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Abstract. Cyber-physical systems (CPS) are characterized by the interaction of mechanical, 

electronic and information technology subsystems. Model-Based Systems Engineering 

(MBSE) is an approach for the cross-domain development of CPS and requires compatible 

methods and models for a function-oriented collaboration of the domains. However, the 

mechanics operate mainly component-oriented and thus cannot participate in the function-

oriented development process. We propose a new modeling method that allows mechanics to 

develop a consistent and function-oriented system model from requirements and functions to 

principle solutions. The principle solution formally specifies the physical effect, active surfaces 

and material through which a function is fulfilled. Since principle solutions are consistently 

parameter-based, they can be calculated by linked external models and checked against 

requirements. This enables to examine possible solutions for functions at an early stage without 

having to develop components. Since principle solutions consist of recurring elements, we also 

propose a modeling concept for a solution libraryso that proven models can be efficiently 

reused and the modeling effort is reduced. Modeling method, test and solution library are 

explained using the example of an electric water pump of an automotive cooling circuit. 

1.  Introduction 

The objective of product development is to transform the customer's requirements and wishes as 

efficiently as possible into a functionally fulfilling product. In order to meet today's customer 

requirements, more and more cyber-physical systems (CPS) are being developed. These are 

characterized by the interaction of mechanical, electronic and information technology subsystems 

[1,2]. Model-Based Systems Engineering (MBSE) is an approach for the cross-domain development of 

CPS. It is based on a common, parameter-based system architecture, which structures the system to be 

developed in a function-oriented way. In order to successfully develop CPS in the context of MBSE, 

the methods and models of all participating domains must be compatible and suitable for collaboration 

[1,3,4]. While the other domains operate function-oriented, mechanical engineers usually develop 

component-oriented: Requirements are translated directly into components without any detours. Since 
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the development of components is very time-consuming compared to the small-step procedure of the 

other domains, the mechanics have to invest a lot of effort in order to show first development results. 

Thus, parallel and agile developing is not possible. Instead, the mechanics must also start to develop 

function-oriented so that it can collaborate adequately with the other domains. 

For this purpose, the mechanics must be able to derive a functional architecture from its requirements 

that is solution- and domain-neutral and can thus structure the development in a function-oriented 

way. A function can often be technically realized with different solutions from different domains. 

Therefore it is important for the mechanics to be able to define their possible solutions with little effort 

and test them as early as possible against requirements. One possible approach from design 

methodology are principle solutions. These describe the essential properties of a possible solution by 

specifying a physical effect, effective surfaces and material [5]. 

However, up to now there is no suitable way to describe principle solutions in the sense of [5] in a 

system architecture and test them against requirements. Hence, the contributions of this paper are 

1. a modeling method for the function-oriented and continuous development of requirements, 

functions and principle solutions, 

2. a formalization of principle solutions that allows testing against requirements, and 

3. a modeling concept for a solution library for efficiently reusing principle solutions. 

The paper is structured as follows: Section 2 provides an overview of the state of research concerning 

function-oriented development with principle solutions in the mechanical domain. Section 3 defines 

the research question and hypothesis of the paper at hand. Section 4 presents a method for the 

function-oriented and continuous modeling of requirements, functions and principle solutions, while 

Section 5 illustrates how principle solutions can be tested against requirements. Section 6 focuses on 

the efficient storage and reuse of principle solutions with a solution library before Section 7 concludes. 

2.  State of research 

The Systems Modeling Language (SysML) has become established for modeling CPS in the context of 

MBSE. SysML is a language family that extends a subset of the Unified Modeling Language for the 

integrated representation of several domains in systems engineering [6]. For this purpose, the SysML 

comprises multiple language elements and diagrams for modeling behavior, structure and 

requirements [6]. Since these elements often result in several options for modeling the same 

information in the mechanics, it is important to define which SysML elements are used for which 

development models. 

