
Meta-Metrics for Simulations in Software Engineering
on the Example of Integral Safety Systems

Christian Berger3, Delf Block2, Christian Hons2,
Stefan Kühnel1,2, André Leschke2, Bernhard Rumpe1, Torsten Strutz2

1Software Engineering 2Volkswagen Aktiengesellschaft
RWTH Aachen University, Germany Entwicklung Fahrzeugsicherheit

rumpe@se-rwth.de stefan.kuehnel@volkswagen.de

3Department of Computer Science and Engineering
Chalmers | University of Gothenburg, Sweden

christian.berger@gu.se

Abstract: Vehicle’s passengers and other traffic participants are protected more and
more by integral safety systems. They continuously perceive the vehicle’s environment
to prevent dangerous situations by e.g. emergency braking systems. Furthermore,
increasingly intelligent vehicle functions are still of major interest in research and
development to reduce the risk of accidents. However, the development and testing of
these functions should not rely only on validations on proving grounds and on long-term
test-runs in real traffic; instead, they should be extended by virtual testing approaches to
model potentially dangerous situations or to re-run specific traffic situations easily. This
article outlines meta-metrics as one of today’s challenges for the software engineering
of these cyber-physical systems to provide guidance during the system development:
For example, unstable results of simulation test-runs over the vehicle function’s revision
history are elaborated as an indicating metric where to focus on with real or further
virtual test-runs; furthermore, varying acting time points for the same virtual traffic
situation are indicating problems with the reliability to interpret the specific situation.
In this article, several of such meta-metrics are discussed and assigned both to different
phases during the series development and to different levels of detailedness of virtual
testing approaches.

1 Introduction and Motivation

Today’s vehicles are more and more equipped with sensor- and actuator-based driver assis-
tance systems which may be subdivided into so called comfort- and safety-oriented systems
[NCA12, BR12b]. These functions realized by such systems and integrated in automobiles
as well as the higher demand on computational power increase the complexity level of
software and cross-linkage. The modular concept of AUTOSAR has been established to
manage the development of integral safety systems (ISS) and to standardize interfaces
between different abstraction layers within a device controller. This enables potentials of
specialization for both OEM and suppliers regarding soft- and hardware development and

[BBH+13] C. Berger, D. Block, C. Hons, S. Kühnel, A. Leschke, B. Rumpe, T. Strutz
Meta-Metrics for Simulations in Software Engineering on the Example of Integral Safety Systems
In: Proceedings des 14. Braunschweiger Symposiums AAET 2013, Automatisierungssysteme,
Assistenzsysteme und eingebettete Systeme für Transportmittel, 6.-7.2.2013, pp. 136-148,
Intelligente Transport- und Verkehrssysteme und -dienste Niedersachsen e.V.(Hrsg.). 2013
www.se-rwth.de/publications

the optimization of this process itself. However software with a high level of complexity
requires new methods in testing because firstly, a failure or malfunction within safety-
critical functions might lead to disastrous consequences. Secondly, the actual situation of
the environment detected by sensors and further interpreted by an algorithm may be subject
of much higher variation than air-conditioning or audio systems. But the development
process should also focus on usability in respect of the customer’s requirements, and thus,
the quality assurance for a function like predictive pedestrian protection should clearly rely
on objective metrics but should also consider the appealing of the function’s behavior.

Thus, there has to be an adequate consideration of subjective aspects during the development
process which is done by, of course, intensive test-drives throughout the test and application
phase. In this case “application” means finding an ideal set of parameters to get a compre-
hensive appealing of a function with focus on behavior and impression. Nevertheless it is a
difficult task to make those subjective aspects more objective and to transfer these steps
into a virtual environment assuring the function’s quality [BR12a]. Another possibility to
enhance quality of software is to identify certain failures even earlier than their occurrence
in former projects. This can be done by designing and applying meta-metrics, which allow
an analysis and in-depth evaluation of existing metrics that measure a function or specific
software module. These meta-metrics will operate independently from a specific system
and test context like a concrete simulation environment and may be means for a more
general purpose to tackle one of today’s software engineering challenges for cyber-physical
systems [Ber12].

