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ABSTRACT
In this paper, we propose to adopt the MDE paradigm for the devel-
opment of Machine Learning (ML)-enabled software systems with a
focus on the Internet of Things (IoT) domain. We illustrate how two
state-of-the-art open-source modeling tools, namely MontiAnna
and ML-Quadrat can be used for this purpose as demonstrated
through a case study. The case study illustrates using ML, in par-
ticular deep Artificial Neural Networks (ANNs), for automated
image recognition of handwritten digits using the MNIST reference
dataset, and integrating the machine learning components into
an IoT-system. Subsequently, we conduct a functional comparison
of the two frameworks, setting out an analysis base to include a
broad range of design considerations, such as the problem domain,
methods for the ML integration into larger systems, and supported
ML methods, as well as topics of recent intense interest to the ML
community, such as AutoML and MLOps. Accordingly, this paper
is focused on elucidating the potential of the MDE approach in
the ML domain. This supports the ML-engineer in developing the
(ML/software) model rather than implementing the code, and addi-
tionally enforces reusability and modularity of the design through
enabling the out-of-the-box integration of ML functionality as a
component of the IoT or cyber-physical systems.
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1 INTRODUCTION
Model-Driven Engineering (MDE) aims to usemodels to support the
development of engineered systems (such as software) at various
stages, for example, through generating implementations from the
models [38]. Further, ML is a branch of Artificial Intelligence (AI),
currently of high impact, mostly due to the rise of deep learning
technologies, to enable machines to learn through inference on
data [27]. ML is used today in almost all areas and domains of
software engineering. It is a popular choice for addressing problems
that are difficult to overcome using traditional programming. In
traditional programming, the developer has to specify the solution
to the problem in an imperative or declarative manner. In contrast,
ML is useful when the problem is highly data-intensive and the
pattern space is at a large scale and too complex for human beings to
analyze and solve directly. In such cases, inferences from observed
data can be useful. However, ML is often not the best approach to
follow in situations where the solution can be realized directly (i.e.,
in the traditional programming way) rather than through inference
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[28]. In this work, we focus on smart software systems that are
not rule-based (e.g., expert systems), but require inference from
observed data, such as data collected though wireless sensors, also
referred to as ambient intelligence, particularly in the context of
smart environments, such as smart home, smart city, and smart
mobility applications.

It transpires that creating the ML components for such software
systems is often highly challenging for software developers. Even
when using the high-level APIs of ML frameworks and libraries,
such as Scikit-Learn [34], TensorFlow [13], Keras [9], or MXNet
[8], developers need to have knowledge both about ML itself, and
about the framework used in order to achieve satisfactory results.
However, many tasks in the creation of ML pipelines, such as the
addition of a convolutional layer to a deep neural network model,
often follow a common set of steps, and differ essentially in the
(hyper)parameters tuning phase.

Model-driven development promises to solve the above-mentioned
problems in an efficient manner by raising the level of abstrac-
tion, and providing automation, for example, for code generation
based on high-level specifications. Therefore, in addition to the
above-mentioned ML libraries, a number of model-driven tools and
associated domain-specific languages, such as MontiAnna [4, 23]
and ML-Quadrat [30, 31] have been introduced in recent years.
These frameworks utilize high-level specifications of ML models
(e.g., deep learning networks) to generate code according to an
underlying ML framework. By raising the level of abstraction, they
liberate the developers from having to learn the specifics of the ML
framework, and enable them to focus on the selection of the ML
solutions they desire instead.

One application area where ML has proven useful is the IoT
domain, which is suitable for the application of ML at several levels:
On the one hand, IoT applications must be able to make inferences
about their environment based on sensor data1 (i.e., ambient situ-
ation assessment). Due to the data (stream) volume, velocity, and
the complexity of the data, it can be difficult to derive knowledge
about the environment from the data. This is where ML can help to
identify patterns in the data, for example, to recognize a particular
face in a photo, and consequently infer that a particular person
is at a location. On the other hand, ML can also be used to make
predictions about the future based on existing data. For example,
patterns in the behavior of smart home residents can be detected to
predict patterns of occupancy in rooms or spaces, and accordingly
schedule cleaning tasks by a domestic robot cleaner.