For the domain of mechanics it was noted in the introduction (cf. section 1) that principle solutions 

are essential for a function-oriented development of CPS, since they efficiently describe a possible 

solution by specifying effect, active surfaces and material without losing the functional orientation 

[5,7]. The basic idea is to derive possible physical effects for the realization of a function from the 

function itself. For this purpose, the functional architecture must have so-called elementary functions 

on its leaves, which describe a concrete physical relationship between the incoming and outgoing 

function flows (e.g. increase torque). The set of elementary functions is finite and allows  the 

description of any overall technical function by its combinatorics. For each of these elementary 

functions the Koller catalog documents which physical effects are basically suitable for their 

realization [8]. If the selected physical effect is supplemented by active surfaces and material 

specifications, a principle solution is obtained. In the state of research of [5,8] this principle solution is 

only represented by a sketch and description. This representation does not fulfill the demands of 

developing CPS with SysML in the mechanics: it is neither formal or parameter-based, nor testable or 

efficiently reusable. 

There are several research approaches to describe principle solutions or mechanical realizations of 

a function with SysML. One approach is the description of concepts by manual sketches [9]. Although 

this approach allows the integration of sketches into SysML, it is not a parameter-based description of 

a physical behavior that can be tested against requirements. Other approaches describe the realization 
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of a function by components [1,3,10]. Thus, components have to be elaborately detailed before the 

realization can be tested against requirements and the mechanical domain can only collaborate with a 

time delay. Another proposal for modeling principle solutions in the sense of [5] principle solution is 

provided by [11]. However, the parameters are neither linked within a principle solution nor 

externally. Hence, the principle solution cannot be tested directly with CAD or simulation models [12–

15]. All in all, there is no integrated approach to model, test and efficiently reuse principle solutions in 

the sense of [5] in a function-oriented development process with SysML. 

3.  Research question and hypotheses 

In the introduction (cf. section 1), the challenges for mechanics in the development of CPS were 

described, which have not yet been overcome by the current state of research (cf. section 2). 

Therefore, the research question of this publication is: 

How can principle solutions be described in a function-oriented, testable and efficient way? 

To answer this question, three research hypotheses are formulated: 

1. Principle solutions can be formalized as SysML principle solution models in an object-

oriented way. 

2. SysML principle solution models can be tested due to their formalization.  

3. SysML principle solution models can be captured in SysML libraries and efficiently reused. 

The following three chapters each address one of the three hypotheses. In section 4 we present a 

method for modeling requirements, functions and principle solutions, which allows a seamless 

connection of the individual artifacts and parameters. Section 5 illustrates how principle solution 

models can be tested against requirements and thus allow early, function-oriented validation 

independent of components. Finally, section 6 shows how functions and principle solution models can 

be stored in a model-based solution library and can be efficiently reused. 

4.  Modeling method for function-oriented development 

In this section a modeling method is presented, which allows to describe requirements, functions and 

principle solutions of a development process in a system model. An essential characteristic is the 

consistent linking of artifacts and parameters. In this way, the function orientation can also be 

consistently maintained for the mechanical domain and cross-domain collaboration is improved. The 

modeling method is based on the SysML profile SysML4FMArch, which was developed as a 

linguistic basis for modeling functional architectures in the mechanical domain [16]. 

The modeling method is explained on an automotive cooling system, which will be briefly 

introduced at this point. The main function of a vehicle is locomotion. For this purpose, the drive 

system provides mechanical energy that is conducted to the wheels and then transferred to the road. In 

vehicles with combustion engines, mechanical energy is obtained from the chemical energy of a fuel. 

For this purpose, the physical effect of combustion is used in the cylinders of the engine, resulting in a 

thermal expansion of the fuel-air mixture. The sudden increase in pressure accelerates the piston, 

which transfers the mechanical energy to the rest of the drive system. During combustion of the fuel-

air mixture, not all the chemical energy is converted into mechanical energy for propulsion: A part of 

the energy is conducted out of the system via the escaping exhaust gas and another part is induced into 

the engine components as thermal energy. Since the engine is often unable to release all of this thermal 

energy via its outer surfaces, its internal energy and temperature rise. 