The remainder of this article is organized as follows: Sec. 2 summarizes existing publica-
tions to this topic and related work. Sec. 3 defines the term “meta-metrics” focusing on the
automotive domain. In Sec. 4, some meta-metrics are applied exemplarily on an abstracted
ISS test process. Sec. 5 discusses experiences and results and gives an outlook on future
work.

2 Related Work

The topic of using meta-metrics to support the development of safety functions especially
in the automotive domain has not been investigated fully to the best knowledge of the
authors. However, the field of metrics in computer science and software engineering exists
for a longer period, so there are many standard references, which concentrate on discussing
particular software metrics or how to derive metrics within a given context. Such references
are e.g. [LDA97, FP98, EFR07, Lig09, SSB10], which consider software quality related
processes to assure quality and software measurement in general. An introduction into this
topic is given by [Glo05] and [Aly06].

Recent research aims in particular for identifying and systemizing new metrics on the one
hand and tries to evaluate as many of those to provide guidance to software engineers in
choosing the right ones for a project on the other hand. A survey of object-oriented metrics
present Xenos et al. in [XSZC00] who gathered traditional software metrics applicable to
object-oriented contexts as well as those specifically designed for object-oriented environ-

ments. This collection has been evaluated by meta-metrics, which were partly existent to
that time, and which partly had to be evolved for this survey. Meta-metrics have been used
to enable the assessment of a specific selection of basic metrics in a better way.

An analogical approach is presented by [SX09]. There, certain metrics get characterized by
various categories, which simultaneously form the meta-metrics to improve the selection
of measures for the evaluation of e-commerce systems. In this case Stefani also aims for
supporting stakeholders by giving them an orientation, where, which one, and for what
purpose metrics are supposed to be used. Some examples for these meta-metrics are
“measurement scale”, “measurement independence”, or “accuracy”.

Woodings addresses in [Woo99] the need for measuring evaluation results within the scope
of the development process in software projects to identify potential improvements and
proposed two meta-metrics by converting existing metrics: The first one is DeMarco’s
Estimating Quality Factor, which focuses on the rapid convergence to an accurate figure
during a project, and the second one is a definition to provide a lower boundary on errors
for multiple initial estimates. He shows that both are able to achieve the requirements for
metrics and their usefulness.

Baroni and Abreu present in [BBeA03] a formal library for aiding metrics extraction
(FLAME) with the purpose of formalizing object-oriented design metrics definitions. To
that end, they use the Object Constraint Language (OCL) as part of the Unified Modelling
Language (UML) [OMG12] upon its meta-model and combine several thereof to “functions”
included into their library. They evaluated various design models to verify the usefulness of
that methodology. A catalogue of formalized metric definitions is also proposed.

In [WN10], the authors reveal the importance of meta-measurement approaches to derive
challenges in measurement, e.g. minor significance of a single metric in contrast to a
selection, subjectivity of measurement, and the different views of a measured system. Thus,
they define certain requirements for those approaches as stability and understandability,
which need to be fulfilled by a measurement, or the dynamic expendability for measures.
Weber and Nimmich present an evaluation meta model and thereof its derivable meta-
measures that they validate in the context of services such as web-based serices and other.

The authors of [BRR+10b, BRR10a] showed how metrics are able estimate the potential to
form product lines from existing legacy software. Therefore, they firstly describe a method
to design appropriate metrics, which are then applied to an example industrial project.
Thus, they underline the common relevance and usefulness of measurement in software
engineering and industry.

Flohr provides in [Flo08] a theoretical basis for quality gates as well as the design and
definition of appropriate criteria. Quality gates are defined as particular milestones or
decision points within a development process or project, which support the fulfillment of
quality requirements, and which also map out a strategy with concrete quality objectives.
He depicts when and how these criteria are identified from which actual metrics and how
they can be improved over time.

3 Meta-Metrics for Software Quality Assurance

The term “meta-metric” for the development of vehicle functions is used to describe a
methodical tool for providing necessary information to a vehicle project’s stakeholders
for example. Its application is required to steer and optimize the allocation of resources
like developers, test engineers, or hardware-in-the-loop usage time and hence, to provide
information about the quality of a certain development artifact and to maintain and improve
its current level of quality. Therefore, various sources of information are continuously
analyzed by mining data from the past over time for a single development artifact.

