
IOP Conference Series: Materials Science and Engineering

PAPER • OPEN ACCESS

Mechanical concept development using principle solution models
To cite this article: Thilo Zerwas et al 2021 IOP Conf. Ser.: Mater. Sci. Eng. 1097 012001

View the article online for updates and enhancements.

This content was downloaded from IP address 137.226.178.87 on 02/06/2021 at 10:22

[ZJS+21] T. Zerwas, G. Jacobs, K. Spuetz, G. Hoepfner, I. Drave, J. Berroth, C. Guist, C. Konrad, B. Rumpe, J. Kohl:
Mechanical Concept Development Using Principle Solution Models.
In: G. Jacobs, S. Stein, editors, IOP Conference Series: Materials Science and Engineering, Volume 1097 012001, IOP Publishing, Februar 2021.
www.se-rwth.de/publications/

https://doi.org/10.1088/1757-899X/1097/1/012001
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsviLFGKzcmICSAibSQPF-6GD2asfisI3a-gXKJiGG3g_N5QpPb4nW5dgN6-oonj0-rUVsInf8L4efrjydjtQMw94kjlJjpBENL62M3ArmJwnVC95Iitc10eyOpQWaeH3zpKbwDDX1gSkwRraUYle7sJLMBny3SYrvyOer8-srYqLZlbSSYKz6tif8036KaCbLWPn79HxC7OJzKvO56bh8_6L3hlgNXHI5fY84piPOylQC-a6wvAJPNU2pp7YPFQ0Fn4tbX2x4Ldo8VXhQpM0w&sig=Cg0ArKJSzPm_MqOiJtqV&fbs_aeid=[gw_fbsaeid]&adurl=https://www.electrochem.org/239/ecs-special-events/%3Futm_source%3DIOPConferenceSeriesVirtual%26utm_medium%3DIOPConferenceSeriesVirtual%26utm_campaign%3D240LiveEvents

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

1

Mechanical concept development using principle solution

models

Thilo Zerwas1, Georg Jacobs1, Kathrin Spütz1, Gregor Höpfner1, Imke Drave2,

Joerg Berroth1, Christian Guist3, Christian Konrad1, Bernhard Rumpe2 and

Jens Kohl3

1 Institute for Machine Elements and Systems Engineering,

RWTH Aachen University, Templergraben 55, 52062 Aachen, Germany

2 Software Engineering, RWTH Aachen University,

Templergraben 55, 52062 Aachen, Germany

3 BMW Group AG, Petuelring 130, 80788 München, Germany

thilo.zerwas@imse.rwth-aachen.de

Abstract. Cyber-physical systems (CPS) are characterized by the interaction of mechanical,

electronic and information technology subsystems. Model-Based Systems Engineering

(MBSE) is an approach for the cross-domain development of CPS and requires compatible

methods and models for a function-oriented collaboration of the domains. However, the

mechanics operate mainly component-oriented and thus cannot participate in the function-

oriented development process. We propose a new modeling method that allows mechanics to

develop a consistent and function-oriented system model from requirements and functions to

principle solutions. The principle solution formally specifies the physical effect, active surfaces

and material through which a function is fulfilled. Since principle solutions are consistently

parameter-based, they can be calculated by linked external models and checked against

requirements. This enables to examine possible solutions for functions at an early stage without

having to develop components. Since principle solutions consist of recurring elements, we also

propose a modeling concept for a solution libraryso that proven models can be efficiently

reused and the modeling effort is reduced. Modeling method, test and solution library are

explained using the example of an electric water pump of an automotive cooling circuit.

1. Introduction

The objective of product development is to transform the customer's requirements and wishes as

efficiently as possible into a functionally fulfilling product. In order to meet today's customer

requirements, more and more cyber-physical systems (CPS) are being developed. These are

characterized by the interaction of mechanical, electronic and information technology subsystems

[1,2]. Model-Based Systems Engineering (MBSE) is an approach for the cross-domain development of

CPS. It is based on a common, parameter-based system architecture, which structures the system to be

developed in a function-oriented way. In order to successfully develop CPS in the context of MBSE,

the methods and models of all participating domains must be compatible and suitable for collaboration

[1,3,4]. While the other domains operate function-oriented, mechanical engineers usually develop

component-oriented: Requirements are translated directly into components without any detours. Since

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

2

the development of components is very time-consuming compared to the small-step procedure of the

other domains, the mechanics have to invest a lot of effort in order to show first development results.