In this paper, we study and compare two state-of-the-art model-
driven ML tools, namely MontiAnna and ML-Quadrat, particularly
from an IoT perspective, with a focus on their functional aspects.
Accordingly, this paper makes the following contributions: i) It
presents a case study to illustrate using both tools for modeling
ML-enabled software. It also briefly studies each tool from an IoT
perspective. ii) It conducts a functional comparison between the two
model-driven tools. iii) It illustrates how model-driven engineering
(MDE) can support different aspects of the development of machine
learning-driven software.

1When we use the term sensor data, we also refer to data from highly complex sensors,
such as cameras.
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Figure 1: MNIST Calculator taking hand-written digits as
inputs and outputting the sum according to the dataflow
[22, 23]

As a common ground, we use the MNIST Calculator model from
[22, 23], which is a ‘hello world’-like example for the so-called
software 2.0 applications, consisting of ML and standard software
components. The architecture of the MNIST Calculator is given in
Figure 1.

The remainder of this paper is structured as follows. Section 2
introduces the MontiAnna and ML-Quadrat tools through a case
study. Moreover, an in-depth comparison between MontiAnna and
ML-Quadrat, which is mostly concentrated on their functional
aspects is provided in Section 3. Further, we review the related
work in Section 4. Finally, we conclude in Section 5.

2 TOOLS PRESENTATION AND CASE STUDY
In this section, we present both modeling tools and demonstrate
how to use them through a case study for image recognition of
handwritten digits. Hence, this section conforms to the first contri-
bution mentioned in Section 1.

2.1 MontiAnna
MontiAnna [23] is a textual modeling framework and build sys-
tem for the design of deep Artificial Neural Networks (ANNs). It
is embedded into the component and connector-oriented model-
ing language family EmbeddedMontiArc [20, 25, 26], where the
software functionality is encapsulated into components with inter-
faces defined by input and output ports. The communication of the
components needs to be modeled explicitly by creating connectors
between ports. AMontiAnna ANN is integrated into larger software
architectures using the same component-based principle, which
means each neural network is a component [24]. The component’s
ports are then mapped to the input and output layers of the net-
work, respectively. The MontiAnna build system detects all ANNs
in a software architecture and resolves trained model weights for
these networks at build time. If no trained weights are available for
a given network, or if the network model or the designated training
data have changed, the build system trains the network automati-
cally. The developer does not have to deal with the ML life cycle
manually. An ML model in MontiAnna consists of a neural network
architecture encapsulated into a component hull and a separate
configuration model setting up the desired training scheme and
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component Detector<Z(2:oo) classes = 10>{ 

ports in Z(0:255)^{1, 28, 28} data, 

out Q(0:1)^{classes} softmax; 

implementation CNN 

{ 

def conv(channels, kernel=1, stride=1){

Convolution(kernel=(kernel,kernel),channels=channels) ->

Relu() -> 

Pooling(pool_type="max", kernel=(2,2), stride=(stride,stride)) 

} 

data -> 

conv(kernel=5, channels=20, stride=2) ->

conv(kernel=5, channels=50, stride=2) ->

FullyConnected(units=500) -> 

Relu() -> 

Dropout() -> 

FullyConnected(units=classes) -> 

Softmax() -> 

softmax; } } 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

MontiAnna

Figure 2: MNIST Detector CNN modeled in MontiAnna.

holding the hyperparameters. Furthermore, tag models can be used
to assign versionable training data and/or existing weights to the
ANNs.

MontiAnna provides a series of out-of-the-box training pipelines,
for example, for supervised learning, several variants of reinforce-
ment learning [14], generative adversarial networks (GANs), and
variational autoencoders (VAEs). Further pipelines or pipeline com-
ponents can be implemented as standard Python code and assem-
bled using the component-based paradigm. To keep track of the
available configuration options for the different pipelines, Mon-
tiAnna uses a modular schema system, enabling inheritance and
combining of the configuration parameters. Figure 2 shows a Mon-
tiAnna deep learning component encapsulating a Convolutional
Neural Network (CNN) for the detection of MNIST digits.

In the context of the IoT, MontiAnna can be used as part of
MontiThings, which is a DSL-based framework [21] to specify the
behavior of components in IoT applications. For example, even if
edge devices in smart home applications may indeed have insuffi-
cient computational resources to perform full speech recognition
themselves, many of them could detect a key phrase (e.g., the wake
up commands “Hey Siri” or “OK Google”) to know when to start
recording. Using MontiAnna, models for such simplified speech
recognition can be trained and integrated into IoT applications.