The rising component temperature is becoming increasingly critical for the component material as 

well as the combustion process and endangers the functional reliability of the engine. For this reason, 

combustion engines are usually kept within an optimum temperature window by a liquid-based 

cooling system. A cooling medium circulates in this cooling system, which absorbs heat from the 

engine and releases it to the cooler. At the cooler the thermal energy is emitted to the environment. 

The cooling medium is accelerated by a pump so that it can absorb and release sufficient heat by 

convection and remains in motion despite the pressure losses. In our example system, the coolant 

pump is not operated mechanically but electrically and can thus be set to a certain rotational speed by 
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a control unit and based on the current temperatures of the engine. In addition, the engine is simplified 

and consists of the components cylinder head (CH) and crankcase (CC), which both require different 

target temperatures. 

The following subchapters each describe the methodical modeling of this example system with 

regard to its requirements, functions and principle solutions. 

4.1.  Requirements 

Requirements are demands and wishes that customers, manufacturers, legislators and many other 

stakeholders have for the product to be developed. A successful product must not only fulfill the 

wishes of the customer, but must also be able to be produced efficiently (e.g. factory standards) and 

comply with legal requirements. Therefore it makes sense to document these requirements and to 

continuously check their compliance during the development process [5]. Until today, requirements in 

many companies are still formulated in textual sentences (unstructured text) and stored as a 

requirements list in unlinked documents or software tools. Furthermore, it is not uncommon to try to 

define the requirements finally at the beginning of a project and not to change them afterwards. This 

endeavor is understandable, but usually not compatible with the dynamic development processes of 

CPS. The essential disadvantages are the often-ambiguous formulation of requirements and the 

missing link to the development models based on them, which are thus cut off from requirement 

changes. 

Instead, for some time now, there have been a wide range of suggestions on how requirements can 

be modeled using MBSE approaches. Many of them have two common features that make a 

significant difference to document-based and informal requirements. One is a clear formalization and 

explicit description that leaves no room for interpretation. On the other hand, the requirements are 

expressed as far as possible by (physical) quantities with concrete values. These can be linked to other 

development models so that changes in requirements directly reach all relevant models. 

 

 

Figure 1. Requirements of the example system. 

The requirements are differentiated into two categories. A «FunctionalRequirement» specifies the 

desired functionality of a technical system and is formalized as state machine or activity diagram. In 

the example system the superior behaviour of the whole cooling system is described as a state 

machine, which is always in one of two states: Either it is idle or active (figure 1). The transitions 

between the states depend on the temperature states of cylinder head and crankcase. If, e.g., the 

cylinder head exceeds its permissible maximum temperature, the system switches to the active state. 

This modeling allows for example the automated generation of test cases. This way it can be checked 

whether the system fulfills the prescriptive behavior and is always in the expected state [17,18]. 

«FunctionalRequirement»

CeaseOperatingTemperature

classifier behaviors

«statemachine» FR_CeaseOperatingTemperature

values

T_min : Temperature

T_max : Temperature

T_out : Temperature

stm FR_CeaseOperatingTemperature

manageHeatFlows

SystemInactive

T>T_max
T_out=DissipateHeat

T<T_min
T_out=SupplyHeat

T>T_max
T_out=DissipateHeat

T<T_min
T_out=SupplyHeat

«DesignRequirement»

CeaseOperatingTemperature_CH

values

t_min_CH : Temperature = 120 C {redefines T_min}

t_max_CH : Temperature = 150 C {redefines T_max}

«FunctionalRequirement»

System should be activated if the optimum 

temperature range is not maintained.