Thus, parallel and agile developing is not possible. Instead, the mechanics must also start to develop

function-oriented so that it can collaborate adequately with the other domains.

For this purpose, the mechanics must be able to derive a functional architecture from its requirements

that is solution- and domain-neutral and can thus structure the development in a function-oriented

way. A function can often be technically realized with different solutions from different domains.

Therefore it is important for the mechanics to be able to define their possible solutions with little effort

and test them as early as possible against requirements. One possible approach from design

methodology are principle solutions. These describe the essential properties of a possible solution by

specifying a physical effect, effective surfaces and material [5].

However, up to now there is no suitable way to describe principle solutions in the sense of [5] in a

system architecture and test them against requirements. Hence, the contributions of this paper are

1. a modeling method for the function-oriented and continuous development of requirements,

functions and principle solutions,

2. a formalization of principle solutions that allows testing against requirements, and

3. a modeling concept for a solution library for efficiently reusing principle solutions.

The paper is structured as follows: Section 2 provides an overview of the state of research concerning

function-oriented development with principle solutions in the mechanical domain. Section 3 defines

the research question and hypothesis of the paper at hand. Section 4 presents a method for the

function-oriented and continuous modeling of requirements, functions and principle solutions, while

Section 5 illustrates how principle solutions can be tested against requirements. Section 6 focuses on

the efficient storage and reuse of principle solutions with a solution library before Section 7 concludes.

2. State of research

The Systems Modeling Language (SysML) has become established for modeling CPS in the context of

MBSE. SysML is a language family that extends a subset of the Unified Modeling Language for the

integrated representation of several domains in systems engineering [6]. For this purpose, the SysML

comprises multiple language elements and diagrams for modeling behavior, structure and

requirements [6]. Since these elements often result in several options for modeling the same

information in the mechanics, it is important to define which SysML elements are used for which

development models.

For the domain of mechanics it was noted in the introduction (cf. section 1) that principle solutions

are essential for a function-oriented development of CPS, since they efficiently describe a possible

solution by specifying effect, active surfaces and material without losing the functional orientation

[5,7]. The basic idea is to derive possible physical effects for the realization of a function from the

function itself. For this purpose, the functional architecture must have so-called elementary functions

on its leaves, which describe a concrete physical relationship between the incoming and outgoing

function flows (e.g. increase torque). The set of elementary functions is finite and allows the

description of any overall technical function by its combinatorics. For each of these elementary

functions the Koller catalog documents which physical effects are basically suitable for their

realization [8]. If the selected physical effect is supplemented by active surfaces and material

specifications, a principle solution is obtained. In the state of research of [5,8] this principle solution is

only represented by a sketch and description. This representation does not fulfill the demands of

developing CPS with SysML in the mechanics: it is neither formal or parameter-based, nor testable or

efficiently reusable.

There are several research approaches to describe principle solutions or mechanical realizations of

a function with SysML. One approach is the description of concepts by manual sketches [9]. Although

this approach allows the integration of sketches into SysML, it is not a parameter-based description of

a physical behavior that can be tested against requirements. Other approaches describe the realization

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

3

of a function by components [1,3,10]. Thus, components have to be elaborately detailed before the

realization can be tested against requirements and the mechanical domain can only collaborate with a

time delay. Another proposal for modeling principle solutions in the sense of [5] principle solution is

provided by [11]. However, the parameters are neither linked within a principle solution nor

externally. Hence, the principle solution cannot be tested directly with CAD or simulation models [12–

15]. All in all, there is no integrated approach to model, test and efficiently reuse principle solutions in

the sense of [5] in a function-oriented development process with SysML.

3. Research question and hypotheses

In the introduction (cf. section 1), the challenges for mechanics in the development of CPS were

described, which have not yet been overcome by the current state of research (cf. section 2).

Therefore, the research question of this publication is:

How can principle solutions be described in a function-oriented, testable and efficient way?

To answer this question, three research hypotheses are formulated:

1. Principle solutions can be formalized as SysML principle solution models in an object-

oriented way.

2. SysML principle solution models can be tested due to their formalization.

3. SysML principle solution models can be captured in SysML libraries and efficiently reused.

The following three chapters each address one of the three hypotheses. In section 4 we present a

method for modeling requirements, functions and principle solutions, which allows a seamless

connection of the individual artifacts and parameters. Section 5 illustrates how principle solution

models can be tested against requirements and thus allow early, function-oriented validation

independent of components. Finally, section 6 shows how functions and principle solution models can

be stored in a model-based solution library and can be efficiently reused.