We define “meta-metrics” for simulations in software engineering in the automotive domain
as follows: The continuous determination of quantitative figures, which are defined over
a set of results of simulation and test runs carried out for specific aspects, to steer and
optimize the development process for an increased quality of the resulting product.

In the following, several meta-metrics are defined to determine the quality of development
artifacts over time. Hereby, N describes the total number of individual and uniquely
identifiable versions of a single development artifact; during a real development, N might
describe the total number of revisions from a centralized repository. In Eq. 1, first definitions
are provided. Hereby, an artifact refers to either on a concrete software unit on a lower
level or on an implementation model of an integrated vehicle function. The function
res(r, i) refers to an evaluation of a given test case, which might be a unit test or a complex
traffic simulation model. res(r, i) will be false iff a failure can only be assigned to the
implementation side, else it will be true.

Rsucceeded(r,N) =

N∑
i=n0

res(r, i) (1)

where res(r, i) =

{
1 iff artifact r was tested successfully at revision i,
0 else.

Rfailed(r,N) = N −Rsucceeded(r,N)

Based on these initial definitions, the following first meta-metrics can be derived as de-
scribed in Eq. 2, which describe the ratio of succeeding and failing development artifacts for
the considered development period. By these meta-metrics, “heatmaps” may be generated,
which visualize anomalies among the different development artifacts. Additionally, Q1

compares the successfully carried out simulation runs for the development artifact r during
two development periods; if Q1 is non-negative, a quality indicator can be derived to show
that the quality of the considered development artifact has not decreased.

R+(r,N) =
Rsucceeded(r,N)

N
,

R−(r,N) = 1−R+(r,N),

Q1(r,N1, N2) = R+(r,N2)−R+(r,N1) where N1 ≤ N2. (2)

To get an indicator about the long-term stability of a development artifact r, the following
metrics are defined. First, the last revision is determined where the artifact r failed during
a test-run. Based on this revision number, its negative age is calculated describing how
many revisions passed since the last failing one; thus, the larger this figure the better.
The comparison of the ages for two different development periods as defined by Q2 is an
indicator whether the quality of r has dropped during these two time points when Q2 is
negative.

failed(r,N) = n with n ∈ [0;N] where n is the last failing revision for r.
age−(r,N) = N − failed(r,N)

Q2(r,N1, N2) = age−(r,N2)− age−(r,N1) where N1 < N2. (3)

A further indicator for the average quality is the mean time between test failures (MTBTF).
Obviously, the smaller the MTBTF value the worse is the quality and especially the
reliability of the considered artifact r. In the following, Q3 is defined to determine the
MTBTF as shown in Eq. 4. The equation Rfailures(r,N) is used to determine the number
of uniquely failing revision, i.e. consecutive failed revisions are considered as one failing
revision unless the first non-failing revision is detected.

Rfailures(r,N) =

N−1∑
i=n0

fail(r, i)

where fail(r, i) =

{
1 res(r, i) 6= res(r, i+ 1) ∧ res(r, i) = 0,
0 else.

Q3(r,N) =
Rsucceeded(r,N)

Rfailures(r,N)
. (4)

In contrast to the aforementioned indicators, the following ones require access to the
internal structure about an artifact’s functionality to estimate its quality. The next indicator
for an increased risk of potential failures is the inspection of the implementation model’s
complexity over time. A very naı̈ve complexity function is the usage of the number of source
code lines (SLOC); however, ineffectively written implementations may be considered as
risky. Instead, there are better ways of describing the complexity and internal quality of the
considered artifact r:

1. sloc(r, i) This indicator describes the source lines of code artifact r at revision i; this
figure is required to relate the following indicators to it.

2. MW(r, i) This indicator describes the number of MISRA warnings at compile time
for artifact r at revision i [MIS04].

3. McC(r, i) This indicator describes McCabe’s complexity for artifact r at revision i
[McC76].

4. uncovered(r, i) This indicator represents the number of uncovered statements during
the execution of the simulation run.

