions extends Basic{
Expr            = AddExpr ;
AddExpr = MultExpr ("+" MultExpr)* ;
MultExpr = UnambiguousExpr ("*" UnambiguousExpr)* ;
UnambiguousExpr = BracketExpr | Number ;
BracketExpr = "(" Expr ")" ;

}

01
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04
05
06
07

MCGadding "*" to
support none or

multiple AddExpr

changing RHS of productions
to an explicit Expression

Figure 6. Removing left recursion in a MontiCore grammar
before translating to Xtext.

parser technology of LWBs defines the structure for predi-
cates, and these structures can vary between metalanguages.
Some parsers can even resolve ambiguities directly, so the
language engineer is not aware of developing an ambiguous
language, which impedes the translation even more.

5. Keywords We also have to consider the handling of key-
word escaping. While lexer and grammar-based languages
forbid keywords as names or arbitrary tokens based on the
context, some concepts enable the usage of keywords as
names. MontiCore supports adding an ampersand (&) to the
Name nonterminal to support keywords to as names. Xtext
has no such feature. Instead, it supports prefixing a name
with a caret that is removed during parsing to escape key-
words. Because the caret is handled on the model level and
depends on Xtext as source platform, this concept is not
translatable into MontiCore. The models are still parsable,
but the escape character will be part of the name. The loss
of the ampersand from MontiCore to Xtext is unacceptable
because it makes models unparsable. The suggested way of
the Xtext developers for using keywords as names is the
creation of a production NameWithKeywords that refers ei-
ther to a Name or to all possible keywords as depicted in
Figure 7. The NameWithKeywords nonterminal in the Xtext
grammar can either be a Name or the keyword state. When
we retranslate a grammar from Xtext back to MontiCore, we
try to find a production that is called NameWithKeywords to
change it back to Name&.

6. Grammar Inheritance When dealing with grammar
inheritance, we consider three possible cases: multi, single,
and no inheritance. If the target metalanguage permits a
more general kind of inheritance, the translation is simple.
If it is stricter, we reduce the inheritance, e.g., by merging all
super grammars into a single grammar to transform multi

State = "state" Name& ";" ;01 MCG

State : "state" nameWithKeywords=NameWithKeywords ";"; 
NameWithKeywords : Name | "state";

01
02

XG

name may be keyword

keyword "state" as an alternative

Figure 7. Resolving MontiCore’s ampersand in Xtext to en-
able keywords as names.

to single inheritance. This process is recursive because we
prefer maintaining the inheritance structure wherever possi-
ble. During the merging process, we also have to take into
account that subgrammars may redefine or override produc-
tions of their super grammars. Therefore, we merge super
grammar stepwise and remove all productions that are over-
ridden. If no inheritance is permitted, we apply the same
approach, but insert all rules of the super grammar into the
translated grammar to keep the same expressiveness. Of
course, when translating back into MontiCore the translator
cannot restore the original super grammar as the transla-
tor cannot identify which productions originate from which
grammar.

grammar Automaton extends Literals, Expressions {

// Grammar productions

}

01

02

03

MCG

grammar Automaton extends Merged_LiteralsExpressions{

// Grammar productions

}

01

02

03

MCG

grammar Automaton with Merged_LiteralsExpressions {

// Grammar productions

}

01

02

03

XG

merging of all supergrammars

translation to Xtext

Figure 8. Transforming multi-inheritance in MontiCore to
single inheritance in Xtext, by merging supergrammars.

7. Rewrite Rules Rewrite rules directly change the created
AST or the classes of which the AST consists. For example,
in Xtext language engineers can change the AST node that
is produced by a production as depicted in Figure 9. Many
of these rules are workbench-specific. Therefore, it is not
possible to provide a general concept for their translation.
Some concepts are not translatable, for example, if the source
grammar changes the return type of a production, and the
target metalanguage does not support this type of change.
In consequence, this grammar cannot be translated AST-
equivalently.