Figure 2 shows a MontiAnna component definition specifying
the ANN architecture for the MNIST detector components of the
MNIST calculator architecture of Figure 1. The component is named
Detector in line 1 in Figure 2. Furthermore, it is defined as a generic
component with the generic interface parameter classes. This sup-
ports the usability of the network architecture for similar problems
with a different number of classes (with appropriate re-training).
The interface is defined in lines 1-2 in Figure 2, streaming the input
data for 28x28 matrices within the range of 0 and 255 for grayscale
images. The output is a softmax vector with the dimensionality
defined by the classes parameter.

The layer-specific ANN architecture is defined in the implemen-
tation block (see lines 13-21). The input and output ports’ names
are used as the input and output of the network (see lines 13 and 21,
respectively). The network layers are instantiated by using library
layers such as Convolution, FullyConnected, etc. Reoccurring
patterns are grouped to new layer classes in the def block in lines

6-11. Should the user be uncertain as to the how to select the appro-
priate architecture, wild card layers could be included; whereby the
framework includes network layers iteratively based on a heuris-
tic, e.g. AdaNet [11], compares the results of each iteration, and
eventually returns the best ANN model found. The same network
architecture can be re-used to learn an operator detector for the
MNIST calculator by providing the needed training examples and
changing the class parameter to the number of supported operators,
for example, +, -, ×,÷. The machine learning components can then
be interconnected with other components using connectors as was
shown in [23, 26].

2.2 ML-Quadrat
ML-Quadrat is a modeling tool for creating ML-enabled IoT ser-
vices. It offers full code generation out of software models and
comes with a desktop version, as well as a web-based version. It
is based on the Eclipse Modeling Framework (EMF) [12] and the
Xtext framework [39]. It has a text-based model editor, which uses
Xtext and offers typical IDE features, such as syntax highlighting
and auto-completion, as well as a tree or form-based model editor,
which is based on the EMF tree model editor. ML-Quadrat gener-
ates Python and Java code. The Python code is responsible for the
ML components and uses the APIs of Scikit-Learn or Keras with
the TensorFlow backend. The generated Python and Java codes are
seamlessly integrated. In addition, ML-Quadrat inherited the DSL of
the modeling tool ThingML [16, 37], including its code generation
framework. Thus, it generates code for a range of programming
languages and platforms, for example, C code for the Arduino and
POSIX platforms.

A software model in ML-Quadrat consists of a structural part, a
behavioral part, an ML component, as well as a configuration part.
The latter is absent in the case of Platform-Independent Models
(PIMs). However, for code generation, Platform-Specific Models
(PSMs), which include configurations, are needed [32]. Note that
configurations in ML-Quadrat are concerned with the entire soft-
ware model, thus these are different from the configurations in
MontiAnna. The structural part specifies the things in the system,
as well as their ports, messages, parameters, properties (i.e., local
variables), etc. A Thing in ML-Quadrat can be seen as an actor or
agent that is connected to the IoT. Things can communicate with
each other asynchronously through message-passing via their ports.
Furthermore, each thing must have a behavioral part, which is a
Finite-State Machine (FSM), also known as a state machine, state
diagram, or state chart. The semantics are adopted from the UML 2
standard [1]. It is this part of the softwaremodel that deploys theML
model predictions to make the software model smart. For instance,
the predictions of the ML model may affect the state transitions.

The ML part of the software model typically comprises the spe-
cific ML method that should be deployed, for instance, the model
architecture family (e.g., the Multi-Layer Perceptron ANN), the
hyperparameters, such as the choice of the optimizer or learning al-
gorithm for training theMLmodel, the number of hidden layers, the
layer sizes, and the choice of the activation functions in each layer
in the case of ANNs. If a hyperparameter is absent in the software
model, its default value in the respective ML library or framework
(e.g., Keras/TensorFlow) will be assumed. In the case that an ML
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data_analytics daml1

@dalib "keras-tensorflow"

{

labels ON

features image_pixels, digit_prediction

prediction_results digit_prediction

dataset "data/my_mnist.csv"

model_algorithm nn_multilayer_perceptron my_nn_mlp(

hidden_layer_sizes (128),

hidden_layers_activation_functions (relu),

optimizer adam, learning_rate_init "0.001",

loss SparseCategoricalCrossentropy

)

training_results "data/training_daml1.txt"

}
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Figure 3: MNIST detector MLP ANNmodeled in ML-Quadrat.