All aforementioned indicators about an artifact’s complexity or its internal quality can
be embedded in the following meta-metric Q4(r,N1, N2) as shown in Eq. 5. Here, the
meta-metric describes whether the average artifact’s quality (i.e. its complexity or the
number of critical MISRA-C warnings at compile time) has increased if it is a non-negative
number.

Q4(r,N1, N2) =

∑N1

i=n0

f(r,i)

sloc(r,i)
N1

−

∑N2

i=n0

f(r,i)

sloc(r,i)
N2

(5)

where 0 < N1 ≤ N2 ∧ f(r, i) is one of the
aforementioned functions.

The next meta-metrics require the measurement of execution time and acting time points
during the simulations. In Eq. 6, the indicator Q5(r,N1, N2) is defined which relates the
average execution time in the simulation for artifact r for development period N1 to the
period N2. Hereby, it is assumed that the execution time in the simulation is only dependent
from modeled situation and from the underlying simulation engine. Thus, a non-negative
Q5(r,N1, N2) might indicate an increased performance of the algorithm for instance.

duration(r,i) =

 required execution time in the simulation for artifact
r at revision i iff res(r,i) = 1

0 else.

Q5(r,N1, N2) =

∑N1

i=n0
duration(r, i)

Rsucceeded(r,N1)
−
∑N2

i=n0
duration(r, i)

Rsucceeded(r,N2)
(6)

where 0 < N1 ≤ N2.

In Eq. 7, the indicator Q6(r,N, s) determines the population standard deviation of the
acting time point for the artifact r during the development period N . Thus, it can be
quantitatively determined how reliably an algorithm is acting within a given situation s
in the simulation over time: A negative Q6(r,N1, N2, s) reflects that the variance in an
algorithm’s acting time point has increased and thus, the overall quality of the algorithm
has decreased for artifact r wrt. the specific situation s.

acting(r,i,s) =

 acting time point for the situation s for artifact
r at revision i iff res(r,i) = 1

0 else.

acting(r,N, s) =

∑N
i=n0

acting(r, i, s)
Rsucceeded(r,N)

v(r,N, s) =

√∑N
i=n0

(acting(r, i, s)− acting(r,N, s))2

Rsucceeded(r,N)

Q6(r,N1, N2, s) = v(r,N1, s)− v(r,N2, s) (7)

4 Application on Testing Procedures

The development of an automotive safety function is shaped by a lot of individual activities
consisting of quite a number of different, concurrently fulfilled tasks. Thus, several process
models exist to structure those activities into single steps to define important milestones
and quality gates, and to offer guidance, e.g. methods, specific roles and responsibilities
and the like. Established models are the V-model or its more elaborated W-model variant,
but also evolutionary models such as rapid application/product development (RAD/RPD),
extreme programing (XP) or dynamic systems development method (DSDM) as mentioned
in [SRWL11].

The characteristics of automotive systems therein are that any development of a system
stretches not only on a software product but also the underlying hardware. Those device
controllers are often designed for that particular software or vice versa, which leads to
varying test activities as well, e.g. communication behavior, arithmetic speed, and the
like. Subjective and objective evaluation methods provide the basis for quality measure-
ment during the test process at the various abstraction layers. Therefore, an ideal-typical
development and testing process may look like as in Fig. 1.

This development and test model may be complemented by an iterative or incremental
view: Every quality gate defines its own requirements and test cases to realize a specific
range of that function. The principle of continuous integration, which means the periodic
integration of every single line of code and its corresponding test case at a centralized
repository, as well as the test execution refines this model additionally and leads to a nearly
freely selectable granularity. Every single revision represents an evaluable function to a
specific moment in time of the project progression. In that context, meta-metrics can be
identified and applied.

The aforementioned meta-metrics enable to derive statements about the relative quality
change of that function or system or an indication where the quality might have changed dur-
ing a specific part of the development process. The outlined approach aims for supporting
project managers and engineers by a method that is able to reveal possible quality anoma-
lies in the function’s realization or implementation without requiring to know explicitly
technical details of the source code. This circumstance can be found often in a distributed
development setting where systems are realized by an OEM and its 1-tier suppliers.