Rules that support adding arbitrary attributes or methods
to an AS class cannot be translated in general. Although it is
possible to copy these rules into a handwritten extension us-
ing, for example, the generation gap or the TOP pattern, we
cannot guarantee that the names and types are present in the
result, as we do not know the generated structure yet. Simi-
larly, the adding of an attribute may incorrectly override an
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Addition returns Expression:

Multiplication ('+' Multiplication)*;

01

02

XG

Figure 9. Specifying the return type of a production in Xtext.

existing (renamed) attribute of the target, or may incorrectly
not override an attribute that is not existing in the target
grammar. In summary, this behavior would result in a se-
mantically non-equivalent translation, and should, therefore,
be forbidden to ensure the stability of the translation.

8. Symbols and Scopes Symbols, symbol tables, and scopes
are an essential factor in the structuring of languages and are
often specified in grammars. The most important use case for
symbols is the referencing of model elements at a different
point in the model. This process, called cross-referencing,
is idiomatic to most grammar-based languages. MontiCore
supports references to symbols that have names that are
of type Name whereas Xtext supports references to nonter-
minals with an arbitrary identifier. The Xtext grammar in
Figure 10 specifies transitions that reference two states. The
from state is referenced via the ID specified in the nontermi-
nal State. The target state is specified via the nonterminal
ValidID that specifies a full-qualified name. While translat-
ing Transition to MontiCore, we rename the ID production
and all its occurrences to Name. Next, we reduce the second
reference to an element of type ValidID. This preserves
model-equivalence if context conditions are generated that
check for the existence of the referenced State.

symbol State = "state" Name";" ;

Transition = from:Name@State "->" to:ValidID ";" ;

ValidID = Name ("." Name)* ;

01

02

03

MCG

State: "state" name=ID ";" ;

Transition: from=[State] "->" to=[State|ValidID] ";" ;

ValidID: ID ("." ID)* ;

01

02

03

XG

reference to a 
state via its Name

reference to a state via 
full qualified name

Figure 10. Translating non-terminal references between
MontiCore and Xtext.

6 Case Study
Suppose a software engineering team is developing a model-
ing language for the textual description of software architec-
tures using MontiCore’s language composition mechanism
to reuse existing language components. When employed by
software architects, these wish for editor support to craft
architecture descriptions effectively. Translating a grammar
from MontiCore to Xtext enables to reuse Xtext’s rich editor
features. Another reason why a software teammight want to
change the technological space is that they want to integrate
languages that are developed in MontiCore with languages
that are developed in Xtext. We illustrate the translation of
a grammar using the example of MontiArc, an architecture
description language (ADL) for modeling component and
connector architectures.

grammar MontiArc extends MCBasics {
MACompilationUnit = Package ImportStatements* Component;
// Component Head
symbol Component implements ArcElement

= "component" Name Signature "{" ArcElement* "}";
Signature  = Parameters? ("extends" Type)?;
Parameters = Parameter ("," Parameter)*;
Parameter  = Type Name ("=" Expression)?;  
interface ArcElement;

// Component Body Elements
SubComponent implements ArcElement

= "component" Type Arguments? instances:Names ";";
Connector implements ArcElement

= "connect" source:Name "->" targets:Names ";";
Ports implements ArcElement

= "port" Port ("," Port)+ ";";
Port = (["in"] | ["out"]) Type Names?;
Names = Name ("," Name)*;

// Embedded Behavior Elements
Variable implements ArcElement = Type Names? ";" ;  
Automaton implements ArcElement = "automaton" Name? "{" 

(States | InitialState | Transition )* "}"; 
symbol State = "state" Name ";" ;
InitialState = "initial" Name ("/" Block)? ";";
Transition   = source:Name@State ("->" target:Name@State)? 

("[" Expression "]")? ("/" reaction:Block)? ";";
Block        = "{" (Name "=")? Expression ("," Expression)* "}";

}

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

MCG

Figure 11. Simplified excerpt of the MontiArc grammar.

