[JLR25] N. Jansen, A. Lipges, B. Rumpe:

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language Design.
In: Proceedings of the 18th ACM SIGPLAN International Conference on Software Language Engineering, pp. 112-127, SLE 25,
ISBN 979-8-4007-1884-7, DOI 10.1145/3732771.3742717, ACM, Jun. 2025.

Lessons Learned from Developing the MontiCore
Language Workbench: Challenges of Modular
Language Design

Nico Jansen
jansen@se-rwth.de
Software Engineering

Alex Liipges
luepges@se-rwth.de
Software Engineering

Bernhard Rumpe
rumpe@se-rwth.de
Software Engineering

RWTH Aachen University RWTH Aachen University RWTH Aachen University
Germany Germany Germany
Abstract 1 Introduction

In software language engineering, composition and modu-
lar design are essential milestones to advance reuse in this
domain. Although language engineering improves quality
and development efficiency by incorporating reusable com-
ponents and tooling, some disadvantages and limitations
can inhibit sophisticated language development. Current
research usually focuses on the conceptual advantages but
neglects the often technical drawbacks resulting from the ne-
cessity for complex interactions for seamless integration. In
this paper, we report on our experiences applying language
composition with the language workbench MontiCore and
elaborate on the conceptual and technical drawbacks of the
intended compositional tooling. Using concise application
examples, we demonstrate the challenges of a compositional
parser, the complexity of the generated infrastructure, and
how they scrape the limits of the underlying target program-
ming languages and their compilers. This critical examina-
tion of the implications of modular language construction
demonstrates the pitfalls of language composition in the
large and should reveal potential for future research.

CCS Concepts: « Software and its engineering — Do-
main specific languages; Abstraction, modeling and
modularity.

Keywords: Software Language Engineering, Language Com-
position, Domain-Specific Languages, Reuse, Modularization

ACM Reference Format:

Nico Jansen, Alex Liipges, and Bernhard Rumpe . 2025. Lessons
Learned from Developing the MontiCore Language Workbench:
Challenges of Modular Language Design. In Proceedings of the 18th
ACM SIGPLAN International Conference on Software Language Engi-
neering (SLE ’25), June 12-13, 2025, Koblenz, Germany. ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3732771.3742717

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

SLE ’25, Koblenz, Germany

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1884-7/2025/06
https://doi.org/10.1145/3732771.3742717

The engineering of sophisticated software and software-
intensive systems becomes increasingly complex. Approaches
such as model-driven engineering (MDE) [48] aim to pro-
vide a suitable solution by representing the system under
development on an abstract level, tailored for a specific pur-
pose [49]. Models increasingly serve as central development
artifacts [20] in developing complex cyber-physical systems
(CPS) in various domains such as automotive [5], avionics
[37], robotics [55], or medicine [47]. They adhere to mod-
eling languages that formalize the concrete and abstract
syntax and additionally define well-formedness rules and a
formal mapping into a semantic domain [11] that determines
the meaning of these models [31]. Modeling languages that
are tailored to a specific application domain are also called
domain-specific languages (DSLs) [9]. The development, evo-
lution, and maintenance of such languages are investigated
in the field of software language engineering (SLE) [36].
Research focuses on techniques, tools, and methodologies
for the efficient provision of modeling and programming
languages as well as appropriate tooling, such as parsers,
well-formedness checking, analysis, interpreters, or code
generators [9].

Since DSLs evolve, they incur the same development, main-
tenance, and troubleshooting expenses as any sizeable soft-
ware project [19]. This becomes even more serious as the
languages grow and new features are added. These features
must be integrated into existing ones without breaking the
already established functionality. Similar to classic software
engineering, reusability is also becoming increasingly crucial
in SLE in tackling these issues [6]. Over the years, various
language composition techniques have been developed, in-
cluding entire libraries of reusable language components [3]
and corresponding compositional design patterns [16]. These
enable the efficient development of large languages [28]
and entire language families (e.g., UML [26] or SysML [25]
derivates) from smaller building blocks with less effort and
higher quality. Accordingly, reuse includes not only the con-
crete and abstract syntax of the incorporated components
but also their parsers, as well as generated infrastructure and
hand-written extensions.

https://orcid.org/0000-0001-5199-8323
https://orcid.org/0009-0009-4542-3895
https://orcid.org/0000-0002-2147-1966
https://doi.org/10.1145/3732771.3742717
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3732771.3742717

SLE °25, June 12-13, 2025, Koblenz, Germany

In recent years, advances in this area have shown that
reusability is a key factor in SLE. The respective techniques
are also becoming increasingly sophisticated as they are
designed in the context of mature language workbenches
such as Xtext [18], MPS [53], and MontiCore [29] and im-
plemented in their respective ecosystems. The correspond-
ing generated language tooling is thus tailored directly to
language composition and provided by the framework ac-
cordingly. This means individual language modules can be
efficiently integrated and their infrastructure reused accord-
ing to a library concept [39]. Approaches such as SCOLAR
[45] even go one step further and attempt language composi-
tion across the various ecosystems, thus dealing with largely
heterogeneous modules to be integrated seamlessly. The on-
going trend shows that reuse is still a relevant research topic
in SLE and provides or at least promises many advantages
for the future. These include faster development by embed-
ding existing and tested components, which directly impacts
quality. This also results in lower engineering costs com-
pared to an utterly from scratch development. Furthermore,
building on a solid basis of language components facilitates
the subsequent integration of independent functionalities.
SysML v2 [25] follows this notion with KerML [23], which is
intended to facilitate the integration of other domain-specific
formalisms in the future, which were also built based on the
KerML metaconcept.

Despite the many advances and publications on language
libraries [3] and their application in constructing increas-
ingly sophisticated language families and tooling [28], there
are still major challenges in modular language design. Nei-
ther are these challenges always apparent nor do their weak-
nesses reside at a conceptual level. They are often an intrinsic
part of the composition problem to be solved, or they may
be due to limitations of the underlying general-purpose pro-
gramming language in which a DSL is implemented. Since
many publications often report on new findings and suc-
cesses in their application [15], this paper aims to provide
insights into the challenges of applying language composi-
tion techniques, conceptually and in practice. One apparent
example is that the provided software infrastructure is be-
coming more complex and more complicated for developers
to use methodically. Our observations are based on practi-
cal experience with MontiCore, a language workbench with
substantial composition capabilities. We report on our in-
sights from the last years of intensive application of modular
language construction and highlight still challenging issues.
Thus, we elaborate on issues in compositional SLE and how
they were addressed in MontiCore. We systematically high-
light the underlying challenge and discuss solutions, solution
strategies, or at least workarounds if no general solution is
conceptually feasible. As some of MontiCore’s solution ap-
proaches may entail additional challenges, we also discuss
these and differentiate between implementation-specific and
conceptual risks. Furthermore, there are general concerns,

Nico Jansen, Alex Liipges, and Bernhard Rumpe

for instance, regarding the scalability of the artifact size of
the underlying programming language, which can be miti-
gated but not solved entirely. Although the findings originate
from SLE within the MontiCore ecosystem, the underlying
problems are often more profound. They are intended to
highlight the potential pitfalls of compositional SLE as well
as indicate still-existing research gaps. Using a simple run-
ning example, we show where current technologies reach
their limits or where the promised advantages are overshad-
owed by disadvantages that are not always entirely obvious.
Using these findings, we compare related approaches from
other language frameworks to highlight the strengths and
weaknesses of different techniques. Thus, the main contri-
butions of this paper are:

e An application-oriented identification of challenges in
modular language construction based on the Monti-
Core language workbench

e An in-depth analysis of the root causes of these issues

e A comparison to alternatives from other language
ecosystems

e A pointer for future SLE research into which pain
points require further attention

The remainder of this paper is structured as follows. In
section 2, we give a short overview of state-of-the-art lan-
guage workbenches and related work. Our running example
for highlighting challenges in the application of modular
language design is introduced in section 3. We elaborate on
these challenges in section 4. The results of this paper are
discussed in section 5 and compared to alternative solutions
in section 6. Finally, section 7 concludes.

2 State of the Art and Related Work

Various language workbenches provide support for modular
language design [17], as shown by the various workbench
challenges of [17]. Modularity of languages affects not only
the syntax, but also concerns validation, semantics, and edi-
tor services. In this section, various language workbenches
and features are introduced, with a more concrete compari-
son on a feature basis occurring in Section 4.

Due to the author’s proficiency, we reduce the examined
language composition mechanisms to three of the textual lan-
guage composition mechanisms supported by MontiCore [7]:
Language inheritance, language extension, and language em-
bedding. Similar to object-oriented inheritance, language
inheritance allows a language to extend other languages by
reusing their language elements, i.e. their nonterminals and
terminals. It is even possible to override the nonterminal
productions of a super language. If the inheritance is conser-
vative, i.e. all valid models of an inherited language are also
valid in the new language, we speak of language extension.
For example, adding only optional elements to a nonterminal
is such a conservative extension.

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

Similar compositions can be carried out with the Eclipse
Modeling Framework (EMF)-based Melange language work-
bench [14], where the syntax of various languages can be
merged (similar to language embedding), inherited in the
sense of classical object-oriented programming, or reduced
by means of a slice operation. By using aspects in combi-
nation with the EMF, semantics can be executed via the
metamodel. Due to being based on the EMF, reusability is
even possible with (some) other tools, such as Xtext.

Xtext [18] explicitly defines a separation between the con-
crete syntax and the abstract syntax via the metamodel, in
which the language defining EPackage utilizes the returns
keyword to distinguish the returned type of a rule. Similarly,
Xtext supports language inheritance (via the "with" key-
word) and language embedding (via the EPackage import
mechanism). To work around keyword ambiguities, Xtext
allows an optional caret (") prefix for identifiers which is
stripped during the parsing’.

Spoofax [35] is a language workbench for textual DSLs
with Eclipse IDE support. A language is specified declara-
tively using multiple meta-DSLs, with the syntax using the
Syntax Definition Formalism 3 DSL, the type system and
name bindings using Statix, and the semantics using Strat-
ego. From a language definition, Spoofax generates language-
specific Eclipse IDE plugins.

A fourth, existing language composition mechanism is
language aggregation, in which a model is described in multi-
ple artifacts of different languages. This mechanism does not
lead to a unified, composed language and is therefore not dis-
cussed in this paper. The concept of parameterized language
composition [44] allows another dimension of language vari-
ability by substituting holes in the language definition during
the composition. A limited realization of language parame-
terization using inheritance and interfaces with MontiCore
is presented in [4].

Many workbenches use ANTLR to generate the backing
parsers [22], which does not inherently support the com-
position of language definitions [17, 42]. Nevertheless, the
adaptive LL(*) parsing approach is the backbone for various
kinds of composition of multiple workbenches.