method is available in both Scikit-Learn and Keras, the practitioner
may explicitly select the one to be used, or the system can decide
on its own. Moreover, the practitioner may bring a pre-trained ML
model, which has any arbitrary architecture and has been trained
with any arbitrary algorithm and connect it to the software model.
This brings some flexibility since the options for ML methods will
not be limited to the ones that are supported out of the box. Figure 3
illustrates the ML part of the textual model instance in ML-Quadrat
that models a software service for automated handwritten digit
recognition based on the MNIST reference dataset using an MLP.
The DSL keywords are highlighted in blue. The annotation da_lib
enables the practitioner to select the target ML library. For instance,
we support the APIs of both Scikit-Learn and Keras (with the Ten-
sorFlow backend) for the MLP ANN method. Moreover, the labels
keyword specifies whether the data are class labeled (i.e., supervised
learning is applicable) or not. The possible options here are ON,
OFF, and SEMI for supervised, unsupervised, and semi-supervised
learning, respectively. Moreover, the ML features are listed after
the features keyword. Further, the prediction_results keyword can
specify where the future predictions of the ML model should be
stored once the training is accomplished. Additionally, the dataset
keyword is used to introduce the path of the Comma-Separated
Values (CSV) file that contains the training data on the file system.
The core of this part of the software model is the model_algorithm
specification, which models the ML method that should be created
and deployed. In this case study, we train an MLP ANN. The hyper-
parameters are mostly selected from the respective ML libraries,
such as Scikit-Learn. If a hyperparameter (e.g., optimizer) is miss-
ing, the default choice of the respective library will be selected
automatically. In this example, only one hidden layer with the size
of 128 will be created. For instance, if another hidden layer of size
64 had been desired, we would have (128, 64) instead of (128) for
the hidden_layer_sizes hyperparameter. Likewise, the activation
function of each hidden layer needs to be specified through the
hidden_layers_activation_functions hyperparameter respectively.
Furthermore, the rest of the shown hyperparameters specify the
optimizer (in this case Adam), the initial learning rate, as well as
the choice of the loss function. Finally, the training log will be
stored in the stated text file whose path is provided through the
training_results keyword.

Figure 4 depicts the overall architecture of the IoT service that
deploys the mentioned ML components in order to offer automated
handwritten digit recognition. This service comprises three things,
which are represented by the blue rectangles: i) An end-device (such
as a smartphone or tablet); ii) A camera; iii) A server for carrying

End 
device Camera

DAML_
server

request

Figure 4: Architecture of the generated service via ML-
Quadrat for handwritten digit recognition.

statechart DAML_server_behavior init Preprocess {

on entry print "DAML server started!\n"

state Preprocess {

on entry do

da_preprocess daml1

end

transition -> Train

}

state Train {

on entry do

da_train daml1

end

transition -> Ready

}

state Ready {

transition -> Predict

event e: image_recognition_service?image

action do

image_pixels = e.pixels

end

}

state Predict {

on entry do

da_predict daml1(digit_prediction)

image_recognition_service!prediction(digit_prediction)

end

transition -> Ready

}

}
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Figure 5: The behavioral model of DAML_server in ML-
Quadrat.

out the Data Analytics and ML (DAML) tasks, called DAML_server.
The ML component shown in Figure 3 belongs to the latter.

Finally, the behavioral model of the DAML_server thing, which
deploys the above-mentioned ML component, as shown in Figure
3, is presented in Figure 5. Initially, the data pre-processing is con-
ducted. Then, the ML model is trained. Next, the system will switch
to the ready state, which is the standby state. Once an image is
received on the image_recognition_service port, its pixel intensities
will be provided to the ML model to recognize the digit. Afterwards,
the system reverts to the ready state, thus standing by again. Note
that the da_preprocess, da_train, and da_predict actions lead to the
execution of the data pre-processing (i.e., data preparation), ML
model training, and prediction tasks of the ML pipeline. Lastly, the
question mark and the exclamation mark, which are used in the
statechart in Figure 5 check for receiving a particular message on
a specific port, and result in sending a particular message on a
specific port, respectively.

3 COMPARISON
Table 1 summarizes a comparison of MontiAnna and ML-Quadrat
with respect to several aspects of their capabilities. Below, we elab-
orate on these by reference to the respective rows. This section
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constitutes the second and the third contributions mentioned in Sec-
tion 1, as on the one hand it shows a functional comparison of the
two model-driven tools, while on the other hand it elucidates the
broad range of possible support through MDE in the development
of ML-driven software.