Architectures in MontiArc consist of hierarchically com-
posed components that communicate over typed, directed
ports. Components are either composed or atomic. A com-
posed component’s behavior is induced through the behavior
of its subcomponents, whereas atomic components yield be-
havior descriptions, such as automata, to define their input
and output behavior. The MontiCore grammar of the Mon-
tiArc ADL defines the abstract and concrete syntax of all
MontiArc architectural models. A simplified excerpt of this
grammar is shown in Figure 11. First, the MontiArc grammar
extends MCBasics (l. 1) to inherit and avoid re-engineering
of commonly used productions, such as names, types, expres-
sions, packages, and import statements. Next, this grammar
defines MontiArc models files such that they have a pack-
age declaration, some import statements, and a component
definition (l. 2). Components have a name, a signature, and
a component’s body consists of instances of ArcElements,
which are structural component elements (ll. 11-19), such
as ports and connectors, and behavioral elements (ll. 21-29),
e.g., behavior automata.
From the MontiCore grammar of the MontiArc ADL, we

automatically derive the Xtext grammar shown in Figure 12.
To this end, the translator automatically applies the trans-
formation rules presented in Section 5. First, the input gram-
mar is transformed internally to resolve MontiCore specifics
before individual productions are translated into their re-
spective counterparts in Xtext. Productions without lan-
guage workbench specifics, such as MACompilation, are di-
rectly translated into the respective counterpart in Xtext
using transformation rule 1. To resolve interfaces, such as
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grammar MontiArc with MCBasics
MACompilationUnit : package=Package importStatements+=ImportStatements* 

component=Component;
// Component Head
Component  : "component" name=ID signature=Signature 

"{"arcElements+=ArcElement* "}";
Signature  : parameters?=Parameters? ("extends" type?=Type)?;
Parameters : parameters+=Parameter ("," parameters+=Parameter)*;
Parameter  : type=Type name=ID ( "=" expression?=Expression )?;
ArcElement : Component | SubComponent | Connector | 

Ports | Variable | Automaton ;

// Component Body Elements
SubComponent : "component" type=Type arguments?=Arguments? 

instances=Names ";";
Connector : "connect" source=ID "->" targets=Names ";";
Ports     : "port" ports+=Port ( "," ports+=Port)+ ";";
Port      : ( in ?="in" | out ?="out") type=Type names?=Names?;
Names     : names+=ID ("," names+=ID)*;

// Embedded Behavior Elements
Variable  : type=Type names?=Names? ";";
Automaton : "automaton" name?=ID? "{" (states+=State |   

initialStates+=InitialState | transitions+=Transition)*"}";
State        : "state" name=ID ";";
InitialState : "initial" name=ID ("/" block?=Block)? ";";
Transition   : source=[State] ("->" target?=[State])?   

("["expression?=Expression"]")?("/"reaction?=Block)?";";
Block        : "{" ( name?=ID "=")? expressions+=Expression 

("," expressions+=Expression )* "}";
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Figure 12. Xtext grammar of the MontiArc ADL.

ArcElement, which are specific to MontiCore, transforma-
tion rule 2 is applied, resulting in an alternative off all its im-
plementing nonterminals (l. 10). Furthermore, using transfor-
mation rule 8, the symbols Component (l. 4) and State (l. 25)
of Figure 11 are transformed into simple productions in Xtext,
as Xtext does not specify symbols explicitly. The state ref-
erences in the Transition are represented as equivalent
references in Xtext (l. 27). The other specified transforma-
tions rules are not needed for this example but some are used
in the transformation of its super grammars.

By this, the translation enables importing MontiArc mod-
els into Xtext and reuse the tooling landscape there for
further development. Thus, a software architect who uses
our approach is enabled to use language features of Monti-
Core such as the definition of the interface nonterminal
ArcElement as well as the tool support for Xtext by auto-
matically deriving the Xtext grammar.