In our work we focus on a language workbench that sup-
ports textual notation DSLs and uses free-form editing, i.e.
modelers are able to develop models like conventional source
code [17]. Other notations and editor forms, such as graphi-
cal or tabular ones exist, which share some challenges but
alleviate others due to their core design. MPS, for example,
achieves the composition of physical units and state ma-
chines into C code using projectional editing [54], which
allows a developer to view and edit the same state machine
in different views, such as various tables, graphical, etc.

!https://eclipse.dev/Xtext/documentation/301_grammarlanguage.html

3 Running Example

UML statecharts [26] describe the behavior of a system and
can be applied in many scenarios. The preconditions of tran-
sitions are often modeled using OCL constraints, which il-
lustrates a perfect use case for language composition. For
this example, we want to model statecharts consisting of
states, transitions, and preconditions. We utilize the Monti-
Core language workbench [29] to (a) describe a monolithic
language and (b) compose an expression and an automaton
language into a modular statecharts-with-preconditions lan-
guage. More precisely, a language consists of its concrete
syntax, abstract syntax, well-formedness rules, and seman-
tics. The concrete and abstract syntax can be described using
a MontiCore grammar DSL, with the well-formedness rules
and semantics being given as Java code [29].

1 | grammar StatechartsMonolith extends MCBasics ([MG)
2| Statechart = "statechart" Name

3 " (S | T)*x "™y

4| S = "state" Name ";";

5| T = from:Name "->" to:Name

6 ("[" precondition:Expr "]")?2 ";";
7 | Expr = Name

8 ["(" Expr ")"

9 ["!" Expr

10 | left:Expr "&&" right:Expr

11 | left:Expr "||" right:Expr;
12|}

Figure 1. Monolithic definition of a MontiCore DSL for stat-
echarts with expressions as preconditions of transitions.

The monolithic grammar definition of Figure 1 is named
StatechartsMonolith (cf. 1. 1). This grammar is not en-
tirely monolithic, as it extends the MCBasics grammar [29],
which defines a Name nonterminal for identifiers and further
nonterminals for the handling of comments. The start rule
Statechart (cf. 1l. 2-2) accepts the terminal "statechart",
followed by an identifier with the Name nonterminal and any
number of states and transitions by referencing the S and
T nonterminals respectively. Finally, a left-recursive Expr
nonterminal for simple expressions is defined. The left-most,
Name referencing, alternative has the highest priority, e.g.,
isActive, followed by parentheses around an expression,
e.g., (isActive), the negation operator !, the logical and
operator &&, and finally the logical or operator | |.

For comparison, we also provide the equivalent modular
MontiCore grammar for expressions and automata in Figure
2, with the composed statecharts with preconditions gram-
mar given in Figure 4. In the Exprs component grammar, the
Expr interface extension point (cf. 1. 2) is defined, and with
the component keyword the grammar definition is marked as
a component grammar, for which no parser, etc. is generated.
The name referencing expression is declared in line 3 and
the parentheses expression in line 4. The operator priority of
the Expr nonterminal interface is determined via the prior-
ity given in the angled brackets. Next, the BExprs grammar

https://eclipse.dev/Xtext/documentation/301_grammarlanguage.html

SLE °25, June 12-13, 2025, Koblenz, Germany

binds the logical not !, logical and &&, and the logical or | |
operator expressions to the expression extension point.

Figure 4 shows the MontiCore grammar combining the
expressions and automaton grammars of Section 3. The stat-
echarts grammar extends both the BExprs and Automaton
grammars in line 1 and specifies that the Aut production is
the start rule of this language in line 2. Composite grammars
can specify a start production which is defined in either a
component grammar or in the composite grammar itself.
Subsequently, line 3 replaces the automaton keyword with
the keyword statechart (cf. C6). Finally, we extend the tran-
sition production by embedding an optional expression as
the transition’s precondition. While this transition extension
is conservative, i.e. automata transitions without a precon-
dition are still correct statecharts transitions, the keyword
replacement means that automata models are not syntacti-
cally correct models of the statecharts language. Thus, the
composition of the statecharts language is not conservative.
In Figure 3 the relationship between the statecharts gram-
mar and its super languages can be seen, with the extension
of the transition AST class ASTT of the automata grammar
by an identically named class in the statecharts grammar.
The interface extension implements AutElem of the transi-
tion production is implicit and such implementing behavior
cannot be overridden.

The relationship between the modular language compo-
nents and their AST classes is visualized in Figure 3, with
the Expr grammar defining the ASTExpr interface in the top
right corner. The AST classes of the various nonterminal pro-
ductions that implement this interface can be seen in both
the Expr and BExpr grammars. The Automata grammar is
defined in lines 13-19 of Figure 2 and its AST classes are
shown in the top left corner of Figure 3. Its Aut nonterminal
is composed of instances of the AutElem interface nontermi-
nal, which are the state and transition nonterminals S and T
respectively.

We assume that the expressions, boolean expressions, and
automaton languages are already provided as part of a lan-
guage library. This enables DSL designers to re-use these
language components.

4 Challenges

The design and development of modular languages and their
tooling presents additional challenges. In this section, we
present some of the challenges we have tackled during the
continuous development of the MontiCore language work-
bench. We also present possible solutions we have found.
Design choices made by other language workbenches in
relation to these challenges are presented in Section 6.

C1: Grammar Defined in Multiple Places Splitting the
language definition into multiple grammar files makes it
more difficult for language designers to understand the lan-
guage as a whole. By providing clear documentation with

Nico Jansen, Alex Liipges, and Bernhard Rumpe

1 | component grammar Exprs extends MCBasics {[MG
2| interface Expr;

3| NameE implements Expr<350> = Name;

4 | ParenthE implements Expr<310> = " (" Expr ")";
5|1

6 | grammar BExprs extends Exprs {
7 | NotE implements Expr<190> = "!" Expr;

8 | AndE implements Expr<120> = left:Expr

9 "&&" right:Expr;

10| OrE implements Expr<l117> = left:Expr

1 "||" right:Expr;

12 |}

13 | grammar Automaton extends MCBasics {
14 | Aut = "automaton" Name "{" AutElem* "}";

15 interface AutElem;

16| S implements AutElem = "state" Name ";";

17 T implements AutElem = from:Name "->"
18 to:Name ";" ;

Figure 2. Definition of a library of re-useable and modular
MontiCore DSLs for expressions and automata.

Automata E] Expr %E]
ASTAut «interface» prec «interface»
ASTAutElem 0..1 ASTExpr
—— >
M Y T]

[Aasts |[astT | | ASTNameE |: [ASTBracketE]
Statecharts 5 BExpr.__| 3
ASTT |& | NotE][AncE |

4‘> OrE

Figure 3. The languages of the running example along with
their language inheritance relationships and nonterminals.

("[" precondition:Expr "]")?2 ";"

1 | grammar Statecharts extends BExprs, Automaton {
2| start Aut;

3| replacekeyword "automaton":"statechart";

4| QOverride T = from:Name "->" to:Name

5

6

Figure 4. Definition of the statecharts language re-using the
expression DSL and extending the automata DSL.

each modular grammar, this problem can be mitigated some-
what. For example, the documentation of our expression
component grammar? would explicitly mention the Expr
interface, the available expressions, and how to bind addi-
tional nonterminals to the Expr interface. Extensive use of
MontiCore in a teaching environment has shown that the

Zhttps://github.com/MontiCore/monticore/blob/dev/monticore-gramma
r/src/main/grammars/de/monticore/expressions/Expressions.md

https://github.com/MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/monticore/expressions/Expressions.md
https://github.com/MontiCore/monticore/blob/dev/monticore-grammar/src/main/grammars/de/monticore/expressions/Expressions.md

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

documentation is often not enough, be it due to an over-
whelming amount of information, its difficulty to find, or
other reasons. Thus, MontiCore provides LSP-based editor
support for its grammar DSL, providing code completion
of available productions, jumps to the definition of a pro-
duction, and displays of a production’s documentation on
hover.

MontiCore generates a parser for every grammar that
is not marked with the component keyword. In our exam-
ple, we thus generate parser infrastructure for the BExpr,
Automaton, and Statecharts grammars. In addition, access
to the compositional parser is delegated via the mill design
pattern (cf. C12), such that in our example the developers of
automaton tooling can parse transitions with preconditions
if the mills have been initialized correctly.

By building upon ANTLR [43, 42], the MontiCore lan-

guages can stand on the shoulders of a giant which enables
entrusting ANTLR with solving many of the challenges of
non-modular parser construction, leaving us only with the
modular challenges. The MontiCore generator thus com-
bines all terminals and nonterminals into a single ANTLR g4
file, taking MontiCore-specific features, such as interfaces,
keyword replacement, etc. into account.
C2: Ambiguity in Production Rules Ambiguity may
arise in the names of non-terminals defined in different com-
ponent grammars. Non-specific names, such as Element,
increase the chance for this issue to arise. While a solution
would be possible via slicing (cf. C5) or Java-like packages,
language designers using MontiCore are instead discouraged
from employing ambiguous naming, obviating the necessity
for solving this problem. In our running example, the non-
terminal describing elements of an automaton is thus called
AutElem, the prefix Aut relating to the Automaton grammar.
Thus, MontiCore uses the conceptual solution of avoiding
ambiguous names. When dealing with ambiguity in the gen-
erated code, e.g. due to explicitly overridden nonterminals,
the technical solution of fully qualified class names is used.
C3: Black Box Reuse of Nonterminals By reusing the
syntax definition from language libraries, language designers
are able to include language components without the effort
of re-engineering parts of a language. This composition of
languages expands the set of accepted models. In our exam-
ple, the statecharts language has the need for expressions.
By decoupling the definition of the abstract syntax (in the
Exprs grammar) from some concrete implementations (in
the BExprs grammar), language elements, such as boolean
expressions, can be offered in a bundle. Language design-
ers of modular languages can specify the need for, e.g., an
expression, but leave the concrete available expression im-
plementation up to language designers using their modular
language. In object oriented programming, the concept of
interfaces is used to allow such an abstraction, which we
extend as a conceptual solution for black-box reuse.

With MontiCore, language designers utilize nonterminal
interfaces to describe abstractions of nonterminals. Interface
nonterminals can be either defined without a right-hand side,
thus with no information except their existence, or with a
required abstract structure. The Expr interface of the expres-
sions component language is one such example without a
right-hand side. Nonterminals can implement interfaces and
thus act as a viable interpretation of the given interface. For
example, the NameE nonterminal of our example is an imple-
mentation of the Expr interface. In the generated AST class
diagram, interfaces are represented by a Java interface and
implements relationships. During the parser generation, all
implementing nonterminals of an interface are normalized
into one rule for each interface with the nonterminals as
alternates. Figure 5 illustrates this normalization with the
example of the NameExpr and AndE productions. For expres-
sions, the order of operation is especially important.