4. Modeling method for function-oriented development

In this section a modeling method is presented, which allows to describe requirements, functions and

principle solutions of a development process in a system model. An essential characteristic is the

consistent linking of artifacts and parameters. In this way, the function orientation can also be

consistently maintained for the mechanical domain and cross-domain collaboration is improved. The

modeling method is based on the SysML profile SysML4FMArch, which was developed as a

linguistic basis for modeling functional architectures in the mechanical domain [16].

The modeling method is explained on an automotive cooling system, which will be briefly

introduced at this point. The main function of a vehicle is locomotion. For this purpose, the drive

system provides mechanical energy that is conducted to the wheels and then transferred to the road. In

vehicles with combustion engines, mechanical energy is obtained from the chemical energy of a fuel.

For this purpose, the physical effect of combustion is used in the cylinders of the engine, resulting in a

thermal expansion of the fuel-air mixture. The sudden increase in pressure accelerates the piston,

which transfers the mechanical energy to the rest of the drive system. During combustion of the fuel-

air mixture, not all the chemical energy is converted into mechanical energy for propulsion: A part of

the energy is conducted out of the system via the escaping exhaust gas and another part is induced into

the engine components as thermal energy. Since the engine is often unable to release all of this thermal

energy via its outer surfaces, its internal energy and temperature rise.

The rising component temperature is becoming increasingly critical for the component material as

well as the combustion process and endangers the functional reliability of the engine. For this reason,

combustion engines are usually kept within an optimum temperature window by a liquid-based

cooling system. A cooling medium circulates in this cooling system, which absorbs heat from the

engine and releases it to the cooler. At the cooler the thermal energy is emitted to the environment.

The cooling medium is accelerated by a pump so that it can absorb and release sufficient heat by

convection and remains in motion despite the pressure losses. In our example system, the coolant

pump is not operated mechanically but electrically and can thus be set to a certain rotational speed by

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

4

a control unit and based on the current temperatures of the engine. In addition, the engine is simplified

and consists of the components cylinder head (CH) and crankcase (CC), which both require different

target temperatures.

The following subchapters each describe the methodical modeling of this example system with

regard to its requirements, functions and principle solutions.

4.1. Requirements

Requirements are demands and wishes that customers, manufacturers, legislators and many other

stakeholders have for the product to be developed. A successful product must not only fulfill the

wishes of the customer, but must also be able to be produced efficiently (e.g. factory standards) and

comply with legal requirements. Therefore it makes sense to document these requirements and to

continuously check their compliance during the development process [5]. Until today, requirements in

many companies are still formulated in textual sentences (unstructured text) and stored as a

requirements list in unlinked documents or software tools. Furthermore, it is not uncommon to try to

define the requirements finally at the beginning of a project and not to change them afterwards. This

endeavor is understandable, but usually not compatible with the dynamic development processes of

CPS. The essential disadvantages are the often-ambiguous formulation of requirements and the

missing link to the development models based on them, which are thus cut off from requirement

changes.

Instead, for some time now, there have been a wide range of suggestions on how requirements can

be modeled using MBSE approaches. Many of them have two common features that make a

significant difference to document-based and informal requirements. One is a clear formalization and

explicit description that leaves no room for interpretation. On the other hand, the requirements are

expressed as far as possible by (physical) quantities with concrete values. These can be linked to other

development models so that changes in requirements directly reach all relevant models.

Figure 1. Requirements of the example system.

The requirements are differentiated into two categories. A «FunctionalRequirement» specifies the

desired functionality of a technical system and is formalized as state machine or activity diagram. In

the example system the superior behaviour of the whole cooling system is described as a state

machine, which is always in one of two states: Either it is idle or active (figure 1). The transitions

between the states depend on the temperature states of cylinder head and crankcase. If, e.g., the

cylinder head exceeds its permissible maximum temperature, the system switches to the active state.

This modeling allows for example the automated generation of test cases. This way it can be checked

whether the system fulfills the prescriptive behavior and is always in the expected state [17,18].

