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ABSTRACT 
Research on energy efficiency of today’s buildings 

focuses on the monitoring of a building’s behavior 

while in operation. But without a formalized 

description of the data measured, including their 

correlations and in particular the expected 

measurements, the full potential of the collected data 

can not necessarily be exploited. Who knows if a 

measured value is good or bad? This problem 

becomes more virulent as smart control systems 

sometimes exhibit intelligent, but unexpected 

behavior (e.g. starting heating at unconventional 

times). Therefore we defined a methodology starting 

already at the design of the building leading to a 

formalized specification of the implementation of a 

building’s management system, which seamlessly 

integrates to an intelligent monitoring. DIN EN ISO 

16484 proposes a method to describe functional 

requirements in an easy to understand way. We 

extended its use of state machines to our proposed 

concept of state based modeling. This proved to be a 

wholesome approach to easily model buildings and 

facilities according to the DIN EN ISO 16484 while 

providing the possibility to apply sophisticated and 

meaningful analysis methods during monitoring. 

 

 

 

1. INTRODUCTION 

Saving energy in today’s world of rising CO2 

emission is an inevitable task. Most current tools 

focus on monitoring the energy efficiency of 

buildings and facilities. But saving energy and 

natural resources starts in the earlier phases of every 

building’s development process and depends on the 

overall requirements and implementation quality. 

With our already published concept of the Energy 

Navigator (Fisch et al., 2010) we proposed a 

methodology that addresses the qualitative aspects in 

an early phase of this process. Figure 1 shows our 

closed optimization circuit starting at the design 

phase. We provide a convenient tool to specify the 

desired behavior of the building management system 

(BMS) as formalized requirements documentation. 

This formal specification can be implemented 

directly, avoiding errors which might otherwise be 

detected in later phases (integrated quality 

assurance). The implementation of such a 

specification into a PLC controller can be done e.g. 

using existing programming tools (Siemens, 2004). 

To check the implementation, analysis algorithms can 

be derived and automatically processed from the 

specification to proof the quality of service during 

operation. The monitoring process is supported by 

target-aimed data preparation and visualization. The 

collected information can easily be used in the 

optimization phase to improve the building’s 

efficiency by adapting the specification and 

implementation (feedback loops). By introducing 

such a methodology one omits inconsistencies 

between the planned functional requirements of a 

BMS and the actual realization. 

 

     To realize functional requirements the DIN EN 

ISO 16484 proposes several concepts to describe the 

functional behavior of facilities. Our state based 

modeling approach combines the concept of state 

machines from the area of computer science and the 

concepts proposed in the DIN EN ISO 16484. By 

describing such a functional requirement in an easy 

to understand way, we show that we are able to 

specify and check functional requirements fully 

automatic. This provides an extension to the already 

existing concepts of the Energy Navigator like 

metrics, rules, functions, characteristics and other 

elements. Using the information provided by the 

BMS about the state of a building or a facility we 

show how to model all functional requirements in a 

state-based way combining it with the 

aforementioned concepts to specify requirements for  
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Listing 1: Textual representation of a specified rule 

 

every possible state. By connecting the existing 

concepts and the state-based modeling approach we 

provide a new methodology for planning and 

monitoring functional behavior. With this approach 

we present new options to specify more fine-grained 

quality criteria in the design-, monitoring- and 

optimization phase. 

 

     The paper is structured as follows: First we 

explain the concept of the Energy Navigator and 

motivate a concrete example for using our approach. 

After that we introduce our concept of state based 

modeling. We provide a theoretical foundation and 

show the adaptations we made to the existing concept 

of state machines, necessary to use it together with a 

building automation process. Subsequently we show 

how this approach can be extremely helpful during 

the whole process of implementing a building 

automation system together with visual evaluation 

means to gather data that enables the user to easily 

see errors in the automation system. After that we 

conclude our approach with a discussion of the 

benefits and open points for future work. 

 
Figure 1: Closed optimization circuit starting with a 

formal specification 

 

2. BASIC PRINCIPLES 

The Energy Navigator is a technical state of the art 

software platform, using client- server mechanisms, 

providing the possibility to not only monitor but also 

specify the behavior of a BMS. The platform 

provides all means necessary to get a closed circuit 

between specification, monitoring, data analyses and 

optimization. Monitoring of buildings and providing 

sophisticated analyses means handling mass data. 