«refine»
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The second category are design requirements («DesignRequirement»), which limit the value range 

of a parameter occurring in the system. For example, the optimum range for the operating temperature 

of the cylinder head can be specified as 120 °C to 130 °C. Since this temperature range is decisive for 

the described transition in the state machine, this design requirement is modeled as a specialization of 

the functional requirement. Thus, the modeling of behavior and the restriction of parameter values are 

clearly separated, but can be used for common statements. 

4.2.  Functional architecture 

Functions describe the specific behavior of a product without specifying which components, effects, 

etc. physically implement this behavior. The concept of functions is based on the idea that physical 

flows enter and leave a system over a given system boundary. These function flows are quantified by 

concrete parameters values and can be categorized as flows of energy, material, and signal. Functions 

describe not only which function flows enter and exit, but also which operation takes place [5]. The 

decomposition of the overall function into subfunctions results in a functional architecture [7]. 

According to the SysML profile SysML4FMArch, the functions can be distinguished into decomposed 

functions («Architecture») and elementary functions («ElementaryFunction») [16]. Each elementary 

function describes an elementary mathematical relationship between the input and output flows [5]. 

Functions can be linked to the requirements they fulfill through function calls or satisfy relationships. 

 

Figure 2. Functional architecture of the example system. 

In the example system, the function manageHeatFlows is decomposed into four functions 

(figure 2). The function generateVolumeFlow generates a volume flow of the coolant according to the 

specified signal from the function controlHeatFlows. This volume flow is directed to the function 

DistributeHeatFlows, where heat is absorbed (at the cylinder head and crankcase). The heated coolant 

leaves this function and releases the thermal energy to the environment in the elementary function 

SeparateFluidAndThermalEnergy, before it circulates back into the GenerateVolumeFlow function. 

This function can be divided into three elementary functions: InDecreaseElectricalEnergy transforms 
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the incoming electrical energy so that the following function ConvertElectricalInMechanicalEnergy 

generates mechanical power according to the specified rotational speed. This mechanical power is 

used in the subsequent function ApplyMechanicalEnergyToFluid to pressurize and accelerate the 

coolant. 

The realization of an elementary function is often possible in multiple domains [19]. For example, 

cooling circuits can be controlled by mechanical thermostats or software-based controllers. Often the 

flows of a function can give a hint, in which domain this function can be realized. At the latest by 

defining a physical effect, the further development of this elementary function is assigned to a certain 

domain. Therefore, the transition from functions to principle solutions also entails a shift from cross-

domain to domain-specific development. 

4.3.  Principle solution models 

While functions only describe the desired changes of function flows, so-called principle solutions 

concretize how this change is physically realized. Therefore, elementary functions and principle 

solution models are linked with a generalization relationship. Thus, the principle solution inherits all 

functional flows as ports from the elementary function and can use them to describe more precisely 

how the incoming flows are transformed into the outgoing flows using a physical effect, active 

surfaces and material. As elements of the principle solution, physical effect, active surfaces and 

material can be modeled with the corresponding stereotypes defined in [16] in the internal block 

diagram of the principle solution. Physical effects can usually be described with mathematical 

equations which are modeled as constraints. The parameters of such equations can depend on function 

flows, active surfaces and material and are linked to them accordingly. Physical quantities, which refer 

to function flows (e.g. volume flow, pressure, torque), are linked to the corresponding values of the 

incoming and outgoing function flows. Parameters that refer to geometric or material-related 

quantities are linked to the value properties of an «ActiveSurface» or a «Material». If the equation 

contains natural constants, these are modeled as value properties directly into the principle solution 

and linked to the constraint parameters. 

The upper section of figure 3 shows the continuous modeled path from a requirement to the 

associated function and its principle solution for the example system. The requirement that a volume 

flow of 7 l/s should be generated is met by the elementary function ApplyMechanicalEnergyToFluid. 

This elementary function is now specialized by the principle solution CentrifugalPumpWheel that 

describes how mechanical energy is applied to the fluid. 

