
Journal of Software Engineering for Robotics 6(1), December 2015, 33-57
ISSN: 2035-3928

Language and Code Generator Composition

for Model-Driven Engineering of

Robotics Component & Connector Systems
Jan Oliver RINGERT1,2 Alexander ROTH1 Bernhard RUMPE1 Andreas WORTMANN1

1 Software Engineering, RWTH Aachen University, Germany
2 School of Computer Science, Tel Aviv University, Israel

Abstract—Engineering software for robotics applications requires multi-domain solutions. Model-driven development (MDD) promises
efficient means for developing domain-specific and reusable models of robotics software. Code generators transform these models
into executable code for specific robotic platforms. Robotics is heterogeneous and robotics applications pose various challenges to
leveraging the potential of MDD. Combinations of modeling languages and platforms are often problem-specific. Generative software
development for multi-domain applications requires both the effective integration of modeling languages and composition of code
generators. We present the extensible MontiArcAutomaton architecture modeling framework for the generative development of robotics
applications with a strong focus on language integration and generator composition. Its core modeling language is a component &
connector architecture description language that can be extended with problem-specific component behavior modeling languages.
We present how MontiArcAutomaton supports syntactic and semantic behavior modeling language integration to describe component
behavior in most suitable modeling languages and code generator composition to synthesize code from integrated models. We sketch
a process for model-driven development of robotics applications using MontiArcAutomaton.

Index Terms—Model-Driven Development, Software Architectures, Software Language Composition, Code Generation.

1 INTRODUCTION

S UCCESSFUL development of robotics applications requires
solutions to challenges from different domains. Non-trivial

robotics applications require to integrate solutions from do-
mains such as navigation, communication, trajectory planning,
and software engineering. To achieve this, robotics software
is usually developed by teams of domain experts providing
solutions for specific problems on specific platforms. This
leads to monolithic robotics software and seriously challenges
reusability for different projects or platforms [1], [2].

To enable the reuse of functionality and subsystems, the

Regular paper – Manuscript received September 4, 2014; revised December
14, 2015.

• This research has partly received funding from the German Federal
Ministry for Education and Research under grant no. 01IM12008C. The
responsibility for the content of this publication is with the authors. J. O.
Ringert acknowledges support from a postdoctoral Minerva Fellowship,
funded by the German Federal Ministry for Education and Research.

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

structuring and composition mechanisms of component-based
software engineering (CBSE) have been applied to robotics
software engineering [3], [4], [5], [6]. These approaches are
mainly based on the exchange of binary or source code
components and thus tied to specific platforms and general-
purpose programming languages (GPLs). Software integration
thus requires in-depth knowledge of these GPLs and software
engineering principles. Model-driven development (MDD) re-
duces this “conceptual gap” [7] between the problem domains
and software engineering. Models enable the representation
of software systems at a higher level of abstraction than
GPLs and thus allow for greater reuse. In addition, domain-
specific software descriptions using models specific to the
problem domain reflect the heterogeneity of the developed
system and its concerns [8]. In combination with platform-
specific code generators and analyses, models can serve as
primary development artifacts which increases the software’s
comprehensibility and reuse on different platforms [2], [9]–
[11]. These potential benefits of MDD do not come for free
and robotics applications pose various challenges to successful
application of MDD. For example, the reuse of models for dif-
ferent platforms is possible in theory but in practice it requires

www.joser.org - © 2015 by J.O. Ringert, A. Roth, B. Rumpe, A. Wortmann

[RRRW15b] J. O. Ringert, A. Roth, B. Rumpe, A. Wortmann:
Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems.
In: Journal of Software Engineering for Robotics (JOSER), 6(1):33–57, 2015.
www.se-rwth.de/publications

34 Journal of Software Engineering for Robotics 6(1), December 2015

efficient means to integrate or develop platform-specific code
generators. As another example, the heterogeneous challenges
of engineering robotics applications require adequate means to
extend and modify modeling languages to adapt to emerging
requirements. Finally, the complex nature of robotics hardware
and software demands integration of models and generated
code with legacy components and handcrafted code.

To address these challenges of MDD for robotics applica-
tions we have developed the MontiArcAutomaton architecture
modeling framework consisting of modeling languages, code
generators, and powerful extension mechanisms. The goals of
MontiArcAutomaton are to provide

• an extensible and compositional modeling language for
the structure and behavior of robotics applications,

• an extensible and compositional code generator frame-
work allowing reuse across different platforms and dif-
ferent modeling language aggregates,

• integration mechanisms of legacy code and platform-
specific components, and

• a methodology for MDD of robotics applications.

With MontiArcAutomaton, robotics applications are mod-
eled as component & connector (C&C) software architectures.
While the logical architecture of applications is prescribed in
C&C models, behavior of components is defined from compo-
nent composition or embedded behavior modeling languages.
The separation of software into logical components enables
independent development and integration via well-defined
software interfaces. This allows for encapsulation of platform-
specific code or legacy code and forms the basis for syntactic
and semantic behavior modeling language integration.