The platform is able to import data either 

automatically, by using OPC (Mahnke et al., 2009) to 

directly read values from the BMS, or manually, 

from a data logger, in discrete intervals. Since we 

created a highly adaptable platform we are able to 

scale up the data collection to one data point each 

second for a single sensor. But under normal 

conditions a resolution of collecting one data point 

every 15 minutes for a single sensor has proven to be 

feasible and state of the art in building automation 

systems. Even this coarse grained data collection 

leads to a lot of information that needs to be stored 

and processed by the platform. Consider a building 

having 1000 sensors each producing a data point 

every 15 minutes. Thus we get 96000 data points a 

day from a single building which result in about 35 

million data points a year. To keep the performance 

and scalability we use cloud computing (Lenk et al. 

2009, Zhang et al. 2010) based storage techniques. 

Additionally most modern building automation 

systems provide the possibility to not only log data 

points but to log also markers signaling different 

modes a building or part of it resides in. 

 

     Each data collection is followed by a 

preprocessing step ensuring that all the values have 

equidistant timestamps and have passed outlier 

detection. Since the building automation system 

cannot ensure this, might miss single values or collect 

them a bit too late we use a multistep algorithm to 

calculate the correct timestamps for each data point 

or can even interpolate single data points. We will 

later see that our analysis and our concept of state 

based modeling are affected by this. Having collected 

all the data the user needs to be able to create custom 

analyses for the monitored building. To support these 

tasks the Energy Navigator platform provides the 

possibility to create several elements aiding the 

analyses of mass data measured in a building. We 

therefore created a Domain Specific Language 

(Karsai et al., 2009) for specifying and modeling 

buildings. To create such a language we use our 

framework MontiCore (Krahn et al., 2010). This 

Language consists of several elements describing the 

tools at hand for an energy expert. These elements 

are: metrics, characteristics, time routines, constants, 

functions and rules. We explain the concept of 

functions and rules in more detail in section 2.1 

whereas the other concepts are explained in (Fisch et 

al., 2010). To provide aggregated information over 

the specified analyses we created different plots, like 

a standard line plot, a scatter plot or a carpet plot 

displaying data aggregated over time. Since we 

decoupled the user interface from the actual server 

backend computing the analyses, our platform is able 

to be used from different kinds of user devices, like 

personal computers running the expert tool, tablets or 

even smartphones to get only necessary information 

relevant to the user on site. 

 

 

 

1. Specify 

2. 
Implement 

3. Operate 
& Analyze 

4. Optimize 

rule isNightMode { 

 sensors { 

  I1 = “000-000-001“; 

 } 

if isNight 

then I1 = 18.0 

else true 

} 



Listing 2: The arePeoplePresent rule 

 

2.1 The Rule Domain Specific Language 
This section provides a detailed description of the 

Domain Specific Language (DSL) we created to 

formulate rules or functions. We focus on the concept 

of rules and omit the functions since the basic 

difference between them is that functions always 

evaluate to a numeric value while rules evaluate to a 

logical (true/false) value. Listing 1 shows a textual 

representation of a specified rule. We explicitly 

present this rule from a technical point of view. Our 

tool that supports the creation of such rules abstracts 

from the concrete syntax and provides the user with 

an intuitive graphical user interface to create them. 

This rule is named isNightMode and can be 

referenced as such from other elements or other 

documentation. The next block assigns a readable 

identifier to an existing sensor which is known by its 

BMS-ID inside the building management system. We 

can use this identifier throughout the rule to reference 

the sensor. The rule’s body contains the actual 

specification. The example specifies a comparison 

between the sensor and a reference value. To fully 

understand the rule one has to know the possibility of 

cross referencing other elements, like the time routine 

called isNight. Keeping in mind that we use 

equidistant time steps to evaluate our elements one 

has to think of such a time routine as an evaluation to 

true or false for any given timestamps. One could 

specify the time routine as “every day between 10 
p.m. and 6 a.m. the building should be in night 
mode”. So for every timestamp inside the specified 

range this evaluates to true or false otherwise. To 

sum it up, the rule specifies, that the sensor which 

collects the data important to us, should measure the 

value 18.0 each time the building is in night mode. If 

it isn’t in night mode we don’t care in this context 

and evaluate to true. After evaluating this using a 

carpet plot we can easily see if there are any 

occurrences where our specification may not hold for 

the given time range by using a carpet plot. Beside 

the if/then/else and the equals operator (=) we 

provide a comprehensive set of operators like && 

(AND), || (OR), implies, ! (NOT), comparisons (>, <, 

<=, >=), arithmetical operators like +, -, *, / and 

library functions like the absolute function. 