The lower section of figure 3 illustrates the internal block diagram of the principal solution. Several 

possible physical effects for the elementary function ApplyMechanicalEnergyToFluid can be found in 

the Koller catalog [8]: conservation of momentum, friction, Boyle's law, adhesion, Coulomb’s law, 

Bernoulli’s principle and others. Here the physical effect CentrifugalForce is chosen, which is 

modeled as «PrincipleEffect» with all relevant parameters in the principle solution model. The active 

surfaces are selected to match this effect: The PumpWheel rotates and conveys the fluid outwards 

against the Cylinder, where the induced kinetic energy is converted into static pressure and the fluid 

can exit through a radial opening. These active surfaces are described by a few parameters for their 

geometry (e.g. outer diameter of the PumpWheel) and design parameters (e.g. optimal volume flow), 

which are essential for their physical behavior. In the example shown, it is not the material parameters 

of the active surfaces that are relevant for the modeled physical effect, but the material parameters of 

the fluid flow. Therefore, the density parameters of the incoming and outgoing fluid flow are linked to 

the density parameter of the physical effect. This is also the reason why PumpWheel and Cylinder do 

not contain any material parameters here, as it is basically enabled by [16]. In addition to the essential 

physical effect, the principle solution contains another «EffectElement» representing the pressure 

difference. Finally, the parameters of the «PrincipleEffect» are linked to the corresponding 

counterparts of the active surfaces and function flows. 
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Figure 3. Requirements are satisfied by elementary functions and their principle solutions whose 

elements, parameters and relationships are visible in the internal block diagram. 

4.4.  Interim conclusion 

The modeling method presented demonstrates the function-oriented development in mechanics by 

consistently linking requirements via functions to principle solutions. The modeling of the latter 

transfers the concept of Koller [5] into a formalization for SysML and, in contrast to other research 

approaches [20], uses a consistently parameter-based representation of effect, geometry and material 

[16]. This is a key advancement that enables initial performance testing of principle solutions (cf. 

section 5) and linkage to more detailed behavior models (cf. section 6). And this confirms the first 

«DesignRequirement»

maxVolumeflow

constraints

{V ≤ 7 l/s}

values

V : VolumeFlow

dP : Pressure = 37000 Pa

«satisfy» «ElementaryFunction»

ApplyMechanicalEnergy

ToFluid

cm_in: Fluid cm_out: ~Fluid

p_mech:

MechEnergy

ibd [PrincipleSolution] CentrifugalPumpWheel [LinkageOfElements]

«ProxyPort»
cm_in: Fluid

fluid: Fluid
{direction: in}

state: FluidState

p: Pressure

q: VolumeFlow

ρ : density

«ProxyPort»
p_mech: MechEnergy

p: MechEnergy
{direction: in}

w: RotVelocity

«ProxyPort»
cm_out: ~Fluid

fluid: Fluid
{direction: in}

state: FluidState

p: Pressure

q: VolumeFlow

ρ : density

«EffectElement» C

pressure: PressureDifference

{p = p_in + dP}

p :Pressure

p_in :Pressure

dp :Pressure

«PrincipleEffect» C

effect: CentrifugalForce

dp: Pressure

q: VolumeFlow

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

outerCylWidth: Length

outerCylDia: Length

ρ : density

w: RotVelocity

«ActiveSurfaceSet» C

geometry: WheelCyl

wheel: PumpWheel

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

cyl: Cylinder

outerCylWidth: Length

outerCylDia: Length

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

«PrincipleSolution»

CentrifugalPumpWheel



19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097  (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

8

 

 

 

 

 

 

research hypothesis “Principle solutions can be formalized as SysML principle solution models in an 

object-oriented way”. 