«FunctionalRequirement»

CeaseOperatingTemperature

classifier behaviors

«statemachine» FR_CeaseOperatingTemperature

values

T_min : Temperature

T_max : Temperature

T_out : Temperature

stm FR_CeaseOperatingTemperature

manageHeatFlows

SystemInactive

T>T_max
T_out=DissipateHeat

T<T_min
T_out=SupplyHeat

T>T_max
T_out=DissipateHeat

T<T_min
T_out=SupplyHeat

«DesignRequirement»

CeaseOperatingTemperature_CH

values

t_min_CH : Temperature = 120 C {redefines T_min}

t_max_CH : Temperature = 150 C {redefines T_max}

«FunctionalRequirement»

System should be activated if the optimum

temperature range is not maintained.

«refine»

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

5

The second category are design requirements («DesignRequirement»), which limit the value range

of a parameter occurring in the system. For example, the optimum range for the operating temperature

of the cylinder head can be specified as 120 °C to 130 °C. Since this temperature range is decisive for

the described transition in the state machine, this design requirement is modeled as a specialization of

the functional requirement. Thus, the modeling of behavior and the restriction of parameter values are

clearly separated, but can be used for common statements.

4.2. Functional architecture

Functions describe the specific behavior of a product without specifying which components, effects,

etc. physically implement this behavior. The concept of functions is based on the idea that physical

flows enter and leave a system over a given system boundary. These function flows are quantified by

concrete parameters values and can be categorized as flows of energy, material, and signal. Functions

describe not only which function flows enter and exit, but also which operation takes place [5]. The

decomposition of the overall function into subfunctions results in a functional architecture [7].

According to the SysML profile SysML4FMArch, the functions can be distinguished into decomposed

functions («Architecture») and elementary functions («ElementaryFunction») [16]. Each elementary

function describes an elementary mathematical relationship between the input and output flows [5].

Functions can be linked to the requirements they fulfill through function calls or satisfy relationships.

Figure 2. Functional architecture of the example system.

In the example system, the function manageHeatFlows is decomposed into four functions

(figure 2). The function generateVolumeFlow generates a volume flow of the coolant according to the

specified signal from the function controlHeatFlows. This volume flow is directed to the function

DistributeHeatFlows, where heat is absorbed (at the cylinder head and crankcase). The heated coolant

leaves this function and releases the thermal energy to the environment in the elementary function

SeparateFluidAndThermalEnergy, before it circulates back into the GenerateVolumeFlow function.

This function can be divided into three elementary functions: InDecreaseElectricalEnergy transforms

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

6

the incoming electrical energy so that the following function ConvertElectricalInMechanicalEnergy

generates mechanical power according to the specified rotational speed. This mechanical power is

used in the subsequent function ApplyMechanicalEnergyToFluid to pressurize and accelerate the

coolant.

The realization of an elementary function is often possible in multiple domains [19]. For example,

cooling circuits can be controlled by mechanical thermostats or software-based controllers. Often the

flows of a function can give a hint, in which domain this function can be realized. At the latest by

defining a physical effect, the further development of this elementary function is assigned to a certain

domain. Therefore, the transition from functions to principle solutions also entails a shift from cross-

domain to domain-specific development.

4.3. Principle solution models

While functions only describe the desired changes of function flows, so-called principle solutions

concretize how this change is physically realized. Therefore, elementary functions and principle

solution models are linked with a generalization relationship. Thus, the principle solution inherits all

functional flows as ports from the elementary function and can use them to describe more precisely

how the incoming flows are transformed into the outgoing flows using a physical effect, active

surfaces and material. As elements of the principle solution, physical effect, active surfaces and

material can be modeled with the corresponding stereotypes defined in [16] in the internal block

diagram of the principle solution. Physical effects can usually be described with mathematical

equations which are modeled as constraints. The parameters of such equations can depend on function

flows, active surfaces and material and are linked to them accordingly. Physical quantities, which refer

to function flows (e.g. volume flow, pressure, torque), are linked to the corresponding values of the

incoming and outgoing function flows. Parameters that refer to geometric or material-related

quantities are linked to the value properties of an «ActiveSurface» or a «Material». If the equation

contains natural constants, these are modeled as value properties directly into the principle solution

and linked to the constraint parameters.

The upper section of figure 3 shows the continuous modeled path from a requirement to the

associated function and its principle solution for the example system. The requirement that a volume

flow of 7 l/s should be generated is met by the elementary function ApplyMechanicalEnergyToFluid.

This elementary function is now specialized by the principle solution CentrifugalPumpWheel that

describes how mechanical energy is applied to the fluid.