First, extension mechanisms of the modeling language al-
low embedding domain-specific and problem-specific behavior
descriptions into component definitions. Language engineers
define the syntax of the embedded languages and use existing
facilities for defining well-formedness checks (also called
static semantics) for models of the combined languages. The
well-formedness of models is defined on an intra-language
level, i.e., between elements of models of the new language,
and on an inter-language level, i.e., between elements of
models of the new language and those of existing languages.

Second, MontiArcAutomaton comprises powerful compo-
sitional code generation facilities for the transformation of
models into executable GPL code for various robotics target
platforms. The integration mechanisms for modeling lan-
guages are mirrored by corresponding integration mechanisms
of code generators for these languages. They allow to exploit
the benefits of generative software development and to avoid
monolithic and hardly reusable code generator aggregates.

Challenges are the coordination of multiple code generators
each responsible for specific models or parts of models.
This includes the selection of code generators supporting a
common target platform, to handle language restrictions a
code generator might impose, and to propagate necessary

information between generators, such that integrating code
generators does not require their modification.

In this article we extend and summarize our previous work
in the context of MontiArcAutomaton [12]–[20]. The main
contribution of this article is a consolidated and concise de-
scription of the framework and its main concepts. In addition,
it contains technical contributions and improvements over
some of our previous work. Mainly, a running example for
behavior language integration summarizing all steps of pre-
vious technical contributions, the configuration of MontiArc-
Automaton with a new domain-specific embedded language,
and an overview of case studies applying MontiArcAutomaton.
We discuss differences to previous publications in Section 8.5.

First, we illustrate MontiArcAutomaton by example (Sec-
tion 2) before we provide the technical background on Monti-
ArcAutomaton (Section 3). We illustrate developer roles in
a MontiArcAutomaton MDD process (Section 4). Then we
explain the modeling language integration mechanisms which
enable modeling component behavior with the most appro-
priate modeling languages (Section 5). Based on these, we
describe our concepts of code generator composition (Sec-
tion 6) and their realization in MontiArcAutomaton. After-
wards, we list applications of the MontiArcAutomaton process
and framework in case studies (Section 7). Then we review
related work (Section 8). Finally, we discuss the proposed
process, language integration and generator composition (Sec-
tion 9) and conclude this contribution (Section 10).

2 PROBLEM STATEMENT AND EXAMPLE

The development of non-trivial robotics applications involves
a multitude of challenges from various domains. Model-
driven development provides means for representing, analyz-
ing, and evolving the context and solutions to problems of
these domains in a domain-specific way by abstracting from
implementation details. This abstraction further enables reuse
of solutions in MDD. However, enjoying these benefits for the
engineering of robotics applications poses various challenges.

First, the domains of concern for robotics applications vary
from project to project and are often not completely known
initially. This variation reflects in the requirement that an MDD
solution needs to be configurable and extensible with domain-
specific modeling languages.

Second, the robotics target platforms for code generation
from models exhibit similar heterogeneity to problem domains.
Different versions of operating systems, application program-
ming interfaces (API), and target GPLs are employed and
have to be supported by MDD solutions. To benefit from
the raised level of abstraction in domain-specific modeling
languages these need to be supported by more than one code
generator according to their use. It is thus required to separate
languages and code generators and to provide code generator
composition mechanisms that match the ones of the language
integration.

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 35

UltraSonic
d

ColorSensor
c

Controller

pa

ArmController

p

r

Program

ToastServiceRobot Toaster

Controller te

t

e

TCCmd

c

d

location toaster 120deg 20cm;

program PickupFromToaster {

move top;

open;

move toaster;

close;

move top;

move a h;

open;

}

MAA

Distance

component type incoming port a of type Boolean

Boolean

connector between the two ports r and aatomic component

composed component type
ToastServiceRobot

outgoing port event
of type TCEvent

TCEvent

atomic component with
embedded RobotArm program

Receiver

r

r
Color

Boolean

component Controller {

// ...

automaton {

state Idle, Toasting, ...

Toasting -> Retrieving

{e=FINISHED, c=DARK}

/ {p=PickupFromToaster};

// ...

}

}

h h

a a

Fig. 1: Architecture of the ToastServiceRobot with embedded RobotArm programs.

In the remainder of this paper, we address these two
challenges of domain-specific language composition and code
generator composition. The context of our work are C&C
architectures (ADL) [21], where software architectures are
modeled as hierarchically composed components. Specifically,
the MontiArcAutomaton ADL is a C&C ADL that enables
embedding of problem-specific component behavior modeling
languages into components. While the ability to use specific
behavior modeling languages allows to develop specific ap-
plications, the encapsulation of models in components with
well-defined and stable interfaces allows to modify component
internals easily, e.g., to modify a specific behavior model,
while retaining a stable architecture [22].

Throughout the article we use the following terms in their
(sometimes specific) MontiArcAutomaton interpretation:

• Application: A model of the C&C architecture and be-
havior of the robot including configurations of languages
and selection of code generators for a platform.

• Platform: The software and hardware the generated code
of an application runs on.

• Modeling language: Description of syntax and well-
formedness rules to express models including symbols for
referencing and translating between models of languages.