Furthermore the language can handle parenthesized 

operations. These operators can be nested 

unrestricted. Of course we are able to check if there 

are errors or an unreasonable nesting of the operators 

in place and provide the user with some feedback. 

 

Listing 3: The referenceValueChange rule 

 

2.2 Concrete Example 

To clarify our approach we give a concrete example 

of how to apply our approach of state based modeling 

in combination with the existing concepts to the 

specification and monitoring of a building. 

 

    Consider a basic room temperature control system 

as specified in (Arbeitskreis der Professoren für 

Regelungstechnik, 2004). It consists of several 

elements like a radiator, a chilling system, a window 

contact, a shutter control, a temperature control 

interface and a presence sensor. Additionally it has 

four modes of operation, namely main mode, sleep 

mode, night mode and antifreeze mode. The main 

mode is characterized by people’s presence being 

able to alter the reference value about ±3K. The sleep 

mode is used to reach the main mode’s reference 

value fast if nobody is present. Additionally fig. 2 

provides a characteristic for the temperature control 

being in either main mode or sleep mode. In contrast 

to the main mode the night mode is not characterized 

by the presence of people but by a timing 

mechanism. During this mode the temperature is kept 

low and all elements are either shut off or kept on a 

minimal level. Additionally the antifreeze mode may 

shut down the heating or chilling system if a window 

is opened and a minimal reference threshold is not 

undercut. During the remaining parts we focus on the 

main mode and its conditions. The conditions 

belonging to the other modes can be specified 

analogously. One can identify the following 

conditions for being in the main mode as 

 

 people have to be present 

 the reference value can be changed by ±3K 

at most 

 the control needs to react as specified in the 

according characteristic 

 

Apart from the characteristics the conditions are 

specified in an informal way. But these informal 

requirements are used by the control engineer to 

implement the room temperature control system 

leaving room for misunderstandings and 

interpretations which may lead to erroneous 

implementations. Beside failures during the 

implementation there is no possibility to efficiently 

monitor the specifications. This shows the earlier 

described discrepancy between planning, realization 

and monitoring. Using the concepts the Energy 

rule arePeoplePresent { 

 sensors { 

  I1 = “000-000-002“; 

 } 

I1 > 0 

} 

rule referenceValueChange { 

 sensors { 

  I1 = “000-000-003“; 

 } 

(I1 >= referenceValue – 3) 

  or 

(I1 <= referenceValue + 3) 

} 



Navigator provides we can formulate these informal 

requirements in a more formal way. First, we specify 

a rule called arePeoplePresent to derive logical 

values from the presence sensor. The corresponding 

rule is shown in listing 2. Furthermore we need to 

specify another rule called referenceValueChange 

shown in listing 3. As this rule is quite complex we 

want to explain it in more detail. First of all we can 

see that we use the identifier I1 for referencing the 

sensor that actually measures the value that people in 

the building configured. Furthermore we can see that 

the most complex part is specified in the if-condition. 

The condition consists of a disjunction connecting 

two subconditions. The former specifying that the 

actual measured value is not allowed to be smaller 

than the original referenceValue subtracted by three. 

The latter specifies exactly the opposite. Thus the 

rule is always evaluated to true if and only if the 

actual value doesn’t deviate from the reference value 

by at most three. The used referenceValue inside the 

rule is itself a reference to a configurable value that is 

defined elsewhere. As we have now modeled the first 

two requirements we have to model the last informal 

requirement. For this purpose we use a characteristic 

defining the behavior. The characteristic opposes two 

sensors that measure according to our example an 

action and the reaction of the temperature control 

system. Figure 2 shows the graphical representation 

of such a characteristic.  

 

 
Figure 2: A characteristic defining the reaction of the 

temperature control system 

 

The solid line represents the defining characteristic 

while the dashed line defines a possible margin due 

to the reaction of the system. Since it can only react it 

cannot follow the defining characteristic exactly. 

Using the example and the previous informal 

requirements we have shown how to derive a formal 

specification from the requirements. As the example 

doesn’t cover the fact that a building or a facility can 

reside in different modes we expand our concept with 

certain elements to also cover this in a formal 

specifying way. 