The lower section of figure 3 illustrates the internal block diagram of the principal solution. Several

possible physical effects for the elementary function ApplyMechanicalEnergyToFluid can be found in

the Koller catalog [8]: conservation of momentum, friction, Boyle's law, adhesion, Coulomb’s law,

Bernoulli’s principle and others. Here the physical effect CentrifugalForce is chosen, which is

modeled as «PrincipleEffect» with all relevant parameters in the principle solution model. The active

surfaces are selected to match this effect: The PumpWheel rotates and conveys the fluid outwards

against the Cylinder, where the induced kinetic energy is converted into static pressure and the fluid

can exit through a radial opening. These active surfaces are described by a few parameters for their

geometry (e.g. outer diameter of the PumpWheel) and design parameters (e.g. optimal volume flow),

which are essential for their physical behavior. In the example shown, it is not the material parameters

of the active surfaces that are relevant for the modeled physical effect, but the material parameters of

the fluid flow. Therefore, the density parameters of the incoming and outgoing fluid flow are linked to

the density parameter of the physical effect. This is also the reason why PumpWheel and Cylinder do

not contain any material parameters here, as it is basically enabled by [16]. In addition to the essential

physical effect, the principle solution contains another «EffectElement» representing the pressure

difference. Finally, the parameters of the «PrincipleEffect» are linked to the corresponding

counterparts of the active surfaces and function flows.

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

7

Figure 3. Requirements are satisfied by elementary functions and their principle solutions whose

elements, parameters and relationships are visible in the internal block diagram.

4.4. Interim conclusion

The modeling method presented demonstrates the function-oriented development in mechanics by

consistently linking requirements via functions to principle solutions. The modeling of the latter

transfers the concept of Koller [5] into a formalization for SysML and, in contrast to other research

approaches [20], uses a consistently parameter-based representation of effect, geometry and material

[16]. This is a key advancement that enables initial performance testing of principle solutions (cf.

section 5) and linkage to more detailed behavior models (cf. section 6). And this confirms the first

«DesignRequirement»

maxVolumeflow

constraints

{V ≤ 7 l/s}

values

V : VolumeFlow

dP : Pressure = 37000 Pa

«satisfy» «ElementaryFunction»

ApplyMechanicalEnergy

ToFluid

cm_in: Fluid cm_out: ~Fluid

p_mech:

MechEnergy

ibd [PrincipleSolution] CentrifugalPumpWheel [LinkageOfElements]

«ProxyPort»
cm_in: Fluid

fluid: Fluid
{direction: in}

state: FluidState

p: Pressure

q: VolumeFlow

ρ : density

«ProxyPort»
p_mech: MechEnergy

p: MechEnergy
{direction: in}

w: RotVelocity

«ProxyPort»
cm_out: ~Fluid

fluid: Fluid
{direction: in}

state: FluidState

p: Pressure

q: VolumeFlow

ρ : density

«EffectElement» C

pressure: PressureDifference

{p = p_in + dP}

p :Pressure

p_in :Pressure

dp :Pressure

«PrincipleEffect» C

effect: CentrifugalForce

dp: Pressure

q: VolumeFlow

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

outerCylWidth: Length

outerCylDia: Length

ρ : density

w: RotVelocity

«ActiveSurfaceSet» C

geometry: WheelCyl

wheel: PumpWheel

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

cyl: Cylinder

outerCylWidth: Length

outerCylDia: Length

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

«PrincipleSolution»

CentrifugalPumpWheel

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

8

research hypothesis “Principle solutions can be formalized as SysML principle solution models in an

object-oriented way”.

5. Test of principle solution models

The basis for testing a principle solution is the previously presented formalization (cf. section 4). Due

to the parameter-based representation, physical effect and active surfaces can be linked to external

models, see figure 13.7. In our example system, the CentrifugalForce of the principle solution

CentrifugalPumpWheel is linked to a MATLAB model that calculates the hydrodynamic behavior of a

pump wheel. Similarly, the parameters of the «ActiveSurfaces» are linked via an Excel table to the

corresponding CAD models of these active surfaces. With these links the described principle solution

(figure 3) can be executed by an engine that handles the execution of the single solvers. In our case,

we used the integrated simulation engine of a system modeler (e.g. Cameo Systems Modeler). For this

purpose, parameter values are applied externally via function flows and read from other external

models (e.g. the CAD model). All values are passed to the MATLAB function for effect calculation,

which returns the calculated results. Those can be further processed in the principle solution or passed

on to the subsequent principle solution via a function flow.