• Model: Abstracted description of an aspect of a software
system conforming to a modeling language.

• Structure: Structure of the C&C architecture of an appli-
cation in terms of logical components, connectors, and
composition.

• Behavior: Definition of interaction via connectors be-
tween components, e.g., to control actuators of the robot.

2.1 Example

A software engineer is responsible for the development of
the software for a robotic arm. The robot assists a physically
disabled person in a kitchen environment to operate a toaster,
i.e., place bread in a toaster, operate the toaster, and deliver
the toast to a nearby plate. Figure 2 shows part of the system
as implemented with Lego NXT robots and its environment.1

Assuming that the software engineer has no expertise in
programming manipulators, she models the logical architec-
ture of the robot as a composition of components, e.g., the
component ColorSensor to check the toast color and the
component ArmController to prescribe movements of
the robotic arm. She decides that the behavior of the main
component Controller is best modeled as an automaton
and the behavior of ArmController is best described
using a domain specific language for robotic arms from an
earlier project. The engineer configures MontiArcAutomaton
to embed an automaton language following the I/Oω automata
paradigm [23], [24] and a language for RobotArm (RA)
programs. The latter describes motion of the arm in terms
of defined locations and gripper commands.

The model of the software architecture with two embedded
behavior languages is depicted in Figure 1. The component
Controller receives distances and toast colors from at-
tached sensors. The automaton modeling the behavior of
Controller translates these inputs into commands for the
ToasterController, which starts and stops the toaster,
and commands for the component ArmController, which
actuates the robotic arm to pick up and deliver toast. The
behavior of component ArmController is modeled as a
set of RA programs.

1. A video of the system is available from http://www.monticore.de/robotics

http://www.monticore.de/robotics

36 Journal of Software Engineering for Robotics 6(1), December 2015

Fig. 2: Lego NXT hardware and environment of the Toast-
ServiceRobot application.

To generate executable code from the model, the software
engineer needs to select code generators for the embedded
automata and for the embedded RA programs that translate
both into code for the NXT platform. She reuses existing
generators by composing them according to the used language
composition and the Lego NXT platform.

After evaluation of the Lego NXT prototype the project
of the engineer is promoted to be turned into a commercial
product. The robotic application will employ more reliable
hardware and the Robot Operating System (ROS). The en-
gineer configures her application to use code generators for
the new target platform ROS. Code generators for the Monti-
ArcAutomaton ADL and embedded automata are already
available, however, a code generator for the RA language is
missing. The missing code generator is subsequently devel-
oped by a team of developers with expertise in translating the
high-level descriptions of robot arm movements into code for
the ROS platform.

This example shows how language composition mecha-
nisms of MontiArcAutomaton enable the use of the most
suitable modeling language to describe component behavior
and how the decoupling of code generators from languages as
well as code generator composition enable efficient transitions
between target platforms.

3 MONTIARCAUTOMATON AND MONTICORE

MontiArcAutomaton is a framework for the pervasive model-
driven engineering of robotics applications as component &
connector software architectures with exchangeable compo-
nent behavior modeling languages. At the core of MontiArc-
Automaton is the extensible MontiArcAutomaton ADL [25],
which is built on the formal concepts of the FOCUS [26]
framework and supports black-box embedding of domain-
specific component behavior languages with little effort. The

language integration features of MontiArcAutomaton rely on
the language workbench MontiCore. The framework facilitates
translation of such language aggregates into GPL artifacts with
a compositional code generator framework.

3.1 The MontiArcAutomaton ADL
The concept of encapsulation from C&C ADLs [21], [27]
allows not only a logically distributed development and a
physically distributed computation model, but also the com-
position of component behaviors independent of their internal
behavior description. The MontiArcAutomaton ADL exploits
the C&C encapsulation mechanism and allows the embedding
of modeling languages into components for providing the most
suitable behavior modeling language per component. This
enables developing structure and behavior of the architecture
in integrated models, reduces traceability efforts, and eases
model co-evolution.

With the MontiArcAutomaton ADL, application modelers
describe the architecture of robotics applications as the hi-
erarchical composition of components and connectors. Com-
ponents encapsulate functionality and provide it via well-
defined, stable interfaces comprising sets of typed directed
ports. Components are either atomic or composed: atomic
components describe their input-output behavior either via
embedded behavior models or via a handcrafted behavior im-
plementation in a GPL. The behavior of composed components
emerges from their subcomponents and their interaction.

Components interact by sending and receiving messages
via directed connectors connected to their input and output
ports. The types of the interface’s ports determine the possible
messages a component may receive or send and thus deter-
mine its potential connections to other components. Types of
ports are defined in UML/P class diagrams (CD) [28], which
are integrated with the MontiArcAutomaton ADL to ensure
compatibility of port and variable types.

At its foundation MontiArcAutomaton ADL imposes stable
component interfaces identified necessary for the separation
of concerns into component (behavior) implementation and
system integration [2], [22], [29]. Similar component behavior
language integration is supported by the Architecture Analysis
& Design Language (AADL) [30], [31] and xADL [32].
Both consider syntactic integration only, without taking inter-
language well-formedness or code generation into account.
MontiArcAutomaton takes care of both.