5.  Test of principle solution models 

The basis for testing a principle solution is the previously presented formalization (cf. section 4). Due 

to the parameter-based representation, physical effect and active surfaces can be linked to external 

models, see figure 13.7. In our example system, the CentrifugalForce of the principle solution 

CentrifugalPumpWheel is linked to a MATLAB model that calculates the hydrodynamic behavior of a 

pump wheel. Similarly, the parameters of the «ActiveSurfaces» are linked via an Excel table to the 

corresponding CAD models of these active surfaces. With these links the described principle solution 

(figure 3) can be executed by an engine that handles the execution of the single solvers. In our case, 

we used the integrated simulation engine of a system modeler (e.g. Cameo Systems Modeler). For this 

purpose, parameter values are applied externally via function flows and read from other external 

models (e.g. the CAD model). All values are passed to the MATLAB function for effect calculation, 

which returns the calculated results. Those can be further processed in the principle solution or passed 

on to the subsequent principle solution via a function flow. 

 

Figure 4. The «PrincipleEffect» CentrifugalForce is connected to an external MATLAB model and 

the «ActiveSurface» PumpWheel is connected to a corresponding CAD model. 

In our example system it was required that the defined principle solution must overcome a pressure 

difference of 37 kPa (from the cooling circuit) and generate a volume flow of at least 0.007 m^3/s to 

ensure sufficient cooling of the motor. The execution of the principle solution results in a volume flow 

of 0.0074 m^3/s and confirms that the requirement can be met with this principle solution (table 1). 

This confirms the second research hypothesis. With the described procedure, principle solutions 

can be tested without having to develop complex components. This means that the mechanics can 

collaborate with the other domains about the function realization earlier than before and rely on 

objective test results. In accordance with the described procedure, not only individual but also several 

principle solutions can be interconnected to create system tests. In addition, it is possible to define 

design processes as activities, for example to parameterize principle solutions for optimal functional 

fulfillment [21]. 

 

«ActiveSurface»

wheel: PumpWheel

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

«PrincipleEffect»

effect: CentrifugalForce

dp: Pressure

q: VolumeFlow

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

outerCylWidth: Length

outerCylDia: Length

ρ : density

w: RotVelocity

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

CentrifugalForce.m

V = f(do, di, w, nwings, nspec, Δpopt, Vopt, ω, Δp, ρ)
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Table 1. Parameter values for the calculation of the principle solution CentrifugalPumpWheel. 

Parameters  

of the functional flows 

Parameters  

of the principle solution 

Resulting parameters  

of the effect calculation 

ω = 15 1/s 

ρ = 1000 kg/m^3 

Δp = 37000 Pa 

Vopt = 0.00606 m^3/s 

Δpopt = 40000 Pa 

nspec = 40,7 

nwings = 7 

do = 115 mm 

di = 57,5 mm 

w = 32,1 mm 

V = 0.0074 m^3/s 

6.  Solution Library 

Besides the described advantages of parameter-based modelling of principle solutions, it is 

unmistakable that this involves a certain modelling effort. One approach to reduce the modelling effort 

is to reuse the models created once. Since elementary functions and physical effects are not only a 

finite but also a known quantity, their reuse offers high potential. 

Koller has structured elementary functions and physical effects with non-formalized descriptions in a 

document-based catalog [5]. Since, according to Roth [22], catalogs should basically fit the method 

used and enable efficient use, it is necessary to develop a new concept for a digital library. Therefore, 

we use SysML as conceptual design language to develop the Solution Library and the interfaces to the 

system architecture. 

 

Figure 5. The solution library (lower part) supports the development process (upper part) by 

identifying possible physical effects and principle solutions for a selected elementary function. 

The first use of the solution library takes place during the modelling of the functional architecture. 

Here, the user can reuse exactly those elements from the finite and predefined pool of elementary 

functions that he needs to fulfill the requirements (figure 5 left). By selecting the elementary function 

(here: ApplyMechanicalEnergyToFluid) the solution library is automatically filtered and only those 

physical effects are displayed, which can realize the chosen elementary function (figure 5 center). 