7 Lessons Learned
In the previous sections, we implemented a bidirectional
translation between MontiCore and Xtext. This translation
consists of four steps: Parsing, checking, transforming and
translating. First, the translator parses a MontiCore or Xtext
grammar. Next, the translator ensures that the grammar
complies to the specified well-formedness rules. Validation
checks not only the metalanguage’s context conditions but
also some translation-dependent restrictions. For example,
an Xtext grammar must have a package; this is optional
for MontiCore. Therefore, we cannot translate a MontiCore
grammar to Xtext if it does not have a package. If the gram-
mar is well-formed and also translatable, the translator checks

whether the grammar contains concepts that cannot be ex-
pressed in the target meta-language and thus requires sim-
plification before translation. During the simplification, we
transform concepts that do not have an equivalent in the tar-
get language into concepts that the target language supports,
e.g., explicit start rules.
The simplification consists of chained transformations

that are preserving equivalence and can be executed in ar-
bitrary order. After the necessary simplifications have been
performed, the tool translates the grammar. In the genera-
tion step, the AST is given to the generation engine, which
produces the target grammar with the help of templates and
the helper structures. The translation is performed rule-by-
rule. That means that the generator iterates through all rules
one by one and translates them individually. Only if transfor-
mations affect multiple rules, our translator also transforms
multiple rules at once. We consider all grammar concepts of
both metalanguages. The translator translates all concepts
that are generally translatable and gives warnings or errors
for all other concepts.
Table 1 lists the language constructs where Xtext and

MontiCore differ. MontiCore supports the definition of sym-
bols and scopes at the grammar level. Furthermore, Monti-
Core provides more functionalities regarding inheritance
between productions and grammars. Xtext provides an IDE
for DSLs which is beneficial for developers and prevents
errors. Also unordered groups are useful when the order in
which elements occur in a model is not relevant. Although
we found a workaround for this in MontiCore this impedes
readability. Both language workbenches support handwrit-
ten extensions but the constructs provided in the grammar
differ. For example, in Xtext grammar language engineers
can explicitly change the return type of a production while
MontiCore supports code injection in grammars.

In Section 4, we distinguished between equivalence, con-
servatism, bijectivity, and convergence. To each of which we
identified a lesson based on our experience

Lesson 1: Equivalence cannot be achieved with gram-
mar translations only. Equivalence means that two lan-
guages contain exactly the same models in terms of abstract
and concrete syntax, well-formedness and semantics. Since
our translation operates on grammar only and neglects well-
formedness rules and semantics, we were unable to achieve
equivalence. Furthermore, due to transformations that our
translation performs before translating grammars from one
technological space to another the AS of languages changes.
Hence, equivalence is not achieved. For that reason, future
approaches, which aim to achieve language equivalencemust
address well-formedness rules and semantics in addition to
grammar translations.

Lesson 2: EOFs are problematic as grammars with EOFs
are not AS-conservative. In Section 4, we distinguished
different kinds of conservatism. AS-conservative translation
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Table 1. Differences of language constructs and infrastruc-
ture in Xtext and MontiCore

Element MontiCore Xtext
Scopes Grammar Xtend
IDE no yes
Grammar Inheritance Multiple Single
Production Inheritance yes no
Change of Return Types no yes
Code Actions yes no
Tree Rewriting no yes
ASTRule Additions yes no
Until no yes
Explicit StartRule yes no
Unordered Groups no yes
Left Recursion yes no
Constant Groups yes no
Interfaces / Abstract NT yes no
Names with Keywords yes no
Fragment Rules no yes

of a grammar preserves all nonterminals, cardinalities, as
well as semantically relevant terminals. MontiCore creates
for every nonterminal an object in the AST and Xtext does
the same. We accept the renaming of nodes and enforce
only an equal structure of the tree for an AS-conservative
translation from Xtext to MontiCore. The EOF token is not
translatable as it is handled differently in both LWBs. When
the translation encounters EOF tokens it warns the language
engineer that it cannot translate this concept. Therefore,
our translation is AS-conservative for grammars that do
not contain EOF tokens. From this, we can learn that there
are implicit tokens and token definitions such as the EOF
token, which cannot be translated between grammars such
as MontiCore and Xtext.

Lesson 3: Semantic Predicates and EOF are problematic
as grammars with semantic predicates or EOF rules are
not CS-conservative. A translation is CS-conservative if the
resulting parser of the grammar can parse at least all models
of the input grammar. If we forbid the usage of semantic pred-
icates and the EOF rule in the input MontiCore grammar, the
translation is CS-conservative. Every model that is parsable
using the original grammar stays parsable in the generated
grammar. For equivalence between the original and the trans-
lated grammar, we need to check if every unparsable text
stays unparsable for the translated grammar. This property
does not hold. For example, in MontiCore astrules enable
cardinality restrictions. These are not translated to Xtext as
Xtext does not support a similar concept. Thus, the translated
Xtext grammar produces models, that the original grammar
developed in MontiCore did not produce.