3.2 The MontiCore Language Workbench
The MontiArcAutomaton ADL is implemented with the Mon-
tiCore language workbench [33]. Its concrete and abstract
syntax are defined in an extended context-free grammar (CFG)
format [25]. From these grammars, MontiCore generates in-
frastructure to parse models of the language into abstract
syntax trees (ASTs). MontiCore languages are textual, which
allows software developers to retain the tools used to process

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 37

and manage GPL artifacts, while graphical representations of
the models can be developed with some additional effort. An
integration with the Eclipse Modeling Framework allows also
the development of graphical editors for editing MontiArc-
Automaton models.2

Checks of the well-formedness (static semantics) of mod-
els, called context conditions, are implemented in Java [34]
and enable to perform static analyses not expressible with
CFGs (such as whether the message types of connected
ports are compatible). MontiCore distinguishes intra-language
well-formedness rules and inter-language well-formedness
rules [35]. The former characterize properties of well-formed
models of a single modeling language and the latter consider
integrated modeling languages.

MontiCore provides comprehensive language composition
mechanisms [14] supported by its symbol table frame-
work [34]:

1) Language embedding combines languages to use (parts
of) multiple languages in a single model at well-defined
extension points, e.g., component behavior languages are
embedded into components.

2) Language aggregation combines multiple independent
modeling languages into a language family, which en-
ables to interpret their models together. For instance,
within MontiArcAutomaton, its ADL and class diagrams
are part of the framework’s language family.

3) Language extension enables to reuse the grammar of the
parent language and to add and overwrite its produc-
tions, e.g., the MontiArcAutomaton ADL extends the
ADL MontiArc [36].

Details on all of these mechanisms are available [14], [17].
Symbols are data structures describing the essence of model

parts free from the technical necessities of theirs ASTs. As
such, every MontiCore language amenable for integration does
provide the technical infrastructure to create symbols from its
models’ ASTs and to resolve names (e.g., of components) to
corresponding symbols. The resulting symbols are decoupled
from changes to the underlying AST and hence provide a
stable model interface, which facilitates integration via adap-
tation. Ultimately, this supports checking context conditions
across embedded and imported models.

MontiCore also facilitates development of code generators
using the FreeMarker3 template engine to process ASTs and
code templates written in a target language [12], [35].

3.3 The MontiArcAutomaton Framework

The MontiArcAutomaton framework employs the MontiCore
language integration mechanisms to enable embedding of
component behavior modeling languages. It further comprises

2. Video of an editor for synchronous graphical and textual editing of
MontiArcAutomaton models: http://www.monticore.de/robotics/

3. Website of the FreeMarker Java template engine: http://freemarker.org/

modeling languages to describe applications and composi-
tional code generators. Application configuration models are
specific to a software architecture model and describe how it is
processed. Thus, for a single software architecture, application
configurations can select multiple sets of code generators to
translate it into artifacts of different GPLs. This, for example,
allows to select a first group of code generators to translate
the architecture to Java and a second group of code generators
to translate the architecture to ROS nodes implemented in
Python. Changing the code generators to employ amounts
to changing this selection. Code generator models describe
execution requirements of the represented code generator and
properties of the generated code relevant to composition.

Figure 3 illustrates the MontiArcAutomaton framework and
how its parts interact with each other. The top illustrates
the framework with its modeling languages, modules, and
extension points (left) as well as the artifacts it produces with
their dependencies (right). The bottom part shows how the
framework is configured and used: first the behavior modeling
languages are integrated (left), then an architecture using these
languages is modeled (middle), and the generators to apply
are selected (right). The framework contains the MontiArc-
Automaton ADL, which interfaces the UML/P CD language
for data types. The ADL has an extension point for component
behavior languages. The framework furthermore comprises
language integration components for the integration of syntax
and well-formedness rules. Resulting language aggregates are
the basis for model-to-model (M2M) and model-to-text (M2T)
transformations ultimately translating the application into mul-
tiple GPL implementations. The M2M transformations replace
platform-independent components with platform-specific com-
ponents according of the application configuration (cf. [20]).
The configuration also defines the generators to apply in the
subsequent M2T transformations. Code generator developers
provide generator models to MontiArcAutomaton, which are
processed for generator composition and execution.

Code generator composition ensures that artifacts generated
by a set of compatible code generators conform to a run-time
environment (RTE). A RTE is a set of target GPL artifacts
that provide common functionality, such as base classes for
components or interfaces for handcrafted behavior implemen-
tations. Conformance to a RTE means agreement on the
interfaces employed for components and component behavior
implementation. Generated component structure artifacts, the
RTE, and the handcrafted component behavior artifacts can be
specific to desired platforms.