Figure 4. The «PrincipleEffect» CentrifugalForce is connected to an external MATLAB model and

the «ActiveSurface» PumpWheel is connected to a corresponding CAD model.

In our example system it was required that the defined principle solution must overcome a pressure

difference of 37 kPa (from the cooling circuit) and generate a volume flow of at least 0.007 m^3/s to

ensure sufficient cooling of the motor. The execution of the principle solution results in a volume flow

of 0.0074 m^3/s and confirms that the requirement can be met with this principle solution (table 1).

This confirms the second research hypothesis. With the described procedure, principle solutions

can be tested without having to develop complex components. This means that the mechanics can

collaborate with the other domains about the function realization earlier than before and rely on

objective test results. In accordance with the described procedure, not only individual but also several

principle solutions can be interconnected to create system tests. In addition, it is possible to define

design processes as activities, for example to parameterize principle solutions for optimal functional

fulfillment [21].

«ActiveSurface»

wheel: PumpWheel

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

«PrincipleEffect»

effect: CentrifugalForce

dp: Pressure

q: VolumeFlow

numWingWheels: Integer

outerWheelDia: Length

innerWheelDia: Length

wheelWidth: Length

outerCylWidth: Length

outerCylDia: Length

ρ : density

w: RotVelocity

n_opt : RotVelocity

V_opt : VolumeFlow

dp_opt : Pressure

CentrifugalForce.m

V = f(do, di, w, nwings, nspec, Δpopt, Vopt, ω, Δp, ρ)

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

9

Table 1. Parameter values for the calculation of the principle solution CentrifugalPumpWheel.

Parameters

of the functional flows

Parameters

of the principle solution

Resulting parameters

of the effect calculation

ω = 15 1/s

ρ = 1000 kg/m^3

Δp = 37000 Pa

Vopt = 0.00606 m^3/s

Δpopt = 40000 Pa

nspec = 40,7

nwings = 7

do = 115 mm

di = 57,5 mm

w = 32,1 mm

V = 0.0074 m^3/s

6. Solution Library

Besides the described advantages of parameter-based modelling of principle solutions, it is

unmistakable that this involves a certain modelling effort. One approach to reduce the modelling effort

is to reuse the models created once. Since elementary functions and physical effects are not only a

finite but also a known quantity, their reuse offers high potential.

Koller has structured elementary functions and physical effects with non-formalized descriptions in a

document-based catalog [5]. Since, according to Roth [22], catalogs should basically fit the method

used and enable efficient use, it is necessary to develop a new concept for a digital library. Therefore,

we use SysML as conceptual design language to develop the Solution Library and the interfaces to the

system architecture.

Figure 5. The solution library (lower part) supports the development process (upper part) by

identifying possible physical effects and principle solutions for a selected elementary function.

The first use of the solution library takes place during the modelling of the functional architecture.

Here, the user can reuse exactly those elements from the finite and predefined pool of elementary

functions that he needs to fulfill the requirements (figure 5 left). By selecting the elementary function

(here: ApplyMechanicalEnergyToFluid) the solution library is automatically filtered and only those

physical effects are displayed, which can realize the chosen elementary function (figure 5 center).

After a physical effect is also selected (here: CentrifugalForce), the set of stored principle solutions is

«DesignRequirement»

A volume flow of 7 litres per

second should be generated.

«ElementaryFunction»

CApplyMechanical Energy

ToFluid

«PrincipleSolution»

CentrifugalPumpWheel
«satisfy»

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«PrincipleEffect»

CentrifugalForce

constraints

V = f(do, di, w, nwings, nspec,

Δpopt, Vopt, ω, Δp, ρ)

«PrincipleSolution»

Centrifugal

PumpWheel

determines
requirement

searches suitable
elementary function

select effect select principle
solution

uses predefined
elementary function

uses predefined principle
solution

Hydrodynamics

Bernoulli‘s law

CentrifugalForce

…

CentrifPumpWheel

EjectorNozzle

Plunger

…

Solution Libary

«use»
«use»

ActiveSurfaceSet

WheelCyl

PrincipleEffect

CentrifugalForce

ActiveSurfaceSet

WheelCyl

PrincipleEffect

CentrifugalForce

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

10

filtered so that only those containing the selected physical effect are listed (figure 5 right). All these

listed principle solutions are suitable as technical realization of the elementary function and are able to

fulfill the initial requirement (chosen here: CentrifugalPumpWheel).