The concept of interfaces, while being a key factor of
black-box language reuse in MontiCore, introduces several
new problems:

e Increased complexity of a system, resulting in longer
build and startup times (C18).

e Temptation to use simple interface names, such as
Element, leading to the ambiguous naming of nonter-
minals (C2).

o Necessity to declare an operator precedence for recur-
sive nonterminals (C4).

e The difference between a language’s abstract syntax
and its normalized ANTLR syntax (C9).

e Interfaces are not a part of the curriculum of formal
language design and thus parse errors must be under-
standable (C10).

C4: Precedence with Black-Box Reuse With interface
nonterminals, the first nonterminal implementing an inter-
face has an implicit higher precedence than the second non-
terminal. When combining multiple component grammars,
this implicit precedence is obscure and limiting.

In MontiCore, language designers can thus assign an ex-
plicit precedence to nonterminals. In our example, NameE has
a higher precedence (Expr<350>) than AndE (Expr<120>), re-
sulting in the order for Expr’.

Due to the use of a number for the precedence, gaps have
to be left during language design to facilitate further ex-
tensions. Instead of using the less-than relation of natural
numbers, a direct relation between productions would elim-
inate the need for gaps (i.e., NameE>AndExpr), but reduce
readability. ANTLR itself supports operator precedence by
evaluating expressions from the left to right, but it does not
support interfaces, requiring this transformation step.

C5: Importing a Slice of a Language Language libraries
often provide a wide range of language elements to support
all kinds of use cases. Often language designers only need a

SLE °25, June 12-13, 2025, Koblenz, Germany

interface Expr;

—_

2 |AndE impl Expr <120> = Expr "&&" Expr;
3 | NameE impl Expr <350> = Name;
HML,
4 |Expr' = Name | Expr "&&" Expr; MG
\ J L)
Y |l
NameE AndE

Figure 5. Transformation step to normalize MontiCore in-
terface nonterminals to enable black-box grammar reuse.

certain subset of those elements, creating the need for slicing
an imported grammar.

With modular language imports, MontiCore always in-
cludes all defined terminals and nonterminals. During the
design we have opted to not support selected slicing of im-
ported languages, instead sensible component boundaries
must be drawn during the design of component libraries
to enable a partial selection. If necessary, language design-
ers can override nonterminals with a nonsensical keyword
that is impossible to parse. Both import slicing as well the
bundling of multiple component grammars in one library
pose another risk for the accidental use of sliced language
components (C13).

Cé6: Transmute Keywords into new Domains

The concrete syntax of a textual DSL is strongly influ-
enced by the keywords of the language [10], such as "state"
or "automaton". Especially when reusing component lan-
guages into the domain of a DSL, a language designer may
want to rename keywords.

In our running example, we rename the implicit keyword
"automaton" of the automaton grammar to "statechart"
to indicate a different domain. As keywords can act like
reserved words for a language, an identifier may not be pos-
sible if the identifier matches a keyword, for example, an
automaton-state may not be called "automaton". With lan-
guage composition, the list of reserved keywords must be
carefully managed (cf. C8). With MontiCore, we provide an
option to replace a keyword in only the concrete syntax via
the replacekeyword statement. The AST is not affected by
this. If applied, the parser and its inverse, the pretty printer,
will be built using the provided replacement keyword. Since
the generated parser itself is not modular (cf. 1), this key-
word replacement is trivial. Pretty printers, which act like
model-to-text transformations turning an AST into a textual
model [29], are based on the modular visitor infrastructure
(cf. 16). Thus, replacing keywords of a superlanguage re-
quires the generation of and delegation to modular pretty
printers of the superlanguage (C12).

While it would be possible to use an overridable nonter-
minal for each terminal, this would also affect the AST and
add further complexity (C18).

Nico Jansen, Alex Liipges, and Bernhard Rumpe

Instead, we decided to add this mechanism to replace ter-
minals only in MontiCore’s parser generation as a grammar
transformation step, and thus included within the generated
ANTLR parsers. The divergence between the ANTLR parser
and the generated infrastructure is similar to C9 and has to
be considered when reporting parser errors (C10).

C7: Non-Conservative Language Extension

Replacing a keyword is one such non-conservative ex-
tension since models of the original language are no longer
valid models of the new composite language. So instead of
replacing, it is thus possible to add a new alternative key-
word. If we were to apply this in our example, the models
could both start with "statechart" or "automata", and the
exemplary statecharts with preconditions language would be
a conservative language extension of its components. While
the optional precondition of the statecharts T nonterminal is
a conservative extension, the replaced keyword causes the
non-conservative language extension.

Language designers have to be aware if a non-conservative
language extension is desired. The building of new elements
of a super language will fail due to missing an attribute
in tooling code of the super language, despite delegating
the instantiation to the new language’s element (cf. C12).
Language analysis tools, such as within the generator or
editor, can be used to detect this during language design.
C8: Handling Reserved Keywords When composing
languages, the set of the language’s reserved keywords is
combined into a single set. This can be an unintuitive rea-
son for non-conservativeness (cf. C7). Instead of providing
compatibility by modifying the concrete textual syntax of
a language by replacing a keyword, it is instead possible
to contextualize the keyword [42, 10]. With contextual key-
words, the lexical disambiguation is performed by means of
the context in which a keyword occurs. In MontiCore, this
is enabled via the nokeyword statement [7]. The context in
MontiCore’s case is the position within the parse tree. Thus,
contextual keywords only act like keywords at certain posi-
tions within a language. While contextual keywords improve
language composition for language designers, the complex-
ity of the underlying ANTLR parser increases significantly,
resulting in C9.

Another solution we provide is the functionality to specify
lexer modes, in which only a limited set of keywords are
retained. While this feature was originally used for languages
such as XML, it can also be used with language embedding to
separate the keywords of DSLs by effectively using a different
lexer for each language.

C9: Divergence of Declared Syntax and Parser Mon-
tiCore uses ANTLR internally to generate the parser of a
language and the generated ANTLR parser constructs a parse
tree by tracking the individual rule contexts, which are valid
abstract syntax tree representations [42]. But ANTLR does
not support language composition, interfaces (cf. C3), over-
ridden nonterminals (cf. C7), replaced keywords (cf. C6),

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

etc. MontiCore thus has to translate the syntax of language
into a valid flattened ANTLR language. Reusing these rule
context data structures and exposing them to language tool
developers is not feasible, as they are not compatible with
the previously mentioned addition of interfaces, a modular
visitor infrastructure (cf. C16), symbol table infrastructure,
etc. The rule normalization step of interfaces (cf. C3) in-
lines interfaces in the ANTLR grammar, and to support a
modular visitor infrastructure methods to facilitate double
dispatch have to be added (cf. C16). We therefore generate
our own AST classes and need to construct an instance of
this data structure during parsing. The straightforward way
is to use semantic actions to build our AST at the same time
as ANTLRs rule contexts are created. Figure 6 shows the
ANTLR rule for the state nonterminal production (line 1)
using semantic actions. ANTLR’s rule context is expanded
by an ASTS variable ret (line 2) and a variable b contain-
ing a new state builder. We use the mill pattern in line 3 to
retrieve a new instance of the builder (cf. C12). Next, the
STATE terminal is expected (line 5), followed by a reference
to the name token which is then referenced via t_name in a
semantic action to set the builder’s name (line 6). The last
element of the rule is the token of a semicolon. Finally, the
builder’s build() method is called and its value is returned.

1|S = "state" Name ";";
~1

[mG)

2 | s returns [ASTS ret]
3| @init{b = AutomataMill.sBuilder();}

4 | Qafter{return b.build();}

5 | : STATE

6 t _name=name {b.setName (t name.getText ());}
7 SEMICOLON;

Figure 6. Example of the methodology for building the
AST of the state nonterminal production (line 1) within the
ANTLR parser. Highlighted are the parts of the rule required
for the two-phased parsing and AST creation approach.

Special attention must be taken with left recursive produc-
tions, such as expressions, because ANTLR does not permit a
semantic predicate in the first position of a left-recursive rule.
Consequently, the builder initialization must be included in
the semantic action subsequent to the first token or nonter-
minal reference.

With MontiCore, we have experienced that the perfor-
mance penalties due to parser lookahead are drastically
higher in combination with semantic actions. Due to the pres-
ence of semantic actions, the LL(*) analysis of the ANTLR-
generated parser was no longer able to compute the closure
of the current state within the augmented transition network

(ATN) during lookahead computation [43] in a straightfor-
ward manner. This resulted in the textual input of an expres-
sion ! (f1 && f2) && ... repeated 30 or more times taking
over an hour to parse.

The ATN for the AutElem interface nonterminal is shown
in Figure 7. The upper half shows the ATN states with seman-
tic actions, while the lower half shows the same production
without semantic actions. Both ATNs start with a square
decision node, followed by either a reference to the state or
transition rules. The semantic actions in the upper half then
end the epsilon transition closure, while the ATN in the lower
half is able to continue the closure computation (depending
on the state and transition rules). For left recursive expres-
sions, both the cost for non-trivial closure computation and
the complexity of the ATN increase.

In order to ensure that no semantic actions inhibit the
LL(*) algorithm, we move the AST creation into a second
step after the parsing. The lower part of Figure 7 illustrates
the augmented transition network (ATN) with a postponed
AST creation. Notably, the action transitions are not present,
allowing the closure computation to continue without being
interrupted by semantic actions [43]. By removing the AST-
creating semantic actions from the parser generation, i.e.
the unhighlighted parts of lines 2-7 of Figure 6, we have to
translate the rule context of the ANTLR-generated parser
into MontiCore’s AST. We accomplish this by traversing
the rule context tree after the ANTLR generated parser has
finished parsing. Transformation steps, such as for interfaces
or constant groups, have to be translated as well.

This separation between the abstract syntax data structure
and the concrete syntax further allows us to optimize the
rules, e.g. by removing ambiguities and thus abstracting the
details of parser construction from the language designer.
The parser generator is also able to add specific, syntactically
invalid, alternatives for common errors that are difficult for
ALL(*) parsers to recover from [46, 42]. For example, a miss-
ing semicolon at the end of a state declaration can lead to
incomprehensible errors being displayed to the user. By only
including these labeled failure alternatives only within the
parser, they are not present in the AST, where they would
represent unnecessary information.

Another benefit of this two-phased approach to parsing
and AST creation is the reduction of MontiCore-specific
Java code in the (generated) ANTLR parsers. This allows the
use of ANTLR-specific tooling, reduces the effort to adapt
MontiCore grammar parsers in non-Java environments, and
reduces the size of the generated ANTLR parser class. Pre-
viously, we were able to construct grammars, such as the
domain-specific transformation language (DSTL) for Java-
like models, which broke Java’s class size limit for their
parser class due to their number of semantic actions.