 

     In the next section we introduce our approach of 

state based modeling and show how to model and 

how to evaluate the specification leading to a 

wholesome approach for planning, implementation 

and monitoring. 

 

3. STATE MODELS 
State machines (Harel, 1987) and especially 

hierarchical state machines are a common concept in 

computer science to describe the behavior (Rumpe, 

1996) of a system. A state machine model consists of 

states and transitions. There are a lot of variants of 

state machines, e.g. accepting and recognizing 

machines, Moore (Moore, 1956) and Mealy (Mealy, 

1955) machines or UML statecharts (Rumpe, 2004). 

 

     The variants define additional elements like 

stimuli (actions or conditions to switch from one state 

to another), outputs, conditions and invariants. 

Usually states can be tagged as start or final states. In 

some definitions states can be hierarchically 

decomposed, which means, that states may contain 

substates. This eases understanding of complex 

decomposable state machines since states can be 

viewed as black boxes at the top level and can be 

decomposed by inspecting them.  

 

First we introduce a simple state machine definition 

consisting of states, transitions and stimuli. An 

adaption of this model for the use in facility planning 

is presented in the next subsection. 

 

 
Figure 3: An abstract state machine model 

 

Figure 3 shows three states a, b and c. There are 

transitions between the states annotated with stimuli 

s1…s5. As an example the state machine can switch 

from state a to state b if stimulus s1 occurs in the 

system. Another notation for this behavior is shown 

in table 1. As you can see the graphical state machine 

notation is much more comprehensive. 

 

 

 

 

 



State 

/ Stimulus 
state a state b state c 

s1 state b - - 

s2 - state a - 

s3 state c - - 

s4 - - state b 

Table 1: state transition table 

 

3.1 State-based Modeling 

Picking up the previous example of the room 

temperature control system we propose a state based 

view on the description of the system. Figure 4 shows 

a graphical notation of the formulated modes and 

their conditions. The figure shows several aspects. 

On the one hand we can see the different elements 

needed to model the different modes. These elements 

are referenced by their name as explained in the 

description of listing 1. We need a sensor measuring 

the values that are compared to the reference value. 

Additionally we need two more sensors, one being a 

presence sensor that stores information about whether 

persons are present at the measured timestamp and 

one sensor storing the information whether the 

window was opened. Apart from that we make use of 

a time routine element to specify the interval 

considered as night and two characteristics specifying 

the reaction of the temperature control in different 

modes. That way we get a formalized model of each 

mode to be used in further analyses. 

The transitions in figure 4 show possible changes 

from one mode to another. In contrast to figure 3 we 

do not model any stimuli at transitions. But they can 

be modeled to give the control engineer a 

specification on how to implement the BMS. 

 

     Transferring our example to the idea of state based 

modeling and to provide a formal definition we show 

the similarities between the well-known concept of 

state machines from computer science and our 

proposed methodology. We can consider the example 

model to consist of different states and transitions 

where a state describes the mode of the facility and 

the transitions describe the conditions that must be 

fulfilled to change the state. As we can see transitions 

are not required to have a condition. These transitions 

are triggered spontaneously thus switching the state 

of the system. This shows the first simplification of 

our model regarding the original model of a state 

machine. Furthermore transitions are directed and 

allow switching from one state to another but not vice 

versa in state machines. Transitions may also be 

loops remaining in the same state when triggered. In 

the automated evaluation of our model we consider 

undirected transitions that allow switching between 

both associated states and we omit the possible 

occurrence of loops. In subsection 3.3 we explain in 

more detail that it is actually not possible for the 

automated evaluation to have conditions for 

transitions and to use loops. Additionally we don’t 

model an explicit initial and final state since we 

specify a continuously running system where this 

information is not needed. Nevertheless one can 

surely use these elements in the specification phase to 

communicate among the stakeholders. Thus we don’t 

restrict the user to use these elements but don’t regard 

them during the automated evaluation. These 

simplifications lead to a rather compact basic 

definition of a state space. Both states and transitions 

between the states define a state space: 

 

   (   ) 
              

    {(     )}           

 

Where S is the set of all states, T is the set of all 

possible transitions between all states and SS the 

state space defined by its states. A state can contain 

several sub elements as we motivated in our example. 