The described approach is feasible because we have extended the well-known Koller catalog [8] by

central elements: Our solution library contains not only elementary functions and physical effects (like

Koller), but complete principle solutions including frequent active surfaces and materials (figure 6

left). Thus, our principle solutions can be varied not only with regard to the physical effect, but also

with other active surfaces and materials.

With principle solutions, initial functional tests (cf. section 5) can be carried out, but more

specialized models often have to be used in order to validate further requirements (e.g. service life or

noise propagation). Therefore, as a second major enhancement compared to Koller, we store each

principle solution together with suitable behavior models and workflows in a so-called solution

element (figure 6 right). In this way, behavior models are clearly assigned to concrete principle

solutions in our solution library and can be used efficiently for virtual behavior testing of evolving

solutions based on the chosen purpose [21]. This confirms the third research hypothesis.

Figure 6. In addition to elementary functions, physical effects, active surfaces and materials, the

solution library primarily contains a set of predefined principle solutions. These principle solutions are

stored together with more detailed behavior models and workflows in a so-called solution element.

Here it is shown for the example system how the principle solution CentrifugalPumpWheel is

classified in the variant structure of the solution library.

7. Conclusion

In this paper a SysML-based modeling method for the mechanical domain in the development of CPS

was presented. This method enables the mechanical domain to consistently link its requirements,

functions and principle solutions with each other, so that the function orientation and thus the

possibility of collaboration with other domains is maintained. The principle solution was formalized

based on the concept of Koller [8] for SysML and consists of physical effect, active surfaces and

350 Principle Effects ∞ Geometries ∞ Materials

«PrincipleSolution»

Centrifugal

PumpWheel

«PrincipleSolution»

Centrifugal

PumpWheel

«PrincipleSolution»

Centrifugal

PumpWheel

«PrincipleEffect»

CentrifugalForce
«PrincipleEffect»

CentrifugalForce
«PrincipleEffect»

CentrifugalForce

«GeometricElement»

Wheel
«GeometricElement»

Wheel
«GeometricElement»

Wheel

«Material»

Fluid
«Material»

Fluid
«Material»

Fluid«ActiveSurfaceSet»

WheelCyl

«Material»

Fluid
«PrincipleEffect»

CentrifugalForce

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«ElementaryFunction»

GeneralOperation

EnergyMaterial

«ElementaryFunction»

GeneralOperation

EnergyMaterial

«ElementaryFunction»

GeneralOperation

EnergyMaterial

«PrincipleSolution»

Centrifugal

PumpWheel

«ElementaryFunction»

ApplyMechanical

EnergyToFluid

«ElementaryFunction»

GeneralOperation

EnergyMaterial

«SolutionElement»

CentrifugalPumpWheel

«Workflow»

CentrifugalPumpWheel

«BehaviorModels»

CentrifugalPumpWheel

Lifetime-Model

NVH-Model

…

NVH-Test

NVH-Model

«ActiveSurfaceSet» C

geometry: WheelCyl

wheel: PumpWheel

cyl: Cylinder

«PrincipleEffect» C

effect:

CentrifugalForce

«ProxyPort»

cm_in: Fluid

«ProxyPort»

p_mech:
MechEnergy

«ProxyPort»

cm_out: ~Fluid«EffectElement» C

pressure: PressureDifference

{p = p_in + dP}

«PrincipleSolution»

CentrifugalPumpWheel

NVH-Test

NVH-Design

…

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

11

material, which are linked to each other via their parameters. This parameter linking makes the

principle solution executable so that it can be calculated by external models and the results can be

compared against requirements. In contrast to the Koller catalog [8], the modeling concept for the

solution library contains not only elementary functions and effects, but entire principle solutions with

more sophisticated behavior models and their corresponding test workflows. The solution library thus

makes principle solutions efficiently reusable and paves the way for virtual behavior testing of

evolving solutions based on the chosen purpose.

References

[1] Eigner M, Gilz T and Zafirov R 2012 Proposal for functional product description as part of a

PLM solution in interdisciplinary product development DESIGN 2012 ed Marjanović D,

Storga M, Pavkovic N, Bojcetic N (Zagreb: UNIZAG-FSB) pp. 1667–76.

[2] Alur R 2015 Principles of cyber-physical systems (Cambridge: The MIT Press).