C10: Understandable Parser Errors

We claim that language designers should never be exposed

to the ANTLR parser, but incorrect input models lead to

SLE °25, June 12-13, 2025, Koblenz, Germany

Nico Jansen, Alex Liipges, and Bernhard Rumpe

action 6:-1

& —
69—
=1

action 6:-1

©

\CD/ ST creation in a second phase

Figure 7. The augmented transition networks (ATNs) of the Aut nonterminal production with the combined parsing and AST
creation (upper half) and the creation delegated to a second phase (lower half) with a lower number of non-epsilon transitions.

ANTLR parser-specific error messages and parser stacks. In
addition, modelers are not necessarily the language designer,
and thus may not understand the language in its entirety.
MontiCore therefore translates these error messages back
into a format that can be understood by the model developer
with minimal language knowledge and without knowledge
of ANTLR. Due to the described differences between the
ANTLR rules and MontiCore productions (cf. C9), e.g. due
to interfaces, this translation step is especially necessary.
Similarly, when reporting which terminals are valid next
candidates, contextualized keywords (C8) have to be consid-
ered.

C11: Black Box Reuse of Code

Generally, language composition comprises more than
just integrating concrete and abstract syntax. It involves
all facets of the incorporated components, including gener-
ated and manually extended artifacts, as well as additional
tooling. This poses a challenge to black-box reusability, as
functionalities can (and should) only be implemented against
the API of the current language level [16]. While language
developers can certainly design a DSL for extensibility, it
is neither possible nor practical to foresee all subtypes in
future composition scenarios.

The MontiCore generator synthesized Java classes and
interfaces from the abstract syntax [29]. In our automaton
example (see Figure Figure 2), the nonterminals Aut, S, and
T result in the Java classes ASTAut, ASTS, and ASTT in the
automaton._ast Java package. The AutElem nonterminal
interface results in a similarly named ASTAutElem Java inter-
face. The AST classes of the interface implementing produc-
tions also implement the AST interface, i.e., ASTS and ASTT
extend the ASTAutElem interface. Extends relationships be-
tween productions are similarly represented using Java’s
extends inheritance between the AST classes. Overriding

of nonterminals results in a new nonterminal AST class for
the overriding language, extending the original AST class.
In our example, the statechart’s statecharts._ast.ASTT
class extends the automaton._ast.ASTT class. Ambiguous
class names between grammars are avoided in the generated
code by using fully qualified names and package names that
include the grammar name.

The black box composition of code written against the de-
rived AST, symbol table infrastructure, etc., introduces new
challenges, as developers must expect gaps and redefined
language elements:

e Instantiation of new AST elements that may be over-
ridden is one such challenge. For composed languages,
the instantiation must be delegated (C12).

e Addition of new operations on the composed AST or
symbol table of the model (C16).

e Java’s method invocation is based on the compile-time
type of the arguments (C17).

e The amount of synthesized classes leads to an increased
compilation and startup time (C18).

C12: Instantiation of Components

Considering our modular running example, the developer
of the Automaton DSL (cf. Figure 2) has only knowledge
about the known language components up to this level (in
this case, Automaton itself and the incorporated MCBasics
for general token definitions). Consequently, only the cor-
responding generated artifacts of these languages are ac-
cessible implementation-wise. While this fact is sufficient
and desired for implementing corresponding tooling for the
Automaton DSL, a language engineer cannot anticipate that
the production for transition is overridden and extended on
the Statecharts level (cf. Figure 4). Let us further assume
that an algorithm has been provided for the Automaton DSL

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

that completes missing transitions in the model. This sim-
ple functionality should also apply to the Statecharts in
a black-box fashion. Even if the transition itself is altered,
the analysis and addition algorithm stays the same. How-
ever, this poses the challenge that, for an automaton, only
corresponding transitions of this level can be created. The
constructor call

new ASTT()

would, therefore, instantiate the wrong type for Statecharts,
which disrupts black-box reusability. While modern software
engineering practices discourage the use of constructors
anyway and instead recommend design patterns such as the
builder pattern [21], this only shifts the problem to the next
level of indirection since builders also have to be instantiated
again.

To tackle this issue, MontiCore provides a static builder
for builders mechanism [16], which is configured for the
corresponding language level and can adaptively provide the
correct instance of an object. Mills recognize the language
hierarchy and can be exchanged via static delegates [29].
In this way, they establish an API at their own language
level, which can be used in composition scenarios due to
the delegate’s adaptive interchangeability. This allows a lan-
guage developer to implement against the provided API of
their own mill without compromising black-box reusability
at other levels. Applied to our example, the call

AutomatonMill. tBuilder()
// input parameters
.build();

always yields the correct transition instance at both the
automaton and Statecharts levels. In MontiCore, the mill
is versatilely used, among others, for the builder, visitors,
and the symbol table, but introduces additional challenges.
The static implementation is a problem when aggregating
multiple languages simultaneously (C14) and the need to
use the mill is not obvious to new tooling developers (C15).
C13: Usage of Non-Included Language Components
By defining multiple component languages within one
project and then publishing the languages as a single library,
it is a common occurrence to inadvertently develop code
against data structures or infrastructure of a component
language, which is not part of the composite target language.
For example, adding an expression using the new operator to
an AST element of a Haskell model. The Java compiler will
not find this defect, as an expression using the new keyword
is still an expression, but the visitor infrastructure (cf. C16)
will be unable to correctly traverse ASTs containing these
expressions at runtime. As the visitor infrastructure is used
for i.e. the symbol table, type-system, etc., finding the causes
for issues caused by incorrectly initialized mills is unintuitive.
Within the MontiCore ecosystem, the MontiCore language
component (MLC) language can be used to describe which
artifacts, such as source files, a language component consists

of and which relationships between language components
are allowed. An MLC-related tool is then used to check for
illegal relationships. Another solution are Java 9 modules,
but those are restricted to the Java ecosystem.
C14: Simultaneous Multi Language Usage

Mills, by their nature, delegate to a single static instance.
Thus, the simultaneous use of two languages containing ex-
pressions is therefore impossible, since the expression mill
will only be able to delegate to the mill of one composite lan-
guage. Switching between two languages with MontiCore
therefore requires that the static state of the mills is also
switched. To avoid the violation of the tight coupling prin-
ciple by using static variables and other disadvantages of a
global, static state, dependency injection [13] is a valid alter-
native. Depending on the injection framework used, multiple
instances of an expression mill would be possible.
C15: Consistent Usage of the Mill Pattern

The biggest challenge with mills for new tooling develop-
ers is to see the need for them. When developing tooling for
a particular language, the use of mills is not inherently intu-
itive and, worse, not required. For example, an automaton
tooling developer might write new AutomataTraverser()
in their tool that reports the number of transitions and the
closure of a state. When used with automata models, the
tooling works. But when it is used with statechart models,
transitions with preconditions would not be counted and
target states of these transitions would not be included in
the closure. MontiCore’s modular visitor infrastructure re-
ports the occurrence of incorrect traversers at runtime, i.e. an
automata traverser instead of a traverser of the statecharts
language, but these errors only occur with the composition
of a language and its tooling. The original developer of the
automata tool may not be aware of these issues. Hiding the
internal code, i.e. traverser implementations, constructors of
AST classes, etc., from the tool developers, by means of visi-
bility, modules, or splitting of an API, are possible solutions.
C16: Compositional Visitor Pattern

In SLE, it is often necessary to traverse the AST several
times after parsing and to perform operations or checks
on certain node types. Appropriate design patterns, such
as visitors [21] or tree iterators, are suitable for this. Thus,
MontiCore provides a DSL-specific realization of the visi-
tor pattern, for traversing the AST and symbol table. This
enables processing each node of the parsed model and ex-
ecuting analyses or calculations without having to adapt
their classes. This promotes the separation of concerns [40]
and is particularly useful when integrating many different
functionalities. For each type of AST node (i.e., ultimately
for each nonterminal X) and each symbol kind, the language
workbench generates four methods by default [16]:

e visit(ASTX node) is called when entering the node
and contains the execution logic

SLE °25, June 12-13, 2025, Koblenz, Germany

:

Nico Jansen, Alex Liipges, and Bernhard Rumpe

«interface»
AutomatonTraverser

«interface»
AutomatonVisitor2 | *

«interface»
BExprVisitor2

«interface»
BExprTraverser

*

«interface»

o

«interface»

5

AutomatonHandler 6..1

«interface»
StatechartsTraverser

BExprHandler

«interface»
StatechartsVisitor2

*

L ¢ StatechartsTraverser @—— |
Implementation

«interface»

0.1/ StatechartsHandler

Figure 8. Simplified illustration of the compositional visitor infrastructure generated for the Statecharts language.

e endVisit(ASTX node) is called when leaving the node
(also contains execution logic)

e traverse(ASTX node) defines the (default) traversal
strategy of all nodes to be visited

e handle(ASTX node) manages proper execution order
by calling visit, traverse, and endVisit

The actual realization of the visitor pattern in Monti-
Core languages has a compositional structure. This means a
Visitor2 interface is generated for each composed sublan-
guage, containing the visit and endVisit methods. These
interfaces usually have to be implemented to execute opera-
tions on the AST. Additionally, a Handler interface exists for
each sublanguage comprising the corresponding handle and
traverse methods. It allows modifying the standard depth-
first traversal strategy and invocates the visit / endVisit
methods. While these two interfaces operate independently,
a Traverser interface reflects the concrete inheritance hi-
erarchy of all incorporated sublanguages. The language-
specific handlers and visitors are then hooked into instances
of these traversers. A traverser thus represents the concrete
interaction point with all AST nodes and operates as a dele-
gator and orchestrator for the language-specific interfaces
for concrete operations.

Figure 8 presents a simplified example of this composi-
tional architecture applied to the modular Statecharts run-
ning example. Each incorporated sublanguage has a corre-
sponding traverser interface, realizing the inheritance hierar-
chy of the components. Additionally, a corresponding class
realization (cf. StatechartsTraverserImplementation) is
generated. Instances of this class represent the access point
for the AST. They comprise an optional handler of each

sublanguage for altering the traversal strategy on respec-
tive node types. Analogously, the traversers can carry multi-
ple visitor instances of each sublanguage for defining node-
specific operations. These lists of visitors also allow for par-
allel execution of different functionalities during a single
traversal step.