4 DEVELOPING ROBOTICS APPLICATIONS
WITH MONTIARCAUTOMATON

As software systems under development become more com-
plex it is important to follow a process that provides activ-
ities and roles responsible for enacting these. We now give

http://www.monticore.de/robotics/
http://freemarker.org/

38 Journal of Software Engineering for Robotics 6(1), December 2015

UML/P CD

Java/P

Language

Integration

C&C App Generator

M2M

Transformations

M2T

Transformations

MontiArcAutomaton

Generator

Description
Application

Configuration

Generator

TemplatesGPL Code Generator
Model

Generated
Component

Artifacts

Platform: Operating

System, Drivers,

Middlewares

Handcrafted
Behavior
Artifacts

Behavior DSL

MontiArc

Automaton

ADL

RTE

Usage Optional usage ConformanceRelations:

«gen» «hc»

application
programmer

run-time
environment

developer

Grammar Context
Conditions

language
engineer

generator
developer

application
modeler

modeling language

infrastructure
module

Application

Application
Configuration

Software Architecture
with Behavior DSLs

processes

model

extension
point

Fig. 3: The MontiArcAutomaton framework comprises several modeling languages to describe and process C&C software
architectures and provides extension points for component behavior modeling languages and for code generators.

an overview over the roles participating in the MontiArc-
Automaton development process shown in Figure 3, their
responsibilities and activities.

In a typical project setup, the application modeler creates
models for the structure and behavior of the robotics applica-
tion as well as the application configuration model. The latter
references generator models that describe the interfaces and
requirements of the generators to apply. These are provided by
the generator developer. The generated platform-specific code
is executed by the RTE developed by a run-time developer. For
fixed component behavior modeling languages and platform,
the RTE and code generators typically remain stable. Thus, in a
minimal setup, application modeler is the only role enacted. In
case a component modeled by the application modeler requires
manual implementation, e.g., to interface with application-
specific legacy code, the application modeler models the
component for manual implementation by the application
programmer (see Section 4.1). For recurring tasks and be-
havior descriptions not conveniently expressible with existing
languages of MontiArcAutomaton, a language engineer may
extend the framework for with additional behavior DSLs. A
generator developer then has to implement a code generator for
the new component behavior modeling language to produce
executable component implementations. Therefore, she pro-
vides a generator model and an implementation that generates

code conforming to the designated run-time environments’
properties. Due to the modularization of the framework and
the division of responsibilities to roles, MontiArcAutomaton
addresses the different skill sets of engineers. For example,
a domain expert can enact the role application modeler and
is not required to be an expert in interfacing with the low-
level software and hardware of the platform. This expertise is
provided by an application programmer whose work can be
reused for multiple applications running on the same platform.

Using MontiArcAutomaton entails tailoring it to the par-
ticular component behavior language needs, before a software
architecture can be modeled. Afterwards, composing code gen-
erators allows to produce GPL code from the architecture. The
overall process follows the three stages depicted in Figure 4.
The first stage focuses on customization of the modeling lan-
guage and checks whether the MontiArcAutomaton language
family has to be extended. In the second stage, the software
architecture and the application configuration model, which
compose the robotics application, need to be developed. In
this stage, the application developer needs to decide whether
a platform-independent or platform-specific model should be
developed. Eventually, in the last stage, one or multiple code
generators need to be selected or composed. This allows to se-
lect code generators for different target platforms, and, hence,
to easily translate the same architecture to different GPLs.

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 39

Composition is only required if no monolithic code generator
using the desired of ADL features, behavior languages, and
platform exists.

AD

act Using MontiArcAutomaton

use provided
behavior

languages

develop PS
architecture

select
monolithic
generator

add
behavior
language

develop PI
architecture

compose
code

generators

generate
target
code

[features

sufficient]

[requires

extension]

[single target

platform]

[multiple

target platforms]

[monolithic

generator exists]

[no appropriate

generator]

code
generation
stage

modeling
stage

language
integration
stage

Fig. 4: Using MontiArcAutomaton entails three stages from
behavior language integration to modeling to code generation
(as introduced in [19]).

In this contribution, we present the language integration
stage and the code generation stage. The modeling stage and
the M2M transformation it employs are presented in [20].

4.1 Component Behavior Language Integration
Prior to modeling or code generation, the required component
behavior modeling languages must be integrated. To this effect,
the application modeler examines the MontiArcAutomaton
ADL and identifies the requirements for new behavior lan-
guages. These requirements are passed to the language engi-
neer, who provides these languages. The MontiArcAutomaton
framework provides well-defined extension points for integra-
tion of MontiCore component behavior languages into compo-
nents. Embedding languages into MontiArcAutomaton ADL
components is declarative, i.e., it does not require changes
to the existing languages’ grammars [34]. Thus, the language
engineer of the new behavior languages requires no expertise
of the existing MontiArcAutomaton languages. It is important
to note that the MontiArcAutomaton ADL is only extended
with component behavior modeling languages. The concept
of components, ports, and communication via connectors
underlies the framework and serves for encapsulation.

Embedding a behavior modeling language requires regis-
tration of its grammar and little integration code. The latter
includes context conditions of the integrated languages and
symbol table infrastructure (cf. Section 3.2). With this infras-
tructure, the new component behavior modeling language can
be integrated into the MontiArcAutomaton language family
using the MontiCore language integration mechanisms. This
enables to reference and reason about models from other
languages of the family. Section 5 describes the details of
language integration with MontiArcAutomaton.