After a physical effect is also selected (here: CentrifugalForce), the set of stored principle solutions is 

«DesignRequirement»

A volume flow of 7 litres per 

second should be generated.

«ElementaryFunction» 

CApplyMechanical Energy

ToFluid

«PrincipleSolution» 

CentrifugalPumpWheel
«satisfy»

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«PrincipleEffect»

CentrifugalForce

constraints

V = f(do, di, w, nwings, nspec, 
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requirement

searches suitable
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select effect select principle 
solution

uses predefined 
elementary function
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solution

Hydrodynamics

Bernoulli‘s law
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…
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…
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«use»

ActiveSurfaceSet

WheelCyl
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filtered so that only those containing the selected physical effect are listed (figure 5 right). All these 

listed principle solutions are suitable as technical realization of the elementary function and are able to 

fulfill the initial requirement (chosen here: CentrifugalPumpWheel). 

The described approach is feasible because we have extended the well-known Koller catalog [8] by 

central elements: Our solution library contains not only elementary functions and physical effects (like 

Koller), but complete principle solutions including frequent active surfaces and materials (figure 6 

left). Thus, our principle solutions can be varied not only with regard to the physical effect, but also 

with other active surfaces and materials. 

With principle solutions, initial functional tests (cf. section 5) can be carried out, but more 

specialized models often have to be used in order to validate further requirements (e.g. service life or 

noise propagation). Therefore, as a second major enhancement compared to Koller, we store each 

principle solution together with suitable behavior models and workflows in a so-called solution 

element (figure 6 right). In this way, behavior models are clearly assigned to concrete principle 

solutions in our solution library and can be used efficiently for virtual behavior testing of evolving 

solutions based on the chosen purpose [21]. This confirms the third research hypothesis. 

 

Figure 6. In addition to elementary functions, physical effects, active surfaces and materials, the 

solution library primarily contains a set of predefined principle solutions. These principle solutions are 

stored together with more detailed behavior models and workflows in a so-called solution element. 

Here it is shown for the example system how the principle solution CentrifugalPumpWheel is 

classified in the variant structure of the solution library. 

7.  Conclusion 

In this paper a SysML-based modeling method for the mechanical domain in the development of CPS 

was presented. This method enables the mechanical domain to consistently link its requirements, 

functions and principle solutions with each other, so that the function orientation and thus the 

possibility of collaboration with other domains is maintained. The principle solution was formalized 

based on the concept of Koller [8] for SysML and consists of physical effect, active surfaces and 

350 Principle Effects ∞ Geometries ∞ Materials
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«ActiveSurfaceSet» C

geometry: WheelCyl

wheel: PumpWheel
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effect: 

CentrifugalForce

«ProxyPort»
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material, which are linked to each other via their parameters. This parameter linking makes the 

principle solution executable so that it can be calculated by external models and the results can be 

compared against requirements. In contrast to the Koller catalog [8], the modeling concept for the 

solution library contains not only elementary functions and effects, but entire principle solutions with 

more sophisticated behavior models and their corresponding test workflows. The solution library thus 

makes principle solutions efficiently reusable and paves the way for virtual behavior testing of 

evolving solutions based on the chosen purpose. 

 

References 

[1] Eigner M, Gilz T and Zafirov R 2012 Proposal for functional product description as part of a 

PLM solution in interdisciplinary product development DESIGN 2012 ed Marjanović D, 

Storga M, Pavkovic N, Bojcetic N (Zagreb: UNIZAG-FSB) pp. 1667–76. 

[2] Alur R 2015 Principles of cyber-physical systems (Cambridge: The MIT Press). 

[3] Gausemeier J, Dorociak R, Pook S, Nyßen A and Terfloth A 2010 Computer-aided cross-

domain modeling of mechatronic systems Design 2010 ed Marjanović D, Storga M, 

Pavkovic N, Bojcetic N (Zagreb) pp. 723–32. 