Please note the visitor interface has the suffix “2”. It helps
distinguish it from an earlier visitor infrastructure in Mon-
tiCore, which did not yet separate between traverser and
visitor [32]. This previous version had two main disadvan-
tages: (i) A configured "Visitor1" only knows the currently
included node types to be traversed. It could not handle un-
known node types when incorporating this visitor in a new
language composition scenario. Thus, a language engineer
had to manually create a new class, extending the given
visitor and implementing the most recent "Visitor1" in-
terface to enable proper traversal of the new AST structure.
In contrast, a traverser is always provided directly via the
mill, which means that the correct, most language-specific
variant is always provided adaptively. That is, the Visitor2
implementations are just attached to the traverser, enabling
black-box reusability. (ii) The second disadvantage was tech-
nical, such that diamond inheritances at a grammatical level
were multiplied at the implementation level of the visitors.
This, in combination with successive overloading and over-
riding methods, led to very long compile and class loading
times for large languages.

For modular language construction, the presented evo-
lution of the visitor pattern has already shown that the
preference for delegation over inheritance had a positive
impact both conceptually and technically. Nevertheless, this
change can only mitigate the problem and not eliminate it
entirely. The generated infrastructure is still large and com-
plex, with further possible optimization options (cf. C18).
MontiCore itself also uses the generated visitor infrastruc-
ture to realize further generated functionalities. For example,

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

well-formedness rules (so-called context conditions), the con-
struction of the symbol table, and the automatically provided
pretty printers are based on visitors. In practice, however,
this current architecture has become a sweet spot between
efficiency and usability.
C17: Language Extension and Java’s Parameter Based
Method Selection

MontiCore supports non-terminal interfaces and inheri-
tance on non-terminals. Consequently, the synthesized AST
node types also inherit from each other. However, for the vis-
itor infrastructure, this also requires ensuring that all nodes
are visited in their most concrete type during traversal to
execute the correct behavior. The generated architecture is
based on Java, which only supports single dispatching. Thus,
a traverser cannot directly call the handle method when
reaching a new node during climbdown, as otherwise, it
would not be possible to resolve the most concrete type. As
an example, consider the modular Statecharts grammar
introduced in Figure 4. When traversing a transition (Il. 4f.),
we can have an arbitrary expression as a precondition. As
only the Expr interface is exposed at this level, a traverser
cannot determine via single dispatching whether it is a NotE,
AndE, or OrE expression. For this purpose, the traversers in
MontiCore emulate a double dispatching step by performing
a kind of handshake with the respective AST node, which is
always called in its most concrete type due to polymorphism
[8]. Therefore, each AST class® has an accept(traverser)
method, which receives the current traverser instance as a
parameter. Applied to our example, this means that the tra-
verser now calls precondition.accept(this) within the
traverse method of a statechart’s transition to transfer it-
self to the concrete object. This expression then executes
traverser.handle(this) from its concrete type, which ul-
timately provides the relevant type of the expression back to
the traverser. The emulated double dispatching, together
with the default depth-first climbdown algorithm of the
generated visitor pattern, ensures a correct traversal of the
AST by construction. Nevertheless, this emulation results in
additional runtime overhead and, as it requires additional
methods, slightly slower class loading performance. As these
effects are rather negligible, we consider this solution com-
paratively better than direct class cast in the traversers them-
selves. However, this handshake regularly confuses novice
developers initially, as its use and purpose are apparently
not obvious.
C18: Build and Startup Overhead

A drawback of the generated infrastructure is the amount
of overloaded, i.e., equally named, methods with a default im-
plementation, which substantially increases the class loading
time due to the slower method resolution of the Java virtual

3The same holds for the classes of the symbol table, which also support
inheritance.

machine®*. Table 1 shows the count of methods of various
languages, i.e. the running examples, the language for defin-
ing grammars, a SysML v2 language in its textual notation,
a modular language for UML statecharts, and the derived
language for domain-specific transformations of said state-
charts. The factor between the methods and nonterminals
varies between languages due to the traverser class con-
taining separate visit methods for AST nodes, symbols, and
scopes. However, despite a certain overhead and variance,
the number of methods roughly correlates to the number of
nonterminals. For example, the SysML v2 MontiCore DSL
counts 302 nonterminals in total, resulting in 556 handle,
traverse, visit, and endVisit methods. Nevertheless, the
lookup complexity of overloaded methods also corresponds
to the number of artifacts to look into with respect to the
inheritance hierarchy, thus ultimately resulting in a worst-
case complexity of m x n (with m = number of artifacts and
n = number of nonterminals). Thus, increasing the number of
integrated languages and, analogously, the number of gener-
ated Traversers, through which the inheritance hierarchy is
realized, in turn, increases the classloading time. This draw-
back naturally depends on the underlying Java infrastructure
and is not in itself a conceptual problem of the visitor mech-
anism. This renders it a purely technical problem, which,
however, comes into effect with large language families. It is
also a good example of why modularizing languages should
not be overdone, as it only slows down tooling unnecessarily.
In MontiCore, this issue occurs several times due to the
combination of different features. Especially for derived lan-
guages such as domain-specific transformation languages
(DSTLs) [30], where six additional nonterminals are con-
structed from each original nonterminal (see Table 1), this
initializing is noticeable with more than ten seconds. Addi-
tionally, for interpretative semantics, MontiCore generates
similar methods to the visitor infrastructure, with a return
value, which again increases the number of methods.

Language Traverserifivisit Nonterminals
methods

Example Monolith | 19 4

Example Modular 42 12

Grammar Modular ° | 375 230

SysMLv2 Modular® | 556 302

Modular Statecharts | 266 131

DSTL Modular

Statecharts 1304 1060

Table 1. Number of overloaded methods within the gener-
ated traversers and the total count of nonterminals of some
languages designed using MontiCore.

https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-5.html#jvms-
54.3.3

https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-5.html#jvms-5.4.3.3
https://docs.oracle.com/javase/specs/jvms/se20/html/jvms-5.html#jvms-5.4.3.3

SLE °25, June 12-13, 2025, Koblenz, Germany

On a technical level, different variants of the visitor imple-
mentation could minimize this issue. As it mainly arises due
to method overloading, this factor could be eliminated, for
example, by uniquely naming each of the visit, endVisit,
handle, and traverse methods. Unfortunately, this variant
has its own disadvantages. On the one hand, the generated
visitor pattern is only a basic structure and not a complete
implementation in itself. The actual behavior must be added
by the tooling developer, who naturally has a high degree
of interaction with the interfaces and method signatures of
this generated infrastructure. Unique method names could
be unintuitive or, at worst, make the methods unrecogniz-
able. Furthermore, name clashes due to identically named or
overwritten nonterminals from several language definitions
must be taken into account and adequately considered by
the language workbench.

C19: Compositional Context Checking

Context-free grammars are used to define the syntax of a
language with MontiCore. The definition of context-sensitive
restrictions, such as that the source of a transition must exist,
is not possible in context-free grammars. Similarly, some
constraints are easier to write in a context-sensitive way,
such as allowing each state’s name at most once. With Mon-
tiCore, such context conditions (CoCos) can be provided by
hand-written Java code, each CoCo implementing a visitor
of the language. Syntactically correct models of a language,
which pass all CoCos, are also called well-formed. A gener-
ated CoCoChecker class accepts a collection of CoCos and
traverses the AST, checking each CoCo against appropriate
AST classes. This approach reuses the visitor infrastructure
and thus shares its challenges, advantages, and disadvan-
tages (cf. C16). When composing languages, all CoCos of
the component languages can be added to a CoCoChecker
of the composed language. For example, the automata CoCo
that ensures that source states must exist applies to the stat-
echarts language. But not all CoCos of a super language
can be inherited. For example, an automata CoCo that dis-
allows duplicate transitions by limiting source-target pairs
may not apply to the statecharts language, because now
source-precondition-target triples must be considered.

With MontiCore, a language designer thus has to explicitly
add CoCos to the CoCoChecker of a language. It is possible
to add only selected CoCos or all CoCos of another language.
C20: Modular Type System

Type-checking is a special kind of well-formedness check-
ing, in which a type-system is utilized to compare i.a., expres-
sions in terms of assignability. The MontiCore type-system
is built upon the visitor infrastructure [29]. It constructs
a type-representation of given types of a model (e.g., the
primitive type int in a class diagram) and deduces the type-
representation of an expression (e.g., the expression [int]
+ [int] results in an int).

Nico Jansen, Alex Liipges, and Bernhard Rumpe

For our example language, we require a type-visitor per
grammar, that maps AST nodes of a grammar to their re-
spective type. For expressions, the resulting type depends on
the terms and operators of the expression. In our example,
the type visitor of the Exprs grammar thus handles name
and parentheses expressions. The type of a parentheses ex-
pression is the type of the inner expression, but the type of
a name expression is the type of the referenced element. We
then use MontiCore’s modular symbol infrastructure [12, 29]
to resolve the named element and the type of the element. As
the expressions of our example are only boolean expressions,
the type-system for the BExprs grammar appears trivial. Al-
though, the semantics (cf. C21) of the statecharts grammar
heavily influence its type-system, which has to be consid-
ered during the type-system implementation of the super
languages. For example, a state could be referenced in an
expression and this expressions holds iff the state was visited
before, selected by a user, etc. We thus have to heavily rely on
patterns for modular language design, such as the realThis
and delegate patterns [16], to support such semantics.

Other workbenches use DSLs to define the type-system
instead of hand-written Java code. MontiCore’s typechecking
infrastructure can be considered a hand-written extension
which, due to its complexity, is provided next to the stable
expression language library of MontiCore. The inclusion of
extra rules and operators thus can only be accomplished via
hand-written code and the application of the realThis pattern,
but one is not restricted by the limits of a DSL. Class2MC [7]
is an optional extension to the type-system, which provides
type definitions based upon Java types loaded at runtime.

In a more complex composite language, such as with full
Java-like expressions and an included SysMLv2 SI-Units li-
brary [24], a simple +infix operator’s type deduction and
semantic are more complicated: If any term is a string, the
result is the concatenated string of both terms. If SI-Units
are present, the result is another SI-unit, iff both units are
compatible. For example, meters and seconds are not com-
patible with the plus operator, but kilometers and meters
are. If both terms are numeric, numeric promotion according
to the Java language specification’ occurs. For example, the
expression 0.4 + 2, the addition of a double and an int,
results in the widening of the int, resulting in a double as
the expression’s type. If none of the previous cases apply,
the type-system of the given language is unable to derive
the type of the expression, and the type-check would report
this as an error.

The type-system and symbol infrastructure are thus build-
ing blocks for modular language workbenches [12] that use
the existing mill and visitor infrastructure, and, sharing a
large set of their challenges (cf. C12 and C16).

C21: Composed Semantics

"https://docs.oracle.com/javase/specs/jls/se20/html/jls-5.html#jls-5.6

https://docs.oracle.com/javase/specs/jls/se20/html/jls-5.html#jls-5.6

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

The research area of DSL composition is mainly focused
on the composition of concrete and abstract syntax, as well
as the generated tooling to a certain extent. However, the
semantics (e.g., denotational, operational, or translational) of
languages should also be taken into account during composi-
tion. Prominent realizations can be found in code generators
or interpreters.