Lesson 4: Resolving inheritance in MontiCore prevents
CS-AST compliance. CS-AST-compliance demands that the

same model results in the same AST structure. Our current
translation cannot guarantee CS-AST compliance, as we have
to resolve inheritance in MontiCore because Xtext does not
provide this concept as it, for example, does not support
interface productions. This transformation of grammars ul-
timately affects the structure of the abstract syntax of the
grammar and thus the AST of models. Thus, the translation
between a grammar that supports language inheritance and
interface productions and a second grammar which has none
of these concepts is not CS-AST compliant.

Lesson 5: The translation between MontiCore and Xtext
is not bijective. Bijectivity is achieved if each grammar in
the source technique is mapped to exactly one grammar in
the target technological space and vice versa. MontiCore
and Xtext both have concepts that are not expressible in the
other workbench. Contradicting bijectivity, two MontiCore
grammars may be translated into the same Xtext grammar,
as the translation requires transformations. For example,
interface productions are removed during translation. The
reverse translation cannot distinguish whether there was
production inheritance. The same holds for parameters in an
Xtext grammar. Therefore, we cannot achieve bijectivity. To
overcome this problem, it could be possible to identify best
practices for the creation of grammars which could allow
an improved bidirectional (but still not bijective) translation.
We will discuss our ideas to this respect again in Section 8.

Lesson 6: The sequential translation fromXtext toMonti-
Core converges after at least two steps. Convergence re-
quires that sequential translations from Xtext to MontiCore
and back do not change the input grammar. Our tool chain
translates LWB specific concepts into a common concept, so
it achieves convergence after one step. The only exceptions
are translations that require additional context conditions
or AST rules, as these concepts are not translated yet and
therefore lost after the second translation. Grammars that
include these concepts converge after two steps. Hence, the
translation of LWB specific concepts into a common concept
ensures that the sequential translation does not change the
input grammar and thus converges after two steps.

8 Discussion
Even though the approach presented in this paper imple-
ments a bidirectional translation, it is not bijective but con-
verges after at most two steps. If the source language has a
concept that is simplified before the translation (cf. Section 5),
we have two source grammars (the non-simplified and the
simplified are valid grammars of the source metalanguage)
that are mapped to the same target grammar. Thus, we can,
for example, not decide whether a production inheritance
was used after we refactored it. For that reason, the benefits
of language features such as MontiCore’s language composi-
tion are lost. Moreover, if the target metalanguage supports

47



Mind the Gap: Lessons Learned from Translating Grammars between MontiCore and Xtext DSM ’19, October 20, 2019, Athens, Greece

concepts that cannot be represented in the source language,
a grammar that uses these concepts cannot be created by
the translation. As Xtext does not use a symbol table, we
cannot decide whether a production was a symbol before we
translated it to Xtext. Although bijectivity is impossible due
to these reasons, there are ways to improve our approach
concerning bidirectional translations. One possible exten-
sion would be a metalanguage dependent transformation,
which reintroduces concepts such as inheritance by applying
refactoring transformations, which aim to implement the
best practices of the grammar definition. By this, a refactored
language that conforms with its best practices would reduce
the grammar ambiguity. Nonetheless, we do not necessarily
receive the initial source grammar using these rules. More-
over, the translation between MontiCore and Xtext is not
fully language equivalent as some language concepts are
incompatible. For example, MontiCore inherits the concept
of semantic predicates from ANTLR 4, whereas Xtext for-
bids using semantic predicates. Hence, languages that use
semantic predicates are not directly expressible in Xtext.
In addition to the language inequivalence, also the ab-