[4] Broy M 2010 Cyber-Physical Systems (Berlin Heidelberg: Springer). 

[5] Koller R 1998 Konstruktionslehre für den Maschinenbau (Berlin: Springer). 

[6] OMG OMG Systems Modeling Language Version 1.6, 

https://www.omg.org/spec/SysML/1.6/PDF. 

[7] Feldhusen J and Grote K-H (eds.) 2013 Pahl/Beitz Konstruktionslehre Methoden und 

Anwendung erfolgreicher Produktentwicklung 8th ed. (Berlin: Springer). 

[8] Koller R and Kastrup N 1994 Prinziplösungen zur Konstruktion technischer Produkte (Berlin: 

Springer). 

[9] Moeser G, Albers A and Kumpel S 2015 Usage of Free Sketches in MBSE 2015 IEEE 

International Symposium on Systems Engineering (ISSE) ed IEEE) pp. 50–55. 

[10] Moeser G, Kramer C, Grundel M, Neubert M, Kümpel S and Scheithauer A et al. 2015 

Fortschrittsbericht zur modellbasierten Unterstützung der Konstrukteurstätigkeit durch 

FAS4M Tag des Systems Engineering ed Schulze S-O, Muggeo C (München: Hanser) pp. 

69–78. 

[11] Wölkl S and Shea K 2009 A Computational Product Model for Conceptual Design Using 

SysML Volume 2: 29th Computers and Information in Engineering Conference ed ASMEDC 

pp. 635–45. 

[12] Pasch G, Jacobs G, Höpfner G and Berroth JK 2019 Multi-Domain Simulation for the 

Assessment of the NVH Behaviour of a Tractor with Hydrostatic-Mechanical Power Split 

Transmission: RWTH Aachen University. 

[13] Golafshan R, Jacobs G, Wegerhoff M, Drichel P and Berroth JK 2018 Investigation on the 

Effects of Structural Dynamics on Rolling Bearing Fault Diagnosis by Means of Multibody 

Simulation. 

[14] Andary FS, Berroth JK and Jacobs G 2019 An Energy-Based Load Distribution Approach for 

the Application of Gear Mesh Stiffness on Elastic Bodies Journal of mechanical design 141 

95001. 

[15] Berroth J, Jacobs G, Kroll T and Schelenz R 2016 Investigation on pitch system loads by means 

of an integral multi body simulation approach. 

[16] Drave I, Rumpe B, Wortmann A, Berroth J, Höpfner G and Jacobs G et al. Modeling 

Mechanical Functional Architectures in SysML MODELS ‘20: Proceedings of the 23rd 

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems 

ed pp. 79–89. 

[17] Rumpe B 2012 Agile Modellierung mit UML (Berlin, Heidelberg: Springer). 

[18] Drave I, Hillemacher S, Greifenberg T, Kriebel S, Kusmenko E and Markthaler M et al. 2019 

SMArDT modeling for automotive software testing Softw: Pract Exper 49 pp. 301–28. 

https://www.omg.org/spec/SysML/1.6/PDF


19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097  (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

12

 

 

 

 

 

 

[19] Albers A and Zingel C 2011 Interdisciplinary Systems Modeling using the Contact and 

Channel-Model for SYSML Impacting society through engineering design ed Culley SJ 

(Glasgow: Design Society) pp. 196–207. 

[20] Munker F and Albers A 2015 SystemSketcher – Entstehung eines anwenderorientierten 

Ansatzes zur interdisziplinären Systemmodellierung Tag des Systems Engineering ed 

Schulze S-O, Muggeo C (München: Hanser) pp. 291–300. 

[21] Höpfner G, Jacobs G, Zerwas T, Drave I, Berroth J and Guist C et al. Model-Based Design 

Workflows for Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump 

Antriebstechnisches Kolloquium 2021 

[22] Roth K 1994 Konstruieren mit Konstruktionskatalogen (Berlin: Springer). 

 