4.2 Software Architecture Modeling
After component behavior language integration, the applica-
tion modeler can develop the software architecture of the
system under development with models of the integrated
languages. To this end she decomposes the system into
components and decides for each atomic component whether
its behavior can be modeled or requires a handcrafted GPL
implementation. For the latter, the application programmer
develops proper implementations. Then she configures a M2M
transformation to replace components according to the plat-
form as presented in [20]. The resulting, platform-specific
software architectures can be translated into GPL code then.

4.3 Code Generation
Translating a software architecture with embedded component
behavior modeling languages requires code generators capable
of translating the embedded behavior models. To this end,
the code generation framework of MontiArcAutomaton en-
ables composition of code generators for component structure,
component behavior, and data types. However, MontiArc-
Automaton also supports monolithic code generators support-
ing architectures models with a fixed set of embedded behavior
languages. In both cases, the application modeler selects the
participating generator(s) via the application configuration
model, which may include invoking generator developers to
produce proper generators. To be amenable for selection,
the code generator developers must provide the code gen-
erators with generator models. These models describe the
code generators’ responsibilities, requirements, and interfaces.
MontiArcAutomaton checks, composes, and executes the se-
lected code generators based on these models. Development of
such code generators is detailed in [19]. In this contribution,
Section 6 presents our notion of code generator types and its
implementation in MontiArcAutomaton.

5 LANGUAGE INTEGRATION
Modeling language integration either requires to compose
languages a priori, or to design them independently and
to apply non-invasive composition mechanisms. Composing
languages for a specific integration yields monolithic language
families that are hardly reusable between projects with differ-
ent language requirements.

40 Journal of Software Engineering for Robotics 6(1), December 2015

RobotArm

1 robotarm ToastService {
2

3 input int angle;
4 input int height;
5

6 // name, angle, gripper height
7 location toaster 120deg 20cm;
8

9 program PickupAndDeploy {
10 move top;
11 open;
12 move toaster;
13 close;
14 move top;
15 move angle height;
16 open;
17 }
18

19 }

Listing 1: An excerpt from the concrete syntax of a stand-
alone RA model ToastService with two inputs, a
location, and a program.

MontiArcAutomaton embeds component behavior modeling
languages into the MontiArcAutomaton ADL and forms a
language family of all participating modeling languages, which
allows to check inter-language context conditions between
languages of the family. This section introduces language
integration in MontiArcAutomaton.

5.1 Syntactic Behavior Language Embedding

Embedding is a purely syntactic language integration mech-
anism in which the host language’s grammar provides an
extension point in form of a designated external production
for component behavior. To facilitate reuse, not the languages’
grammars are integrated, but the parsers MontiCore generates
from these. This allows use of the host language without
embedding, facilitates exchange of embedded languages, and
does not require modification of the participating languages’
grammars.

The MontiArcAutomaton ADL grammar provides such an
extension point that is conditionally mapped by the MontiArc-
Automaton language configuration model to different compo-
nent behavior language grammars. The generated parser for
MontiArcAutomaton ADL models delegates parsing of exter-
nal productions to the parser responsible for the embedded
productions of the respective behavior language. We illustrate
the embedding of behavior languages on the example of the
RobotArm language RA.

The RA language describes the behavior of a robot arm
in terms of sequential movements to physical positions and
gripper actions. RA models consist of a name, inputs, con-
stants, and programs contained in robotarm blocks. Inputs

are data sources the programs may react on. Constants define
robot-specific measurements (top, bottom) or locations in
the joint space of the robot arm (keyword location).
Programs are sequences of commands to move the arm (move)
and to use the gripper (open, close). Movement is either
to a robot-specific measurement (top, bottom), a defined
location, or to a joint space position based on input. Listing 1
shows an excerpt of a stand-alone RA model comprising the
two inputs angle and height (ll. 3-4), one location defini-
tion toaster (ll. 7), and the program PickupAndDeploy
(ll. 9-17).

RobotArm models neither prescribe how they are executed,
nor have knowledge about the robot arm they are used with.
These technical details depend on the capabilities and APIs
of the system the software is deployed on and are in the
responsibility of the generator and generated code. In our
implementation, the code generated for RA models tracks the
current absolute positions of the joints and actuates the motors
of the arm according to these.

MontiArcAutomaton enables the use of RA models in the
context of larger robotic applications by embedding parts of
the RobotArm language into component definitions. It does not
embed the RA inputs as embedded RA models receive input
from MontiArcAutomaton ADL ports instead. This allows to
define component models including RA models in a single
integrated artifact. Listing 2 shows the textual representation
of the component ArmController as depicted in Figure 1.
It begins with the keyword component, followed by the
component’s type name and a body (l. 1). The body contains
an interface of typed ports (ll. 3-7) followed by an embedded
RA model (ll. 9-21) beginning with its keyword robotarm.
The models contains a location definition (l. 10) and a single
program (ll. 12-20).