To get familiar with using these meta-metrics, they are firstly explained exemplarily to
show how they work and how they are measured. In a second step, the meta-metrics are

Figure 1: V-model: An example for a development process referring to [SRWL11].

being projected on the field of the development of automotive safety functions to show their
applicability and usability. Finally, it is shown at which certain point of the process these
meta-metrics can support the development of ISS.

Exemplary application To illustrate the functionality of the aforementioned meta-metrics,
they are explained by a revision history of a simulation framework, which was used during
the development of an autonomous ground vehicle (AGV) [Ber10]. The software revision
history documents 1,867 single revisions for all components. The further interest focuses
on the artifact “AGV communication and control software” (CCS), which has 892 separate
revisions representing changes to the internal code structure with an accompanying test-runs.
The application of the aforementioned meta-metrics resulted in the following figures:

Rsucceeded(CCS, 892) = 192

Rfailed(CCS, 892) = 700

In regard the relative ratios are:

R+(CCS, 892) = 0.2152

R−(CCS, 892) = 0.7848

With respect to two revisions in the progression of the development process, a positive
quality change is indicated as follows. The revision no. N1 und N2 constitute particular

defined quality gates, so each R+ describes the relative frequency of succeeded results
during each development cycle from the beginning to the regarding quality gate. The last
failing revision no. and its related age are:

failed(CCS, 892) = 743

age−(r,N) = 149.

It follows with

Q2(CCS, 768, 892) = age−(CCS, 892)− age−(CCS, 768) = 149− 25 = 124

as an indicator, which reveals that there is no negative change of quality during the develop-
ment of that artifact. With an acceptance level of 100% success rate of all tests the mean
time between test failures represented by Q3 resulted in

Q3(CCS, 892) =
Rsucceeded(CCS,892)

Rfailures(CCS,892)
= 192

3 = 64,

so after a period of 64 successful revisions, it is likely of having a failing revision. Usually,
the MTBTF should increase here while the maturity of the software is rising, too.

The other meta-metrics can be calculated as mentioned in Sec. 3 in an analog manner and
are left out for the sake of simplicity.

Which benefits may arise from these meta-metrics for the development of ISS? Be-
cause of the different abstraction levels of the V-model and the refined requirements between
the separate layers, logical and technical details of a function are broken down continuously.
Thus, the respective engineers and developers are integrated in technical aspects differently.
On the one hand, this derives various views for a developer on the total function, which
is actually intended to apply the more-eye-principle and to reveal a failure more directly
and earlier in the development phase. On the other hand, however, it means that a part of
the participants involved into the project has a varying knowledge of the technical aspects
depending on the level of abstraction. In this particular case, the presented meta-metrics can
provide assistance with estimating the quality of software that is tested both in a simulation
environment and in an extension of real test drives. From that point, further steps can be
taken for improvement.

In addition to already established methods, the engineer is enabled to estimate the quality of
the corresponding software by these meta-metrics as indicators without the need of having
a detailed knowledge about the underlying implementation. Especially in a simulation
environment, in which the source code can be integrated as a test object for software- or
hardware-in-the-loop tests, meta-metrics Q1 to Q6 can unveil possible anomalies within
the software module even on a higher level of abstraction.

Furthermore, they can also be applied in association with suppliers who develop a function
by a contractual dependency with an OEM because hereby, an evaluation is possible while
retaining the supplier’s intellectual property. Therefore, these metrics are also suitable for
blackbox testing, as far as both sides are able to achieve an agreement of providing the
necessary data for the calculation. Is there an arrangement to provide iteratively a specific
range of functions, the presented metrics can be applied to those milestones or quality

gates. At least, those figures would be only available as the lowest level of granularity
under the aforementioned circumstances. If the function is an truly in-house development
with no other suppliers wrt. to the software, quality statements can be generated on a daily
base. Meta-metrics also provide support in course of functional safety and accordance with
ISO-26262 where OEMs and suppliers have to accomplish their documentation obligation
while developing ISS for new vehicles.