Problem domain and Integration: The first aspect to be com-
pared in examining the two modeling tools is the specific problem
domain on which they focus. MontiAnna offers the possibility to
create standalone ML applications, while the ML functionality can
also be used in the IoT domain by using MontiThings [21]. There-
fore, the ML functionality may be encapsulated into a component
and re-used in the EmbeddedMontiArc framework for integration
into the full system, or re-used in MontiThings for integration into
IoT services. By contrast, ML-Quadrat offers an integrated model-
ing language, which covers both IoT and ML. In fact, this provides
for a one-stop-shop for ML-enabled heterogeneous and distributed
services for the IoT. This is realized by the integration of the APIs
of the ML libraries and frameworks Scikit-Learn and Keras into the
prior work ThingML [16, 37] both at the meta-model level and at
the level of code generators.

Modeling methodology and ML methods: In addition, the
tools differ concerning the modeling methodology and the corre-
sponding ML methods. MontiAnna is concerned with a particular
family of ML models, namely deep ANNs. Accordingly, MontiAnna
has its dedicatedmodeling language for ANNs , called CNNArchLang,
which provides for layer-specific modeling of ANNs with a broad
range of supported layers, as shown in section 2.1. The network
architecture is automatically validated, such that - among other
checks - it is ascertained that the output dimensions and input di-
mensions of consecutive layers match. In MontiAnna, the networks
can be trained through a supervised learning approach, a reinforce-
ment learning attempt, and unsupervised learning approaches, such
as GANs or VAEs. Moreover, there is a strict differentiation between
the network architecture and the hyperparameters. A dedicated
language called ConfLang was developed, which has a JSON-like
syntax for configuring a broad range of hyperparameters. These
include the number of epochs to be trained, the batch size, and even
a nested configuration establishing the optimizer and additionally
determining its parameters such as the learning rate. Distinguish-
ing between the network architecture modeling language and a
language for hyperparameters builds a clear separation of concerns
and avoids mixing up domains. In contrast, ML-Quadrat offers a
single DSL for modeling the entire software service or application,
including the ML model architecture, the hyperparameters for ML
model training, as well as other elements (e.g., IoT components).
ML-Quadrat supports two ways of deploying machine learning
methods. The practitioner may either select an ML method that is
supported out of the box (e.g., MLP ANN, or decision trees), or use
a pre-trained ML model. In the latter case, which is called the black-
box ML mode (given that the ML model is dealt with as a black-box
by the software model), the ML model may possess an arbitrary
architecture in the supported libraries and could be trained using
any arbitrary learning algorithm, method, and techniques, which
are supported in the libraries. Hence, the practitioner’s options
are not limited to the out-of-the-box ML methods. These include
linear methods for classification and regression (i.e., logistic re-
gression and linear regression), Naïve Bayes with various kernels

(e.g., Gaussian and Bernoulli), Decision Trees, Random Forests, and
MLP ANNs for supervised ML. In addition, K-Means, Mini-Batch
K-Means, DB-SCAN, Spectral Clustering, and Gaussian Mixture
Model are enabled for unsupervised ML. Last but not least, in the
case of semi-supervised learning (i.e., partially labeled data), the
Self-Training, Label Propagation, and Label Spreading methods can
be deployed.

Target ML libraries & frameworks and ML pipelines:When
working with MontiAnna, the ML engineer can configure a back-
end, which is an ML library with a Python interface, to generate
the code resulting from the model. So far, Caffe2, TensorFlow, Py-
torch, and MxNet/Gluon are supported. This flexibility enables
easy benchmarking between different backends and paves the way
for experimentation with functionalities only supported in certain
backends. The generated code concerning the network architecture
and the training procedure is written in Python, while the execution
can be done in both Python and C++, as C++ is the most common
language in the target domain. However, ML-Quadrat supports the
Python ML libraries Scikit-Learn, and Keras (with the TensorFlow
backend). Besides the ML component, the rest of the IoT services
modeled in ML-Quadrat, may be generated for a range of target IoT
platforms, programming languages, and APIs. The choices include,
but are not limited to C code for POSIX and Arduino, as well as Java,
Javascript, and Go. If Java is desired, the generated Java code will
be seamlessly integrated with the generated Python code for the
ML component. To this aim, the Java and Python code generator
that is offered by ML-Quadrat can be used.