Please note, that the program PickupAndDeploy still re-
ceives input from sources named angle and height (l. 18).
In the context of the stand-alone RA program PickupAnd-
Deploy, the symbols angle and height represent RA
program inputs, but in the context of the MontiArcAutomaton
ADL component ArmController, these symbols represent
ports. To enable proper integration, such as inter-language
well-formedness checking, this change of meaning must be
explicated. For instance, the MontiArcAutomaton framework
must ensure that angle and height are of data types
compatible to RA move commands. Thus, syntactic language
embedding alone does not suffice, but requires symbolic inte-
gration as well.

5.2 Symbolic Language Integration
Names referencing other parts of models are considered sym-
bols with a certain meaning. When integrating a component
behavior modeling language into the MontiArcAutomaton
ADL, the meaning of names may change. To reflect this,
MontiArcAutomaton and its ADL rely on the language ag-
gregation mechanisms of MontiCore, which require that the

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 41

MontiArcAutomaton

1 component ArmController {
2

3 port
4 in int angle,
5 in int height,
6 in ArmControllerProgram cmd,
7 out ArmControllerResult result;
8

9 robotarm {
10 location toaster 120deg 20cm;
11

12 program PickupAndDeploy {
13 move top;
14 open;
15 move toaster;
16 close;
17 move top;
18 move angle height;
19 open;
20 }
21 }
22

23 // ...
24 }

Listing 2: An excerpt from the concrete syntax of MontiArc-
Automaton component ArmController with embedded
RA model.

symbols of model parts are made explicit. This allows adapta-
tion between symbols and, hence, their correct interpretation
as well as well-formedness checking after integration. To this
end, embedding component behavior modeling languages re-
quires proper adaptation between the participating languages’
symbols, as well as integration of new inter-language well-
formedness rules that cannot be checked on the level of a
single language only. For instance, integration of RA pro-
grams into the MontiArcAutomaton ADL requires to ensure
that the names of inputs are interpreted as names of ports
(adaptation) and that the referenced ports are incoming ports
(an inter-language well-formedness rule not checkable within
RA alone). Furthermore, the input elements of RA (cf. List-
ing 1, ll. 3-4) should be prohibited to avoid underspecification
(another well-formedness rule specific to integration).

Integration of the RobotArm language with its symbol
table infrastructure into the MontiArcAutomaton ADL lan-
guage family allows joint interpretation as well as creation
of symbols of the respective model parts and execution of
well-formedness checks from both languages. However, the
RA symbol table treats names after move as references to
input elements. These are not part of embedded RobotArm
models. Thus, to complete integration, the language engineer
configuring MontiArcAutomaton with RA provides an adapter
between the input symbol of RA and the port symbol of
the MontiArcAutomaton ADL as depicted in Figure 5.

CD

SOURCE_KIND

TARGET_KIND

adaptee

part of the
MontiArcAutomat

on ADL

part of the
RobotArm
language

Port2InputAdapter

«interface»

ISTSymbol

part of MontiCore‘s
symbol table framework

PortSymbolInputSymbol

part of
MontiCore‘s
symbol table
framework

getName()

getType()

getName()

getType()

Port2InputAdapterFactory

ISTSymbol createAdapter(ISTSymbol)

AdapterFactory

ISTSymbol createAdapter(ISTSymbol)

SYMBOL_KIND

name

type

SYMBOL_KIND

name

type

direction

Fig. 5: Adaptation between a InputSymbol of the RA
language and a PortSymbol of the MontiArcAutomaton
ADL.

The adapter Port2InputAdapter extends from In-
putSymbol, overrides its methods getName() and get-
Type(), and yields static class fields SOURCE_KIND and
TARGET_KIND. The former equals the SYMBOL_KIND
of InputSymbol and the latter the SYMBOL_KIND of
PortSymbol. Hence, whenever the RA language fam-
ily looks up an InputSymbol, the MontiArcAutomaton
ADL language family might return a Port2InputAdapter
that adapts a PortSymbol. To ensure these adapters
are created properly, the Port2InputAdapter pro-
vides its own factory to the language family. This fac-
tory is used to produce Port2InputAdapter instances
whenever symbols of its TARGET_KIND (i.e., port sym-
bols) are produced by MontiArcAutomaton. The method
of Port2InputAdapterFactory therefore receives a
PortSymbol and - if the port symbol’s direction is in-
coming - copies its properties to its own fields. In consequence,
resolving the name angle in Listing 2 returns an instance of
Port2InputAdapter that adapts the corresponding port
symbol and can be used with inter-language checks of RA
(such as validating that the type of angle actually is nu-
meric). Please note that this also ensures that ports references
by move commands are incoming ports, otherwise resolving
the corresponding InputSymbol will fail as neither the In-
putSymbol, nor the Port2InputAdapter exist. Hence,
a dedicated well-formedness rule for this is not necessary.