Future generations of simulation environments will have a significant impact on the devel-
opment of ISS and will offer new opportunities to reduce the risk of against failure and for
designing a function. Here, a similar evolution is conceivable such as finite-element-method
(FEM) and multi-body-simulation (MBS) carried out in vehicle body construction regarding
safety aspects. Therefore particular tests are firstly executed in a virtual environment before
these tests are verified and validated in reality to reduce the risk of failure as well. The
riskiness of such situations for people and equipment in context of ISS like potential and
concrete crash scenarios will increase the relevance of those virtual environments. The
benefits of repeatability as well as persistent availability will lead to a further increase
of attractiveness in functional development of ISS. The need of automation of such en-
vironments will offer new testing methods to engineers and developers like continuous
integration did in software-engineering.

Hence, meta-metrics will have great potential to handle the large amount of data more
easily, which are generated by simulation test runs in the context of functional development
especially when it comes to estimating the quality changes within time-critical safety
functions. For instance, each delayed acting time point for an emergency braking may
cause hazardous consequences for all involved people. Q5 und Q6 are now able to provide
specific information as an indicator of quality changes regarding the timing behavior of
an algorithm at certain quality gates, when the set of simulation scenarios and parameters
remains the same, though. If a delay in acting time points or even in the duration of test
execution is being detected over the development time, the source code may have changed
in a negative manner and further investigation should be made.

The following Fig. 2 reveals, at which particular points in the common V-model the
aforementioned meta-metrics may be used.

5 Conclusion and Future Work

To increase the traffic safety for both the driver and other participants, ISS become con-
tinuously more important; so the necessary software to realize such systems increases in
complexity and cross-linkage as well. Thus, ongoing enhancement in testing methods,
procedures, and supporting tools is strongly recommended to fulfill safety requirements and
the customer’s requests. This article presents a contribution aiming to support engineers
and developers during the development by appropriate metrics measuring software and
functions.

Especially meta-metrics may help to make a detailed evaluation of existing metrics at
functions and software modules possible. Thus, a separate approach has been adopted

Figure 2: V-Model: Potential application areas during the V-model.

to characterize firstly meta-metrics in an automotive context and to derive an appropriate
definition for this contribution afterwards. After that, concrete meta-metrics have been
presented, which operate as an indicator to estimate the quality of an ISS over time.

Finally, several meta-metrics have been expounded for a more intuitive understanding and
how they may be helpful within the development process of ISS and its testing procedures.
It could be shown that meta-metrics may indicate quality changes at certain milestones
or agreed quality gates during a software project. Because of their independence of the
technical context, they can be applied on different abstraction levels within the common
V-model.

Future work will concentrate on further proving the presented metrics in certain develop-
ment projects and focusing especially on those with using simulative approaches as testing
procedures. More research in the field of meta-metrics will be done as well to derive new
meta-metrics in the automotive context and to develop best practices as well.

References

[Aly06] Vadym Alyokhin. Management von Softwaresystemen - Systembewertung:
Metriken und Prozess. http://www4.in.tum.de/lehre/seminare/hs/WS0506/mvs/fi-
les/Ausarbeitung Alyokhin.pdf, 2006.

[BBeA03] Aline Lucia Baroni and Fernando Brito e Abreu. A Formal Library for Aiding Metrics

Extraction. In ECOOP Workshop on Object-Oriented Re-Engineering, Darmstadt,
Germany, 2003.

[Ber10] Christian Berger. Automating Acceptance Tests for Sensor- and Actuator-based Systems
on the Example of Autonomous Vehicles. Shaker Verlag, Aachener Informatik-Berichte,
Software Engineering Band 6, Aachen, Germany, 2010.

[Ber12] Christian Berger. From Autonomous Vehicles to Safer Cars: Selected Challenges for
the Software Engineering. In Proceedings of the Conference Automotive - Safety &
Security, pages 1–10, Magdeburg, Germany, September 2012.