ML pipelines: Typically, ML problems are tackled using an
ML pipeline (i.e., workflow). This pipeline can vary depending
on the problem. However, it often incorporates some kind of pre-
processing of the data (i.e., data preparation), a feature engineering
step (usually for non-deep-learning approaches), an ML model
training process (i.e., learning the optimized parameters in the case
of parametric ML models), and an evaluation, which ensures that
no over-fitting occurs. The pre-processing phase can consist of a
change in the color space for images, data cleaning, imputation of
missing values, normalization, standardization, and stratified sam-
pling. In the case of End-to-End ML, the ML model itself includes all
the pipeline implicitly and does everything self-sufficiently. Thus,
when the input data are fed into the trained ML model, it knows all
the necessary steps to deliver the final result (e.g., prediction). Mod-
eling a pipeline implies supporting the practitioner at two levels: i)
putting together components to create a pipeline; ii) creating the
realization of the pipeline components. In MontiAnna, pipelines
can be constructed using an established Component and Connector
Language, called EmbeddedMontiArc. Components can be created
and connected via ports. The realization of the components can
take place via the following alternative routes: i) through selection
out-of-the-box, for example, a data cleaning procedure provided by
the framework; ii) the generation of the neural network and train-
ing procedure using the aforementioned capabilities of MontiAnna;
iii) be handcrafted by the practitioner to suit the generated inter-
faces as derived from the components and their ports. In contrast,
ML-Quadrat enables data pre-processing through the da_preprocess
action of the DSL (see Figure 5 in Section 2). Currently, this mostly
comprises of feature scaling (i.e., standardization and normalization
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of numeric values), as well as label encoding (i.e., one-hot encod-
ing) for categorical labels. The practitioner may either manually
adapt the generated Python script for pre-processing or adapt the
model-to-code transformation accordingly.

Modularity and Compatibility: Besides the modularity of-
fered through the exchangeability of the pipeline components in
MontiAnna, pre-trained networks can be loaded and imported as
network layers. They are then trained together with the network
architecture modeled around this layer. To guarantee framework
interoperability, both export and import are implemented in the
ONNX standard format. Furthermore, modularity in the context
of ML-Quadrat is provided through the possibility of importing
pre-trained ML models of various architectures from the supported
ML libraries and (de)serialization of these models, for example, as
Python Pickle objects for Scikit-Learn or HDF5 in the case of Keras.

AutoML AutoML is a rising ML subtopic. In MontiAnna, the
integration of AdaNet serves as the first step toward AutoML by
aiming at conducting a Neural Architecture Search (NAS) for any
problem. This approach seeks to create an ANN through an additive
growing ensemble by putting together sub-networks. Moreover,
with the help of the explained concept of pipelining, AutoML can
easily be enabled. Therefore, MontiAnna possesses two levels of
AutoML support: i) Automatically optimizing the parameters that
define a component, for example, the hyperparameters of a training
configuration. ii) At a higher level, complete components can be
exchanged, if the exchanged component is taken from a set with
suitable interfaces. Additionally, ML-Quadrat supports AutoML
at the following two levels. First, it offers rule-based support by
checking certain constraints based on the API documentation of
the respective backend libraries, and ML domain knowledge. For
instance, if a hyperparameter has been set outside the permitted
or recommended range, the practitioner can be warned about this.
Also, in certain cases, such as scaling numeric data in the data pre-
processing of ANNs, or avoiding data shuffling and cross-validation
in the case of sequential (e.g., time series) data, decisions will be
made and enforced automatically should the AutoML mode be
enabled. Second, for certain ML methods, automated ML model
architecture/type selection, as well as automated hyperparameter
optimization using Bayesian Optimization through the Hyperopt
library can be offered. For the latter, the practitioner needs to use the
standalone open-source tool AutoNIALM [5], which was designed
for a particular use case, namely energy disaggregation, but can be
adapted and deployed for other problems as well.