Generally, composing code generators is still in its in-
fancy. In MontiCore, first advances [34, 41] exists building
upon the symbol infrastructure to connect CRUD-like ac-
cess operations with symbols. Other generators or generator
components can then embed the concrete accessor snippets
via addressing the corresponding symbol. Another option is
the development of compatible generators sharing a large
interface. However, these approaches either need a strong
synchronization between the generator developers or yield
to be overly generic [45]. Genesys [33] is another framework
for building property conform code generators using ser-
vices to communicate access information, but it only works
within the jABC [50] ecosystem. Thus, although there are ini-
tial approaches to generator composition, there is still much
potential in providing a general and reusable mechanism.

Another option for realizing semantic mapping is based
on interpreters. They directly operate on the parsed model
(i.e., the AST) and define the execution behavior. Such in-
terpreters can be realized similarly to the visitor pattern
and, thus, support the same composition mechanism. Conse-
quently, they inherit the same advantages and disadvantages
(cf. C16). Additionally, issues from the type-systems arise
(cf. Section C20) as, during interpretation, implicit and ex-
plicit type conversions must be performed. Reusing results
from already performed type-checking can definitely sup-
port this conversion on the interpreter level. However, this
highly depends on the compatibility of the type-worlds of
the modeling language and the underlying programming
language.

5 Discussion and Open Challenges

The presented paper showcases the lessons learned during
the continuous development and research with the language
workbench MontiCore [29] regarding the challenges of mod-
ular language design and language composition. We have
found, that the benefits of modular language design [7, 6]
come with challenges, some of which are not immediately
apparent. Large, modular language families incur a cost in
terms of software system complexity and both build-time and
run-time performance, which results in necessary compro-
mises between the level of modularity, its costs, and other re-
quirements. Our goal is to help developers of language work-
benches and language designers in their decision-making
regarding these compromises, as well as possible solutions.
With MontiCore, one of the main requirements is the black-
box re-use of language definitions and hand-written Java

tooling. The resulting complexity of the visitor infrastructure
(cf. C16) remains an area of research but is the fundamental
building block for features, such as analysis, pretty print-
ers, the type-system, etc. Particularly in combination with
the TOP mechanism, which allows hand-written code to
be included within generated code, the modular infrastruc-
ture of MontiCore demonstrates its ability to facilitate easy
black-box re-use. Language workbenches with different re-
quirements may elect to use DSLs and generators to generate
code for a specific composite language instead [35]. We fol-
low a blended approach with MontiCore, as we generate a
non-modular parser (cf. C9). Another approach for merging
hand-written behavior provided as code into a composite sys-
tem could be code adaption [38]. With MontiCore, we expect
performance improvements due to Java’s Project Leyden®,
which aims, among other things, to improve the startup time
of Java applications.

MontiCore, like any other workbench used for research
purposes, is going to continue to evolve along with its re-
quirements [27]. Due to its usage in industry settings and
production systems, larger breaking changes should be used
cautiously.

Threats to Validity. As usual for application-oriented
investigations in the software engineering domain, our re-
sults are subject to threats to validity, according to [56]. The
most apparent aspect is that we report on our experience
of language composition in the context of mainly one lan-
guage workbench. This is a threat to external validity. Some
of our findings might not be generalizable or might not be
applicable in other language workbenches. However, with
MontiCore [29], we have chosen a framework that empha-
sizes compositionality in language development. To the best
of our knowledge, comparable workbenches such as Xtext
[18] or Spoofax [35] support either equivalent or slightly less
compositional techniques [17], while MPS [53] uses a differ-
ent editor approach, i.e. projectional editing. Thus, similar
issues to those discussed should also apply to other ecosys-
tems. All four language workbenches are also based on Java
at their core, which means they are subject to the same funda-
mental infrastructural challenges. Solely, problems related to
learnability or accessibility could be less applicable in these
frameworks, as they have many examples and tutorials as
systems that are heavily used in industry. An important topic
for future research would be investigating corresponding
challenges for language workbenches based on completely
different technology stacks, such as Langium®.

Other risks relate to internal validity. The examples shown
here are deliberately kept simple to increase comprehensibil-
ity. However, some challenges discussed only show their full
impact with much larger and more complex language com-
positions, such as within a realization of SysML v2 or derived

8https://openjdk.org/projects/leyden
“https://langium.org/

https://openjdk.org/projects/leyden

SLE °25, June 12-13, 2025, Koblenz, Germany

transformation languages. Another threat is that our report
is not a single snapshot but has been recorded across several
major versions of MontiCore over the years. Nevertheless,
all the problems and most of their effects are already appar-
ent from the examples presented here. The example project
attached allows to reproduce our results. Finally, it must be
considered that the authors are expert users of MontiCore
and language development in general. On the one hand, this
means that many of the problems documented here deal with
intricacies that not every practitioner encounters directly.
On the other hand, by using MontiCore in various teach-
ing environments, we could also include feedback from new
users and students.

6 Comparable Approaches

The pitfalls in modular language construction originate from
our experience with the MontiCore language workbench.
While some of these challenges are generally part of ongo-
ing research, different language frameworks follow distinct
approaches. Therefore, we discuss notable solutions from
other language workbenches and compare these to the stated
challenges of modular language design.

A different way to handle ambiguous nonterminal names
(cf. C2) is to always use fully qualified names for rule ref-
erences, such as Automaton.S, as Xtext [18] does. Another
solution is to explicitly rename the incorporated productions
during the import. Rascal [2] allows such renaming via an
alias to the fully qualified production. Similarly, the Melange
language workbench provides a renaming operation [14] to
rename the EMF objects, such as EPackages and EClasses.
With MontiCore, language designers are discouraged from
employing ambiguous naming, obviating the necessity for
solving this problem.

Similar to MontiCore, lots of other language workbenches
[35, 17] support the modular definition of language compo-
nents, but import all elements of a language. Reusing only
a subset of productions of a grammar (cf. C5) is possible in
Melange via its s1ice operator. Only the EClasses mentioned
in the slice operation and, recursively, their superclasses and
referenced classes are retained. Rascal differentiates between
extending a language and importing only one language
element. The language extension of Rascal is transitive.

When dealing with keywords between languages (cf. C8),
Xtext provides another means of disambiguation by allowing
an optional, silently removed caret on the model level(") in
front of all identifiers. This way reserved keywords can be
circumvented. However, this approach simultaneously shifts
the responsibility for the problem to the modeler. Spoofax [35]
avoids the problem of lexical disambiguation by using a scan-
nerless parsing approach in which only character classes
are terminals [52]. The main disadvantages of scannerless
parsers are the increased lookahead, which results in a de-
creased efficiency, and the explicit handling of whitespaces

Nico Jansen, Alex Liipges, and Bernhard Rumpe

in the context-free grammar. Similar to the normalization of
MontiCore interface nonterminals, the syntax of a language
must be normalized into its scannerless equivalents and syn-
tax errors must be translated back into the concrete syntax.
MontiCore includes certain aspects of scannerless parsing
and provides an option to translate selected tokens, such
as the logical right shift operator >>>, into their scanner-
less form using the splittoken statement [29]. Projectional
language workbenches, such as MPS [53], circumvent the
problem of modular parser construction entirely and thus
are not affected by the parser-specific challenges [17].

Other workbenches, such as Spoofax use DSLs to define
the semantics, including a type system, instead of hand-
written Java code. MontiCore’s typechecking infrastructure
can be considered a hand-written extension. A DSL, e.g.
Spoofax’s Statix [51], on the other hand, is domain-specific
and thus abstracts away implementation specifics. With
DSLs, the automatic derivation of proofs for completeness
and correctness of the type system is also possible.

The framework of scope graphs [51] further allows well-
formedness checks (cf. C19) to be defined in a formalized way.
Racket [1] provides macros and MPS provides a constraint
rule language!?, in which expressions to be evaluated are
provided along with the error messages.

7 Conclusion

In this paper, we have analyzed open challenges in apply-
ing language composition in the large. Even if some of these
issues are based on intricacies and are not immediately appar-
ent, we have investigated them in an application-orientated
context. Our investigations explore various relevant aspects
of a language tool using the language workbench Monti-
Core as an example. We address challenges in compositional
parsers, ASTs including their creation, as well as generated
tooling, such as visitors for navigation and operation exe-
cution. It becomes evident that the increasing complexity
of the infrastructure in the background rises rapidly as the
number of incorporated languages increases. This jeopar-
dizes reusability in large projects, especially where language
composition promises its greatest advantages. We have even
been able to construct language definitions that are valid in
themselves but can no longer be processed by the default
Java compiler due to their sheer artifact size. As SLE contin-
ues to advance as a research field and has a major impact on
both industrial developments and research software, we are
contributing to a better understanding of current challenges.
This provides indications of open topics for future research.
It can also assist practitioners in better understanding tech-
nical intricacies in the background and thus assess in which
cases modular language construction is reasonable in current
SLE endeavors.

Ohttps://www.jetbrains.com/help/mps/constraintrules.html

https://www.jetbrains.com/help/mps/constraintrules.html

Lessons Learned from Developing the MontiCore Language Workbench: Challenges of Modular Language DeSign’25, June 12-13, 2025, Koblenz, Germany

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - 459671966

References

(1]

(2]

(10]

(12]

Michael Ballantyne, Alexis King, and Matthias Felleisen. 2020. Macros
for domain-specific languages. Proc. ACM Program. Lang., 4, OOP-
SLA, Article 229, (Nov. 2020), 29 pages. doi:10.1145/3428297.

Bas Basten, Jeroen van den Bos, Mark Hills, Paul Klint, Arnold
Lankamp, Bert Lisser, Atze van der Ploeg, Tijs van der Storm, and
Jurgen Vinju. 2015. Modular language implementation in rascal - ex-
perience report. Science of Computer Programming, 114, 7-19. LDTA
(Language Descriptions, Tools, and Applications) Tool Challenge.
doi:https://doi.org/10.1016/j.scico.2015.11.003.

Arvid Butting, Robert Eikermann, Katrin Hélldobler, Nico Jansen,
Bernhard Rumpe, and Andreas Wortmann. 2020. A Library of Literals,
Expressions, Types, and Statements for Compositional Language
Design. Journal of Object Technology (JOT), 19, 3, (Oct. 2020), 3:1-16.
Lars Hamann, Richard Paige, Alfonso Pierantonio, Bernhard Rumpe,
and Antonio Vallecillo, (Eds.) http://www.se-rwth.de/publications
/A-Library-of-Literals-Expressions-Types-and-Statements-for-Co
mpositional-Language-Design.pdf.