These elements belong to our DSL for specifying and 

modeling a building and can be evaluated to either a 

numerical value or a logical value. We abstract from 

defining each element formally since the important 

aspects are the 

 

Figure 4: A modeled state space with its states 

 

evaluation and the referencing concept that can be 

used inside a state. Thus a state is defined as a tuple: 

 

  (    )  
 

In this case E should define a set of elements 

belonging to our language. Furthermore we omit the 

name of a state and a state space in the definition 

since it is only used for documentation issues. As 

mentioned earlier modern building management 

systems are able to monitor markers. The markers to 

be monitored are specified beforehand and need to be  

 



Listing 4: An integrating rule for checking the 

satisfaction of a state 

 

implemented in the BMS. During the specification 

phase the energy expert can define the state space 

including the needed states representing the different 

modes a building or a facility can reside in. By doing 

so he directly specifies the different discrete values 

for the markers that have to be monitored by the 

BMS. This information can be used by the control 

engineer to implement the BMS. During the 

monitoring phase we are able to use the information 

provided by the markers to enable the automated 

analyses since we can monitor the mode of the BMS 

and analyze it against the given specification. 

 

     We explicitly want to point out the important role 

of rules inside the concept of states. Since the other 

elements are used to get helpful methods in defining 

concepts regarding the building to be specified, the 

rules connect the elements and specify the constraints 

on a building. Due to the referencing concept we can 

use every element inside a rule and get a logical 

value as the result. This also means that we 

sometimes need to encapsulate other elements inside 

rules to get that logical value. Regarding our example 

we need to create a rule stating that it should evaluate 

to true if the reference value lies inbetween the given 

margin of the defining characteristic or false 

otherwise. 

 

3.2 Evaluation Semantics 

After specifying a facility and implementing the 

BMS we need to be able to evaluate the modeled 

state spaces. Therefore we define the semantics of 

creating such a model with the included elements. 

First we define the semantics of each state consisting 

of several elements. A state    can either be satisfied 

at a given timestamp or not. For being satisfied the  

 

   ⋀  
 

              

 

characterizes the state where R represents the set of 

contained rules in a state   . So every single rule has 

to be satisfied at a given time for the state to be 

satisfied as well. For the evaluation of a single state 

space we have to consider all included states. 

Therefore the following has to hold: 

 

        (       )                

 

This means that exactly one state may be satisfied at 

a given time. If there exist a second state that is  

Listing 5: An integrating rule for checking the 

satisfaction of a state space 

 

satisfied then this state has to be the same state as the 

already satisfied one. If more than one state is 

allowed to be satisfied at the same time we have to 

soften this restriction.  

 

                   
 

The Energy Navigator can be configured to use either 

possibility. This enables the user to decide if the 

building or facility can be in more than one state at 

the same time or not. The fact that only one state may 

hold at a given time enables us to efficiently monitor 

the provided marker representing the actual state of a 

facility. In the formal description of the state space 

we left out the fact that the state space itself may also 

contain rules which have to be satisfied completely in 

addition to the one single satisfied state. Picking up 

our example of specifying the main mode of a 

temperature control system we already have shown 

two rules describing the informal requirements. We 

encapsulate the defining characteristic inside another 

rule called satisfiesCharacteristic. This rule simply 

checks if each measured data point for a given 

timestamp does at most deviate by a specified ε and 

is defined analogous to listing 2 and 3. By defining 

these rules we are now able to apply our evaluation 

semantics. 

 

3.3 Unmonitored Events 

Our definition of a state space to be analyzed 

automatically relies on having the possibility to use a 

transition from each state to any other state and it 

relies on not having conditions specified at 

transitions. We want to reason about this decision 

since it seems to be a constraint on the model. 

Keeping in mind that the Energy Navigator is not a 

real time application and therefore doesn’t collect 

live data one can see that we are only able to look at 

discrete snapshots of the monitored building. In the 

scenario where we collect quarter-hourly data points 

we might miss some events. Thus we only know in 

which state the building resides at the given snapshot 

but cannot monitor if we were in several different 

states in the last 15 minutes as well as we are not able 

to monitor if conditions are fulfilled when using a 

transition since we can’t monitor for sure the actual 

point in time where the transition is used. The same 

holds for omitting loops which cannot be monitored. 

Furthermore, since we start at a given point in time to 

monitor a running system we get the first state the 

building resided in since monitoring. But this is not 

rule isStatespaceSatisfied { 

isMainMode or 

isNightMode or 

isSleepMode or 

isAntifreezeMode 

} 

rule isMainMode { 

arePeoplePresent and 

referenceValueChange and 

satisfiesCharacteristic 

} 



necessarily an initial state and we therefore don’t 

consider initial or final states. Nevertheless this 

doesn’t hinder the user to use loops or to use 

conditions for transitions during the specification 

phase. The user can even omit some transitions if 

they are irrelevant from the specification point of 

view. One can use it for communicating and 

providing only the information needed by other 

stakeholders.  