Re-training: In MontiAnna, the training procedure is executed
only if the input data or the model have changed. Otherwise, the
trained model remains the same as compared to the previous train-
ing run. Automated re-training is also implemented in the Mon-
tiAnna framework: When an extension of an existing dataset is
deployed, an event is triggered that initiates the re-training process
of the model. The new training process starts, where the last train-
ing process ended and takes over the learned parameter, such as
the learning rate that was automatically adapted in the previous
run. By contrast, in ML-Quadrat, the practitioner may deploy a
timer in the software model to re-train the ML models periodically,
or it can occur in an event-based manner following the adopted
event-driven programming paradigm (e.g., upon the receipt of a

particular message type on a specific port of the thing (i.e., the
agent), which contains the respective ML component).

Generated Artifacts and Artifact Management: In Mon-
tiAnna, the generated artifacts comprise the source code for the
creation of the system, the source code for the training of the ANN
model, and either the out-of-the-box functionality for the pipeline
components or pre-generated interfaces for the user to realize the
pipeline component manually. When bundled as a package, these
artifacts constitute the source code archive. Other archives being
created by the framework are the ANN model archive, which in-
cludes the weights of the trained model, and the dataset archive,
which contains the dataset associated with a connection to the ANN
model which it was trained with. These packages can be managed
with Apache Maven. Maven goals exist for the deployment of the
archives as well as for the installation of the archives to the local
machine. Similarly, ML-Quadrat generates all the artifacts of the
software solution automatically out of the software model, which
is designed by the practitioner. These include the entire source
code, ML models (ANNs or other ML model families), as well as
the build and run scripts. The generated source code is seamlessly
integrated with the generated ML models and can train, deploy, and
re-train them automatically as required. In the case of Java (and
Python), this includes code generation, where the Python scripts
are in charge of ML, and the Java code is responsible for the rest
of the IoT service functionality; here, Apache Maven is deployed
(similar to MontiAnna) for artifact and life-cycle management of
the generated software solution. In this case, an executable JAR that
contains all the dependencies of the generated IoT service will be
produced, and can be used conveniently by the operator or end-user
to deploy and run the IoT service.

4 RELATEDWORK
Various prior works in the literature addressed the topic of deploy-
ing high-level specifications, abstractions, and visual programming,
to improve AI (in particular ML) engineering. In the following, we
briefly review some of them them. We are particularly interested
in those which deployed the MDE paradigm.

First, high-level APIs concerning ML were provided through
the ML frameworks, such as Scikit-Learn [34], TensorFlow [13],
Torch [10] and Keras [9]. More of these frameworks are presented
in [23]. These frameworks come with methods to build, train, and
evaluate neural networks as well as other ML models. Usually, they
are implemented in C or C++ and accessed via a Python or C++ API.
Although they are very comprehensive, the ML engineer has to im-
plement their solutions with a general-purpose language, thus being
obliged to learn it for each and every platform that is needed before-
hand. Second, ML workflow designers and workbenches, such as
KNIME [6], WEKA [15], and RapidMiner [35] aimed for supporting
a more efficient ML practice. In addition, visual programming for
ML was enabled through a number of tools, such as TensorBoard
[36]. Further, Infer.Net [7, 29] proposed MDE for ML. However,
they were focused on probabilistic programming, thus using Proba-
bilistic Graphical Models (PGMs) as software models for producing
the entire software source code in C# out of them. Moreover, Grey-
Cat [17–19] seamlessly integrated ML into domain models. Their
work was similar to ML-Quadrat, but only targeted Java, Javascript,
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Table 1: MontiAnna vs. ML-Quadrat

Properties MontiAnna ML-Quadrat
1 Problem domain ML self-contained (or together with MontiThings

for the IoT)
ML-enabled IoT services

2 Integration Component encapsulation in EmbeddedMontiArc /
MontiThings

Encapsulation in ThingML

3 Modeling method-
ology

Multiple DSLs Single DSL

4 ML methods Various deep ANNs with supervised, unsupervised
and reinforcement learning

Various supervised, unsupervised, and semi-
supervised ML approaches

5 Target ML libraries
& frameworks

MXNet Gluon, TensorFlow, PyTorch, Caffe2 Scikit-Learn and Keras (with the TensorFlow
backend)

6 Target languages
for code generation

Python (training and runtime), C++ (runtime) Python (for ML), Java, C, Javascript, and Go

7 ML pipelines Modeled via the DSL; functionality out of the box
or implemented by user

Out-of-the-box

8 Modularity and
Compatibility

Pre-trained networks can be loaded as network lay-
ers and ONNX [33]

Any pre-trained ML model in Scikit-Learn or
Keras may be imported/plugged in

9 AutoML Neural Architecture Search with AdaNet, hyper-
parameter optimization and component-based Au-
toML planned

Rule-based and through Bayesian Optimization
(Hyperopt).