[3] Gausemeier J, Dorociak R, Pook S, Nyßen A and Terfloth A 2010 Computer-aided cross-

domain modeling of mechatronic systems Design 2010 ed Marjanović D, Storga M,

Pavkovic N, Bojcetic N (Zagreb) pp. 723–32.

[4] Broy M 2010 Cyber-Physical Systems (Berlin Heidelberg: Springer).

[5] Koller R 1998 Konstruktionslehre für den Maschinenbau (Berlin: Springer).

[6] OMG OMG Systems Modeling Language Version 1.6,

https://www.omg.org/spec/SysML/1.6/PDF.

[7] Feldhusen J and Grote K-H (eds.) 2013 Pahl/Beitz Konstruktionslehre Methoden und

Anwendung erfolgreicher Produktentwicklung 8th ed. (Berlin: Springer).

[8] Koller R and Kastrup N 1994 Prinziplösungen zur Konstruktion technischer Produkte (Berlin:

Springer).

[9] Moeser G, Albers A and Kumpel S 2015 Usage of Free Sketches in MBSE 2015 IEEE

International Symposium on Systems Engineering (ISSE) ed IEEE) pp. 50–55.

[10] Moeser G, Kramer C, Grundel M, Neubert M, Kümpel S and Scheithauer A et al. 2015

Fortschrittsbericht zur modellbasierten Unterstützung der Konstrukteurstätigkeit durch

FAS4M Tag des Systems Engineering ed Schulze S-O, Muggeo C (München: Hanser) pp.

69–78.

[11] Wölkl S and Shea K 2009 A Computational Product Model for Conceptual Design Using

SysML Volume 2: 29th Computers and Information in Engineering Conference ed ASMEDC

pp. 635–45.

[12] Pasch G, Jacobs G, Höpfner G and Berroth JK 2019 Multi-Domain Simulation for the

Assessment of the NVH Behaviour of a Tractor with Hydrostatic-Mechanical Power Split

Transmission: RWTH Aachen University.

[13] Golafshan R, Jacobs G, Wegerhoff M, Drichel P and Berroth JK 2018 Investigation on the

Effects of Structural Dynamics on Rolling Bearing Fault Diagnosis by Means of Multibody

Simulation.

[14] Andary FS, Berroth JK and Jacobs G 2019 An Energy-Based Load Distribution Approach for

the Application of Gear Mesh Stiffness on Elastic Bodies Journal of mechanical design 141

95001.

[15] Berroth J, Jacobs G, Kroll T and Schelenz R 2016 Investigation on pitch system loads by means

of an integral multi body simulation approach.

[16] Drave I, Rumpe B, Wortmann A, Berroth J, Höpfner G and Jacobs G et al. Modeling

Mechanical Functional Architectures in SysML MODELS ‘20: Proceedings of the 23rd

ACM/IEEE International Conference on Model Driven Engineering Languages and Systems

ed pp. 79–89.

[17] Rumpe B 2012 Agile Modellierung mit UML (Berlin, Heidelberg: Springer).

[18] Drave I, Hillemacher S, Greifenberg T, Kriebel S, Kusmenko E and Markthaler M et al. 2019

SMArDT modeling for automotive software testing Softw: Pract Exper 49 pp. 301–28.

https://www.omg.org/spec/SysML/1.6/PDF

19th Drive Train Technology Conference (ATK 2021)
IOP Conf. Series: Materials Science and Engineering 1097 (2021) 012001

IOP Publishing
doi:10.1088/1757-899X/1097/1/012001

12

[19] Albers A and Zingel C 2011 Interdisciplinary Systems Modeling using the Contact and

Channel-Model for SYSML Impacting society through engineering design ed Culley SJ

(Glasgow: Design Society) pp. 196–207.

[20] Munker F and Albers A 2015 SystemSketcher – Entstehung eines anwenderorientierten

Ansatzes zur interdisziplinären Systemmodellierung Tag des Systems Engineering ed

Schulze S-O, Muggeo C (München: Hanser) pp. 291–300.

[21] Höpfner G, Jacobs G, Zerwas T, Drave I, Berroth J and Guist C et al. Model-Based Design

Workflows for Cyber-Physical Systems Applied to an Electric-Mechanical Coolant Pump

Antriebstechnisches Kolloquium 2021

[22] Roth K 1994 Konstruieren mit Konstruktionskatalogen (Berlin: Springer).