Arvid Butting, Robert Eikermann, Oliver Kautz, Bernhard Rumpe,
and Andreas Wortmann. 2018. Modeling Language Variability with
Reusable Language Components. In International Conference on Sys-
tems and Software Product Line (SPLC’18). ACM, Gothenburg, Sweden,
(Sept. 2018). http://www.se-rwth.de/publications/Modeling-Langua
ge-Variability-with-Reusable- Language-Components.pdf.

Hans Blom et al. 2013. EAST-ADL: An architecture description lan-
guage for Automotive Software-Intensive Systems. Embedded Com-
puting Systems: Applications, Optimization, and Advanced Design:
Applications, Optimization, and Advanced Design, 456. doi:10.4018/97
8-1-4666-3922-5.ch023.

Benoit Combemale, Betty H.C. Cheng, Robert B. France, Jean-Marc
Jézéquel, and Bernhard Rumpe, (Eds.) 2015. Globalized Domain Spe-
cific Language Engineering. Globalizing Domain-Specific Languages.
Springer, 43-69. doi:10.1007/978-3-319-26172-0_4.

Arvid Butting. 2023. Systematic Composition of Language Components
in MontiCore. Aachener Informatik-Berichte, Software Engineering,
Band 53. Shaker Verlag, (Feb. 2023). 1SBN: 978-3-8440-8936-3. http:
/Iwww se-rwth.de/phdtheses/Diss-Butting-Systematic-Compositi
on-of-Language-Components-in-MontiCore.pdf.

Luca Cardelli and Peter Wegner. 1985. On Understanding Types, Data
Abstraction, and Polymorphism. ACM Computing Surveys (CSUR),
17, 4, 471-523.

Betty H. C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc
Jézéquel, and Bernhard Rumpe, (Eds.) Globalizing Domain-Specific
Languages, LNCS 9400, (2015). Springer. http://www.se-rwth.de/pu
blications/Globalizing-Domain-Specific-Languages2.pdf.

Benoit Combemale, Robert France, Jean-Marc Jézéquel, Bernhard
Rumpe, James Steel, and Didier Vojtisek. 2016. Engineering Model-
ing Languages: Turning Domain Knowledge into Tools. Chapman &
Hall/CRC Innovations in Software Engineering and Software Devel-
opment Series, (Nov. 2016). https://www.crcpress.com/Engineering-
Modeling-Languages/Combemale-France-Jezequel-Rumpe-Steel-
Vojtisek/p/book/9781466583733.

Maria Victoria Cengarle, Hans Grénniger, and Bernhard Rumpe.
2009. Variability within Modeling Language Definitions. In Confer-
ence on Model Driven Engineering Languages and Systems (MOD-
ELS’09) (LNCS 5795). Springer, 670-684. http://www.se-rwth.de/pub
lications/Variability-within-Modeling-Language- Definitions.pdf.
Benoit Combemale, Jeff Gray, and Bernhard Rumpe. 2024. Model
modularity for reuse, libraries and composition: symbol management

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

is key. Journal Software and Systems Modeling (SoSyM), 23, 3, (June
2024), 525-526. doi:10.1007/s10270-024-01190-0.

Shigeru Chiba and Rei Ishikawa. 2005. Aspect-oriented programming
beyond dependency injection. In European Conference on Object-
Oriented Programming. Springer, 121-143.

Thomas Degueule, Benoit Combemale, Arnaud Blouin, Olivier Barais,
and Jean-Marc Jézéquel. 2015. Melange: A Meta-language for Modu-
lar and Reusable Development of DSLs. In Proceedings of the 2015
ACM SIGPLAN International Conference on Software Language Engi-
neering (SLE 2015). ACM, Pittsburgh, PA, USA, 25-36. I1SBN: 978-1-
4503-3686-4. doi:10.1145/2814251.2814252.

Kay Dickersin. 1990. The Existence of Publication Bias and Risk
Factors for Its Occurrence. Jama, 263, 10, 1385-1389.

Florian Drux, Nico Jansen, and Bernhard Rumpe. 2022. A Catalog of
Design Patterns for Compositional Language Engineering. Journal
of Object Technology (FOT), 21, 4, (Oct. 2022), 4:1-13. http://www.se-
rwth.de/publications/A-Catalog-of-Design-Patterns-for-Composi
tional-Language-Engineering.pdf.

Sebastian Erdweg et al. 2013. The state of the art in language work-
benches: Conclusions from the language workbench challenge. In
Software Language Engineering: 6th International Conference, SLE
2013, Indianapolis, IN, USA, October 26-28, 2013. Proceedings 6. Springer,
197-217.

Moritz Eysholdt and Heiko Behrens. 2010. Xtext: Implement your
Language Faster than the Quick and Dirty way. In Proceedings of the
ACM international conference companion on Object oriented program-
ming systems languages and applications companion, 307-309.

J-M Favre. 2005. Languages evolve too! Changing the Software Time
Scale. In Eighth International Workshop on Principles of Software
Evolution (IWPSE’05). IEEE, 33-42. doi:10.1109/IWPSE.2005.22.
Robert France and Bernhard Rumpe. 2007. Model-driven Develop-
ment of Complex Software: A Research Roadmap. Future of Software
Engineering (FOSE *07), (May 2007), 37-54. http://www.se-rwth.de/p
ublications/Model-driven-Development-of-Complex-Software-A-
Research-Roadmap.pdf.

Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, and De-
sign Patterns. 1995. Elements of Reusable Object-Oriented Software.
Design Patterns. massachusetts: Addison-Wesley Publishing Company.
Thomas Goldschmidt, Steffen Becker, and Axel Uhl. 2008. Classifica-
tion of concrete textual syntax mapping approaches. In Model Driven
Architecture — Foundations and Applications. Ina Schieferdecker and
Alan Hartman, (Eds.) Springer Berlin Heidelberg, Berlin, Heidelberg,
169-184. 1SBN: 978-3-540-69100-6.

Object Management Group. 2023. Kernel Modeling Language (KerML),
Version 1.0 Beta 1. https://www.omg.org/spec/KerML/1.0/Beta1l/PDF
[Online; accessed 2024-06-05]. (June 2023).

Object Management Group. 2019. OMG Systems Modeling Language
(OMG SysML), Version 1.6. https://www.omg.org/spec/SysML/1.6
/PDF [Online; accessed 2024-06-05]. (Nov. 2019).

Object Management Group. 2023. OMG Systems Modeling Language
(OMG SysML), Version 2.0 Beta 1. https://www.omg.org/spec/Sys
ML/2.0/Betal/Language/PDF [Online; accessed 2024-06-05]. (June
2023).

Object Management Group. 2017. OMG Unified Modeling Language
(OMG UML), Version 2.5.1. https://www.omg.org/spec/UML/2.5.1
/PDF [Online; accessed 2024-06-05]. (Dec. 2017).

Morane Gruenpeter et al. 2021. Defining Research Software: a con-
troversial discussion. Version 1. (Sept. 2021). doi:10.5281/zenodo.550
4016.

Malte Heithoff, Nico Jansen, Jorg Christian Kirchhof, Judith Michael,
Florian Rademacher, and Bernhard Rumpe. 2023. Deriving Integrated
Multi-Viewpoint Modeling Languages from Heterogeneous Model-
ing Languages: An Experience Report. In Proceedings of the 16th ACM
SIGPLAN International Conference on Software Language Engineering

https://doi.org/10.1145/3428297
https://doi.org/https://doi.org/10.1016/j.scico.2015.11.003
http://www.se-rwth.de/publications/A-Library-of-Literals-Expressions-Types-and-Statements-for-Compositional-Language-Design.pdf
http://www.se-rwth.de/publications/A-Library-of-Literals-Expressions-Types-and-Statements-for-Compositional-Language-Design.pdf
http://www.se-rwth.de/publications/A-Library-of-Literals-Expressions-Types-and-Statements-for-Compositional-Language-Design.pdf
http://www.se-rwth.de/publications/Modeling-Language-Variability-with-Reusable-Language-Components.pdf
http://www.se-rwth.de/publications/Modeling-Language-Variability-with-Reusable-Language-Components.pdf
https://doi.org/10.4018/978-1-4666-3922-5.ch023
https://doi.org/10.4018/978-1-4666-3922-5.ch023
https://doi.org/10.1007/978-3-319-26172-0_4
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic-Composition-of-Language-Components-in-MontiCore.pdf
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic-Composition-of-Language-Components-in-MontiCore.pdf
http://www.se-rwth.de/phdtheses/Diss-Butting-Systematic-Composition-of-Language-Components-in-MontiCore.pdf
http://www.se-rwth.de/publications/Globalizing-Domain-Specific-Languages2.pdf
http://www.se-rwth.de/publications/Globalizing-Domain-Specific-Languages2.pdf
https://www.crcpress.com/Engineering-Modeling-Languages/Combemale-France-Jezequel-Rumpe-Steel-Vojtisek/p/book/9781466583733
https://www.crcpress.com/Engineering-Modeling-Languages/Combemale-France-Jezequel-Rumpe-Steel-Vojtisek/p/book/9781466583733
https://www.crcpress.com/Engineering-Modeling-Languages/Combemale-France-Jezequel-Rumpe-Steel-Vojtisek/p/book/9781466583733
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf
http://www.se-rwth.de/publications/Variability-within-Modeling-Language-Definitions.pdf
https://doi.org/10.1007/s10270-024-01190-0
https://doi.org/10.1145/2814251.2814252
http://www.se-rwth.de/publications/A-Catalog-of-Design-Patterns-for-Compositional-Language-Engineering.pdf
http://www.se-rwth.de/publications/A-Catalog-of-Design-Patterns-for-Compositional-Language-Engineering.pdf
http://www.se-rwth.de/publications/A-Catalog-of-Design-Patterns-for-Compositional-Language-Engineering.pdf
https://doi.org/10.1109/IWPSE.2005.22
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
http://www.se-rwth.de/publications/Model-driven-Development-of-Complex-Software-A-Research-Roadmap.pdf
https://www.omg.org/spec/KerML/1.0/Beta1/PDF
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/1.6/PDF
https://www.omg.org/spec/SysML/2.0/Beta1/Language/PDF
https://www.omg.org/spec/SysML/2.0/Beta1/Language/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.5281/zenodo.5504016
https://doi.org/10.5281/zenodo.5504016

SLE °25, June 12-13, 2025, Koblenz, Germany

[29]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(SLE 2023). Association for Computing Machinery, Cascais, Portugal,
(Oct. 2023), 194-207. doi:10.1145/3623476.3623527.

Katrin Holldobler, Oliver Kautz, and Bernhard Rumpe. 2021. Mon-
tiCore Language Workbench and Library Handbook: Edition 2021.
Aachener Informatik-Berichte, Software Engineering, Band 48. Shaker
Verlag, (May 2021). 1SBN: 978-3-8440-8010-0. http://www.monticore
.de/handbook.pdf.