10 Re-training Re-training only if data or model have changed,
event-based automated re-training

Event-based automated re-training, for example,
when new data arrive, or timer-based.

11 Generated artifacts Full source code containing ANNs (from
CNNArchLang models) and ML model train-
ing scripts (from ConfLang), complete source
code and dataflows or only interfaces (from
Pipeline Model created with EmbeddedMontiArc
and ConfLang)

ML models, full source code (including the
Python scripts for pre-processing, training, and
prediction), build and run scripts.

12 Artifact manage-
ment

Maven-based artifact re-use (source code, trained
models, datasets are packaged independently)

Apache Maven projects generated for Java

and Typescript for code generation. Thus, it was not suitable for
typical resource-constrained IoT platforms. Another MDE solution
for the deep learning domain used in practice is ML.NET, which
was developed by Microsoft. The framework promises "authoring
production-grade machine learning pipelines [...]" [2]. Based on the
.NET platform, developers can create pipelines as Directed Acyclic
Graphs (DAG) with out-of-the-box functionalities that are easy to
share efficiently through an abstraction called DataView. However,
the model customizability is limited to the parameters. Furthermore,
IBM SPSS Neural Networks [3] offers the possibility to integrate
neural networks to IBM SPSS, which is common a software for
statistics and data analytics. This approach can simultaneously be
seen as a reduction of the manual expense to the minimum and
a realization of AutoML. Instead of designing the neural network
architecture manually, it is seen as a non-configurable black box
simply automatically created based on the data. As IBM SPSS is sta-
tistical software, it does not support convolutional layers for images
or graph convolutional layers, but the fully-connected architecture
model aims at, for instance, solving classical statistical tasks using
neural networks. These can thereby serve as a surrogate for linear
regression. Finally, Azure Machine Learning is a tool for ML that
was developed by Microsoft. It promises end-to-end support for the
complete lifecycle of the ML application and is integrated into the

cloud environment offered by Azure. Training data can be stored
using the Azure Blob storage, and ML models can be trained based
on this data using clusters provided by Microsoft. Via the web in-
terface, the developer can create a pipeline in a C&C-like manner,
but only with predefined components. AutoML techniques are also
supported; for example, if data is uploaded in a CSV format, the
user can specify which parts of the file’s content serve as a feature
and which values are to be predicted by the model. Attached to this
are a fully automated construction and the training of a network.

5 CONCLUSION
In this work, we have compared two open-source MDE tools for
ML-enabled software systems, namely MontiAnna [4, 23] and ML-
Quadrat [30, 31]. First, we have conducted a case study using both
tools to introduce them, as well as the concept of modeling-driven
engineering of ML software. Thereafter, we have compared the
two from a functional perspective. To the best of our knowledge,
this work represents the first such study focused on comparative
analysis of MDE4ML in the context of IoT.

While MontiAnna has a strong focus on the development of
ANNs and the integration of ML functionality in IoT systems via
MontiThings, ML-Quadrat supports the use of other ML methods
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besides ANNs, and seamlessly integrates the ML functionality and
the rest of the smart IoT services. However, ML-Quadrat is limited
in terms of out-of-the-box and modular support for advanced ANN
architectures. Conceptually, both approaches are based on the idea
of incorporating an ML model as a component in a larger system
and enabling the code to be generated, although the frameworks
and languages generated may differ.

From the functional comparison conducted in this work, we
can draw insights on the way model-driven engineering supports
different aspects of the development of ML-driven software. The
model-driven approach relieves the ML engineer from the burdens
of solving the task in the framework-specific implementation, thus
shifting the focus towards the quintessence of the development
process. Thereby, it helps with the development of ML software
as well as with its integration into larger scale software systems,
such as IoT applications, through a simple specification of the key
parameters without loss in flexibility.

Both tools are research prototypes, which are still under de-
velopment. However, they are provided as open-source software,
and promote open standards (e.g., ONNX compatibility in the case
of MontiAnna, as well as interoperability with Scikit-Learn and
Keras/TensorFlow in the case of ML-Quadrat). In this way, we ex-
pect synergies and network effects in the software engineering
and machine learning communities leading to a rapid adoption and
extension of MDE tools for machine learning in academia, as well
as their exploitation and adoption in the industry.
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