[BR12a] Christian Berger and Bernhard Rumpe. Autonomous Driving - 5 Years after the Urban
Challenge: The Anticipatory Vehicle as a Cyber-Physical System. In Ursula Goltz,
Marcus Magnor, Hans-Jürgen Appelrath, Herbert K. Matthies, Wolf-Tilo Balke, and
Lars Wolf, editors, Proceedings of the INFORMATIK 2012, Braunschweig, Germany,
September 2012.

[BR12b] Christian Berger and Bernhard Rumpe. Engineering Autonomous Driving Software.
In Christopher Rouff and Mike Hinchey, editors, Experience from the DARPA Urban
Challenge, pages 243–271. Springer-Verlag, London, UK, 2012.

[BRR10a] Christian Berger, Holger Rendel, and Bernhard Rumpe. Measuring the Ability to Form
a Product Line from Existing Products. In Proceedings of the Fourth International
Workshop on Variability Modelling of Software-intensive Systems (VaMoS). University
of Duisburg-Essen, 2010.

[BRR+10b] Christian Berger, Holger Rendel, Bernhard Rumpe, Carsten Busse, Thorsten Jablonski,
and Fabian Wolf. Product Line Metrics for Legacy Software in Practice. In Proceedings
of the 14th International Software Product Line Conference (SPLC 2010) Volume 2.
Lancester University, 2010.

[EFR07] Irene Eusgeld, Felix C. Freiling, and Ralf Reussner. Dependability Metrics: Advanced
Lectures. Springer, 2007.

[Flo08] Thomas Flohr. Defining Suitable Criteria for Quality Gates. In Proceedings
of the International Conferences on Software Process and Product Measurement,
IWSM/Metrikon/Mensura ’08, pages 245–256. Springer-Verlag, 2008.

[FP98] Norman E. Fenton and Shari Lawrence Pfleeger. Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., 2nd edition, 1998.

[Glo05] Wolfgang Globke. Software-Metriken. http://www.math.kit.edu/iag2/ globke/seite/semi-
nar/media/metriken.pdf, Juni 2005.

[LDA97] Franz Lehner, Reiner Dumke, and Alain Abran. Software-Metrics: Research and
Practice in Software Measurement. Dt. Univ.Verlag, 1997.

[Lig09] Peter Liggesmeyer. Software-Qualität - Testen, Analysieren, Verifizieren von Software.
Spektrum-Verlag, 2009.

[McC76] Thomas J. McCabe. A Complexity Measure. IEEE Transactions on Software Engineer-
ing, SE-2(4):308–320, December 1976.

[MIS04] MISRA. MISRA-C:2004 - Guidelines for the use of the C language in critical systems.
Motor Industry Research Association, 2004.

[NCA12] Euro NCAP. Euro NCAP to drive availability of Autonomous Emergency Braking
systems for safer Cars in Europe. Press Release on website, June 2012.

[OMG12] OMG. Unified Modeling Language Specification, Version 2.4.1. Technical report,
Object Management Group, 2012.

[SRWL11] Andreas Spillner, Thomas Rossner, Mario Winter, and Tilo Linz. Praxiswissen Soft-
waretest - Testmanagement. dpunkt.verlag, 2011.

[SSB10] Harry M. Sneed, Richard Seidl, and Manfred Baumgartner. Software in Zahlen - Die
Vermessung von Applikationen. Hanser-Verlag, 2010.

[SX09] A. Stefani and M. Xenos. Meta-Metric Evaluation of E-Commerce-related Metrics.
Electronic Notes in Theoretical Computer Science, 233:59–72, mar 2009.

[WN10] Edzard Weber and Andre Nimmich. Meta-Kennzahlen fuer die Bewertung von Dien-
stleistungen. In Diskussionsbeitraege des 2. Workshops Dienstleistungsmodellierung
(DLM 2010), pages 65–88, 2010.

[Woo99] Terry L. Woodings. Meta-Metrics for the Accuracy of Software Project Estimation.
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.118.2390, 1999.

[XSZC00] M. Xenos, D. Stavrinoudis, K. Zikouli, and D. Christodoulakis. Object-Oriented Metrics
- A Survey. In Proceedings of the FESMA Conference (FESMA’2000), 2000.