Katrin Holldobler. 2018. MontiTrans: Agile, modellgetriebene Entwick-
lung von und mit domdnenspezifischen, kompositionalen Transforma-
tionssprachen. Aachener Informatik-Berichte, Software Engineering,
Band 36. Shaker Verlag, (Dec. 2018). 1SBN: 978-3-8440-6322-6. http:
//www.se-rwth.de/phdtheses/Diss-Hoelldobler-MontiTrans-Agile-
modellgetriebene-Entwicklung-von-und-mit-domaenenspezifisch
en-kompositionalen-Transformationssprachen.pdf.

David Harel and Bernhard Rumpe. 2004. Meaningful Modeling:
What’s the Semantics of "Semantics”? IEEE Computer Journal, 37, 10,
(Oct. 2004), 64-72. http://www.se-rwth.de/staff/rumpe/publications
20042008/ Meaningful-Modeling-Whats-the-Semantics-of-Seman
tics.pdf.

Katrin Holldobler and Bernhard Rumpe. 2017. MontiCore 5 Language
Workbench Edition 2017. Aachener Informatik-Berichte, Software Engi-
neering, Band 32. Shaker Verlag, (Dec. 2017). ISBN: 978-3-8440-5713-3.
http://www.se-rwth.de/publications/MontiCore-5-Language-Wor
kbench-Edition-2017.pdf.

Sven Jorges, Tiziana Margaria, and Bernhard Steffen. 2008. Genesys:
service-oriented construction of property conform code generators.
Innovations Syst Softw Eng, 4, 361-384. doi:https://doi.org/10.1007/s1
1334-008-0071-2.

Nico Jansen and Bernhard Rumpe. 2023. Seamless Code Generator
Synchronization in the Composition of Heterogeneous Modeling
Languages. In Proceedings of the 16th ACM SIGPLAN International
Conference on Software Language Engineering (SLE 2023). Association
for Computing Machinery, Cascais, Portugal, (Oct. 2023), 163-168.
doi:10.1145/3623476.3623530.

Lennart C. L. Kats and Eelco Visser. 2010. The Spoofax language
workbench. Rules for declarative specification of languages and
IDEs. In Proceedings of the 25th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA 2010). Martin Rinard, (Ed.) Reno, NV, USA.

Anneke Kleppe. 2008. Software Language Engineering: Creating Domain-

Specific Languages Using Metamodels. Pearson Education.

Hendrik Kausch, Mathias Pfeiffer, Deni Raco, Bernhard Rumpe, and

Andreas Schweiger. 2022. Correct and Sustainable Development Us-
ing Model-based Engineering and Formal Methods. In 2022 IEEE/A-
IAA 41st Digital Avionics Systems Conference (DASC). IEEE, (Sept.
2022). http://www.se-rwth.de/publications/Correct-and-Sustainabl

e-Development-Using-Model-based-Engineering-and-Formal-Me

thods.pdf.

Marco Konersmann, Bernhard Rumpe, Max Stachon, Sebastian Stiiber,
and Valdes Voufo. 2024. Towards a Semantically Useful Definition of
Conformance with a Reference Model. Journal of Object Technology
(FOT), 23, 3, (July 2024), 1-14. doi:10.5381/jot.2024.23.3.a5.

Charles W Krueger. 1992. Software Reuse. ACM Computing Surveys

(CSUR), 24, 2, 131-183.

Vinay Kulkarni and Sreedhar Reddy. 2003. Separation of Concerns

in Model-Driven Development. IEEE software, 20, 5, 64-69.

Pedram Mir Seyed Nazari, Alexander Roth, and Bernhard Rumpe.
2016. An Extended Symbol Table Infrastructure to Manage the Com-
position of Output-Specific Generator Information. In Modellierung

2016 Conference (LNI). Vol. 254. Bonner Koéllen Verlag, (Mar. 2016),
133-140. http://www.se-rwth.de/publications/An-Extended-Symbol

-Table-Infrastructure-to-Manage-the-Composition-of-Output-Sp

ecific-Generator-Information.pdf.

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Nico Jansen, Alex Liipges, and Bernhard Rumpe

Terence Parr. 2013. The Definitive ANTLR 4 Reference. The Pragmatic
Bookshelf. 1sBN: 9781934356999.

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive 11(*)
parsing: the power of dynamic analysis. SSGPLAN Not., 49, 10, (Oct.
2014), 579-598. doi:10.1145/2714064.2660202.

Luis Pedro, Vasco Amaral, and Didier Buchs. 2008. Foundations for
a Domain Specific Modeling Language Prototyping Environment:
A compositional approach. In Proceedings of the 8th OOPSLA ACM-
SIGPLAN Workshop on Domain-Specific Modeling (DSM). (Oct. 2008),
20-27.

Jérome Pfeiffer and Andreas Wortmann. 2021. Towards the Black-Box
Aggregation of Language Components. In 2021 ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and Systems
Companion (MODELS-C). IEEE, 576-585. doi:10.1109/MODELS-C53
483.2021.00088.

Sérgio Queiroz de Medeiros and Fabio Mascarenhas. 2018. Error
recovery in parsing expression grammars through labeled failures
and its implementation based on a parsing machine. Journal of Visual
Languages & Computing, 49, 17-28. doi:https://doi.org/10.1016/j.jvlc
.2018.10.003.

Stefan Riither, Thomas Hermann, Maik Mracek, Stefan Kopp, and
Jochen Steil. 2013. An Assistance System for Guiding Workers in
Central Sterilization Supply Departments. In (PETRA ’13). ACM.
ISBN: 9781450319737.

Bran Selic. 2003. The Pragmatics of Model-Driven Development.
IEEE software, 20, 5, 19-25. doi:10.1109/MS.2003.1231146.

Herbert Stachowiak. 1973. Allgemeine Modelltheorie. Springer.
Bernhard Steffen, Tiziana Margaria, Ralf Nagel, Sven Jorges, and
Christian Kubczak. 2007. Model-Driven Development with the jABC.
In Hardware and Software, Verification and Testing: Second Interna-
tional Haifa Verification Conference, HVC 2006, Haifa, Israel, October
23-26, 2006. Revised Selected Papers 2. Springer, 92-108.

Hendrik Van Antwerpen, Casper Bach Poulsen, Arjen Rouvoet, and
Eelco Visser. 2018. Scopes as Types. Proceedings of the ACM on Pro-
gramming Languages, 2, OOPSLA, 1-30.

Eelco Visser. 1997. Scannerless Generalized-LR Parsing. Tech. rep.
P9707. Programming Research Group, University of Amsterdam,
(July 1997).

Markus Voelter and Vaclav Pech. 2012. Language Modularity with
the MPS Language Workbench. In 2012 34th International Conference
on Software Engineering (ICSE). IEEE, 1449-1450.

Markus Voelter, Jos Warmer, and Bernd Kolb. 2015. Projecting a
Modular Future. IEEE Software, 32, 5, 46-52. doi:10.1109/MS.2014.10
3.

Dennis Leroy Wigand, Arne Nordmann, Niels Dehio, Michael Mistry,
and Sebastian Wrede. 2017. Domain-Specific Language Modulariza-
tion Scheme Applied to a Multi-Arm Robotics Use-Case. Journal of
Software Engineering for Robotics.

Claes Wohlin, Per Runeson, Martin Host, Magnus C Ohlsson, Bjorn
Regnell, and Anders Wesslén. 2012. Experimentation in Software
Engineering. Springer.

Received 05 March 2025

https://doi.org/10.1145/3623476.3623527
http://www.monticore.de/handbook.pdf
http://www.monticore.de/handbook.pdf
http://www.se-rwth.de/phdtheses/Diss-Hoelldobler-MontiTrans-Agile-modellgetriebene-Entwicklung-von-und-mit-domaenenspezifischen-kompositionalen-Transformationssprachen.pdf
http://www.se-rwth.de/phdtheses/Diss-Hoelldobler-MontiTrans-Agile-modellgetriebene-Entwicklung-von-und-mit-domaenenspezifischen-kompositionalen-Transformationssprachen.pdf
http://www.se-rwth.de/phdtheses/Diss-Hoelldobler-MontiTrans-Agile-modellgetriebene-Entwicklung-von-und-mit-domaenenspezifischen-kompositionalen-Transformationssprachen.pdf
http://www.se-rwth.de/phdtheses/Diss-Hoelldobler-MontiTrans-Agile-modellgetriebene-Entwicklung-von-und-mit-domaenenspezifischen-kompositionalen-Transformationssprachen.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/staff/rumpe/publications20042008/Meaningful-Modeling-Whats-the-Semantics-of-Semantics.pdf
http://www.se-rwth.de/publications/MontiCore-5-Language-Workbench-Edition-2017.pdf
http://www.se-rwth.de/publications/MontiCore-5-Language-Workbench-Edition-2017.pdf
https://doi.org/https://doi.org/10.1007/s11334-008-0071-2
https://doi.org/https://doi.org/10.1007/s11334-008-0071-2
https://doi.org/10.1145/3623476.3623530
http://www.se-rwth.de/publications/Correct-and-Sustainable-Development-Using-Model-based-Engineering-and-Formal-Methods.pdf
http://www.se-rwth.de/publications/Correct-and-Sustainable-Development-Using-Model-based-Engineering-and-Formal-Methods.pdf
http://www.se-rwth.de/publications/Correct-and-Sustainable-Development-Using-Model-based-Engineering-and-Formal-Methods.pdf
https://doi.org/10.5381/jot.2024.23.3.a5
http://www.se-rwth.de/publications/An-Extended-Symbol-Table-Infrastructure-to-Manage-the-Composition-of-Output-Specific-Generator-Information.pdf
http://www.se-rwth.de/publications/An-Extended-Symbol-Table-Infrastructure-to-Manage-the-Composition-of-Output-Specific-Generator-Information.pdf
http://www.se-rwth.de/publications/An-Extended-Symbol-Table-Infrastructure-to-Manage-the-Composition-of-Output-Specific-Generator-Information.pdf
https://doi.org/10.1145/2714064.2660202
https://doi.org/10.1109/MODELS-C53483.2021.00088
https://doi.org/10.1109/MODELS-C53483.2021.00088
https://doi.org/https://doi.org/10.1016/j.jvlc.2018.10.003
https://doi.org/https://doi.org/10.1016/j.jvlc.2018.10.003
https://doi.org/10.1109/MS.2003.1231146
https://doi.org/10.1109/MS.2014.103
https://doi.org/10.1109/MS.2014.103

	Abstract
	1 Introduction
	2 State of the Art and Related Work
	3 Running Example
	4 Challenges
	5 Discussion and Open Challenges
	6 Comparable Approaches
	7 Conclusion
	Acknowledgments