 

4. STATE SPACE EVALUATION 

Since we already defined all the elements necessary 

to specify the main mode we now combine them into 

a meaningful analysis. From the rules nested in a 

state we can automatically infer another rule 

combining the other rules. This is shown in Listing 4. 

This way we compute for any given timestamp the 

information if a single state is satisfied. We can use 

this information directly by using a carpet plot shown 

in figure 5.  

 

  
Figure 5: A carpet plot showing which state is 

satisfied at which point in time. 

 

One can see in an aggregated fashion which state is 

satisfied at which point in time and can check it 

against the monitored marker values. This analysis 

helps at easily detecting wrong states since we would 

directly be able to see if the night mode was satisfied 

during working hours or if the temperature control 

system would constantly stay in main mode. 

Furthermore we can compare these values 

automatically against the monitored marker values. 

We then can easily derive discrepancies between the 

mode the BMS resides in and the actual monitored 

mode. 

 

 
Figure 6: A carpet plot showing at what points of 

time the state space is satisfied or not satisfied 

 

Apart from providing the information which state is 

satisfied we can also provide information if the state 

space as such is satisfied. This enables us to check if 

there exist use cases not modeled or the BMS 

behaves completely different to the specification. As 

we can see in figure 6 there are several red points that 

display that the complete building is in an undefined 

state. As an example we can see that the state space is 

not satisfied after working hours. This may lead to 

the conclusion that there has to be an error in the 

implementation which can now efficiently be solved. 

 

5. THE ENERGY NAVIGATOR 

The Energy Navigator subsumes capabilities for 

planning, monitoring and analysis purposes for a 

quality assured building lifecycle. The target groups 

of the software are building owners, facility 

managers and engineering consultants. 

 

     The Energy Navigator software is developed as a 

product in a cooperation of the Institute of Building 

Services and Energy Design at TU Braunschweig 

University1, the Software Engineering Department at 

RWTH Aachen University2 and the synavision 

GmbH3 Aachen. At the end of 2011 a pilot phase will 

start where practical use will be evaluated. The 

Energy Navigator will be available as a product in 

2012. The software can on the one hand be used for 

planning, monitoring and analyses.  

 

                                                           
1    Institute of Building Services and Energy Design, 

     TU Braunschweig University. 

     http://www.igs.bau.tu-bs.de/ 
2    Software Engineering, RWTH Aachen University.  

  http://www.se-rwth.de 
3    synavision GmbH. http://www.synavision.de 



Figure 7: Screenshot of the Energy Navigator 

software 

 

On the other hand the Energy Navigator can be used 

as a platform for a lot of technical mesh-ups, e.g. 

reporting platforms, information monitors and 

customized websites.  

 

6. CONCLUSION 

We have shown our concept of state based modeling 

throughout the whole development process of a 

building. We first provided the means necessary to 

specify and document the supposed behavior of a 

building and showed the analyses methods applicable 

during the monitoring phase. While the DIN EN ISO 

16484 encourages to model functional requirements 

analogous to our supposed modeling approach we 

have shown a concrete implementation and a 

platform that supports this. Once we have created 

such a specification we can use it to communicate it 

throughout all succeeding phases. The electrical 

engineer can make use of it to implement the PLC 

control and the energy expert can use it to efficiently 

detect errors where energy is wasted in the building. 

We have shown the connection to the well known 

concept of state machines that are widely researched 

in computer science and provided a formal definition 

of our concept of state based modeling. In our 

opinion using this method can help to detect 

incomplete specifications or errors very early and 

therefore can help to reduce expenses and CO2 

emission. It would be very helpful for the monitoring 

and the analysis if BMS were able to monitor the 

exact events when changing modes. We could use 

this information to further improve the analysis by 

monitoring real changes and state changes and would 

not need to rely on snapshots. We then could even 

monitor transitions with conditions or not specified 

transitions that are used by the BMS. Of course these 

problems wouldn’t occur if the monitoring system 

would monitor in real time. But as mentioned in the 

beginning this would lead to an immense amount of 

collected data making it infeasible to compute 

analysis in an appropriate amount of time. 
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