stract syntax of the languages are not entirely equivalent,
as the implemented translations are not bijective. There-
fore, it is not possible to directly reuse all well-formedness
rules, transformations, or generators that are based on the
AS. However, there are two possibilities to synchronize the
well-formedness rules. First, it could be beneficial to map
every AS class of the source AS to a class of the target AS by
extending the translation with AST-conservative rules and
newly implement the well-formedness rules for the target AS.
Second, we could alternatively rewrite one of the grammars
until the resulting abstract syntax is CS-AST compliant. We
expect that changing the source grammar to be a more ben-
eficial solution, as changing the source AS to conform to the
target AS corresponds to reducing the source grammar to a
new version that is consistent with the target metagrammar.
In addition to the AST translation, also the translation

of well-formedness rules is not covered in our approach
yet. Since the implementation of these rules in MontiCore
is done in Java, it is not straightforward to translate into a
different language workbench, as different generated infras-
tructure might be required to check these rules in the target
implementation. As grammars alone are not capable of fully
defining a language, different concepts for the specification
and translation between language workbenches could be
investigated or developed in future works to improve the
translation of languages that were created using different
language workbenches. It could be beneficial to translate
grammars to metamodels and back, as this concept could
facilitate the integration of other language workbenches or
integration areas for the language itself. As there already
exist approaches for this translation in other related works,
we will discuss this again in Section 9 when we take a closer

look at these works. Finally, lessons learned during the trans-
lation between MontiCore and Xtext should be generalized
to other LWBs.

9 Related Work
In contrast to most other related works, which focus on
transcompilation or metamodel translation, we focused on
the translation of grammars between language workbenches.
Additionally, the approach presented in [29] derives an

M3-level translation to bridge the technology gap between
grammarware and modelware. Grammarware includes all
artifacts that are directly related to grammar. The M3-level
for grammarware is the metagrammar. Modelware includes
all model-based artifacts. The M3-level for modelware is the
MOF. Consequently, an M3 level translation translates gram-
mars to metamodels. The work from [29] chooses EBNF as
metagrammar as it is the most commonly used one. Similarly,
the concept presented in [16] develops a related concept that
additionally translates programs (the models of a grammar)
to models of the derived metamodel.
Another concept based on MontiCore translations is de-

scribed in [4] and introduces a concept and an implementa-
tion for the translation of MontiCore grammars to metamod-
els with Ecore and MontiCore models into Ecore instances.
SinceMontiCore is already capable of generating AST classes
that conform to EMF, it is only necessary to derive an Ecore
metamodel. This generator serializes the meta AST, i.e., the
classes that build the AST. They use OCL constraints to map
cardinalities from the grammar in the metamodel. Following
this, we can leverage tools like Sirius for graphical modeling
and the visualization of languages. Additionally, in [1] an ap-
proach to create Ecore metamodels based on Xtext grammars
is presented. Based on these approaches future works could
investigate whether the bidirectional translations between
MontiCore and Xtext could be improved by using the Ecore
metamodel as an intermediate translation step.
The idea of deriving metamodels from grammars lever-

aging Xtext has been done previously [1, 13]. Both works
take EBNF grammars as input and translate them to Xtext.
From there, Xtext takes over for the metamodel translation.
For EBNF grammars, this is intuitive because Xtext uses a
syntax that is close to EBNF’s. The Grammar-to-Model Lan-
guage (Gra2Mol) [13] uses an early version of Xtext. Thus,
the derived metamodels are not matured, yet.

10 Conclusion
Model-driven systems engineering demands integration of
truly heterogeneous modeling languages to automate consis-
tency checking, tracing, and change propagation of models
developed by different stakeholders. This demands to bridge
the gaps between the different technological spaces of the
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participating modeling languages. To this end, we have pre-
sented challenges for translation of grammars across differ-
ent technological spaces, a systematic method to translate
grammars between the technological spaces of MontiCore
and Xtext, and lessons learned while developing this method.
Overall, varying degrees of language compatibility are fea-
sible and must be considered when developing a language
in a particular technological space to enable its translation
in another. When considering these challenges, automated
translation of grammars, and, hence, seamless integration
of solutions engineered by stakeholders from different do-
mains becomes possible. This can greatly facilitate pervasive
model-driven systems engineering in the future.
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