Adding inter-language well-formedness rules amounts to
adding a single Java class to the language family that ex-
tends MontiCore’s ContextCondition class and imple-
ments specific interfaces of the MontiArcAutomaton ADL
or RobotArm depending on the language element to check.
These interfaces prescribe check() methods that receive

42 Journal of Software Engineering for Robotics 6(1), December 2015

MAAADLTool

MAARobotArmTool

MAAADLParserFactory

MAARobotArmParserFactory

MAARobotArmTool()

createLanguageFamily()

setupParser()

RobotArmLanguage RobotArmParser

MAAADLanguageFamily MAAADLParser
MAA ADL
elements

RobotArm
elements

classes
configuring the
MAA ADL with

RobotArm
elements

Fig. 6: The class MAARobotArmTool integrates the Robo-
tArm language into the MontiArcAutomaton ADL to enable
processing and checking of integrated models.

the symbols to check, perform checks, and can report issues.
Based on these interfaces, the MontiArcAutomaton ADL well-
formedness checking executes such context conditions.

Adding, for instance, a rule prohibiting the existence of in-
put elements for integrated RA models requires to implement
and register a class extending from ContextCondition
that implements the interface to check input elements.
The implementation of the corresponding check() method
reports violations MontiArcAutomaton ADL after finding an
input element in the model.

5.3 Language Integration Infrastructure

The MontiArcAutomaton ADL language family can be con-
figured with new component behavior modeling languages via
handcrafting language processing tools or configuration files.

For a language processing tool, the language engineer
provides two classes: one extends from MAAADLTool, which
is the language processing tool of the MontiArcAutomaton
ADL. The other extends from MAAADLParserFactory,
which combines the parsers of participating languages. Fig-
ure 6 displays both classes for the integration of RA into
the MontiArcAutomaton ADL. The MAARobotArmTool in-
tegrates the RobotArm language into the MontiArcAutomaton
ADL language family, which includes adding adapters and
registering context conditions. The MAARobotArmParser-
Factory registers the RA parser at the behavior language
extension point of the MontiArcAutomaton ADL.

Using the MAARobotArmTool allows processing inte-
grated models, correct interpretation of their inter-language
references, and checking their well-formedness. However,
configuration of the language family with adapters and con-
text conditions would require some understanding of Mon-
tiCore and its symbol table framework. To liberate Monti-
ArcAutomaton users from this, component behavior modeling
languages may be added via an domain-specific embedded lan-
guage (DSEL) implemented in the GPL Groovy [37]. Groovy
is a language for the Java virtual machine that allows to omit
syntactic sugar and hence lends itself to define embedded
DSLs [38]. Models of this language serve as configuration and

Groovy Integration DSEL

1 name "RobotArm"
2 tool new RobotArmTool()
3 language new RobotArmLanguage()
4 behavior "RobotArm.Content"
5 checks new NoInputsContextCondition()
6 adapters new Port2InputAdapter()

Listing 3: Tool configuration for embedding the RobotArm
language.

processing these models exploits the modeling language in-
frastructure of MontiCore to collect relevant integration prop-
erties. From these models, MontiArcAutomaton instantiates
the GroovyTool and the GroovyParserFactory (both
also descendants of MAAADLTool and MAAADLParser-
Factory depicted in Figure 6, respectively) and configures
both with the information from the Groovy models.

Each model describes one behavior language to embed.
Multiple models can be combined. For one, the integration
framework expects that each language candidate provides a
language processing tool that extends from MontiCore’s class
ETSTool (cf. [34]), which holds information of the lan-
guage’s well-formedness rules and symbol table infrastructure.
Furthermore, it expects that each language candidate provides
a language definition extending from MontiCore’s class Lan-
guage (also [34]), which contains additional configuration.
Both requirements are standard for MontiCore languages,
hence, they do not restrict embedding.

Listing 3 shows a configuration model describing five
properties. First, following the keyword name, each model
specifies a unique name for this embedding (l. 1). Afterwards,
the tool class and the Language class to be used are defined
(ll. 2-3). The property behavior describes which production
of the RobotArm grammar should be embedded (l. 4).
Afterwards, checks (l. 5) declares a list of well-formedness
rules that are merged with the MontiArcAutomaton ADL rules
and the RA rules retrieved from the language class. Finally,
adapters lists adapters for inter-language adaptation (l. 6).

While the expressiveness of this DSEL is restricted to
the most common use case, it typically allows to configure
the MontiArcAutomaton ADL with new component behavior
modeling languages with minimal effort. In case the language
to be embedded has special requirements, handcrafting the
integration allows to harness the full power of MontiCore.
After integration, parsing and analyzing components with
embedded behavior models is possible. Providing code gen-
eration capabilities for integrated languages is part of the
code generator composition framework presented in the next
section.

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 43

6 CODE GENERATOR COMPOSITION AND EX-
ECUTION
A MontiArcAutomaton robotics application is a C&C model
with embedded behavior models of multiple languages. En-
abling code generation for such aggregates requires code
generators capable of translating composed models into tar-
get GPL code. Usually, code generators are monolithic and
capable of translating a fixed combination of languages. As
MontiArcAutomaton supports problem-specific, flexible, lan-
guage embedding, code generators must mirror this flexibility.
MontiArcAutomaton provides a code generator composition
framework that supports integration of component structure
generators with component behavior generators as required by
the language combination. Hence, code generator composition
in MontiArcAutomaton amounts to

1) identifying platform requirements (including target
GPL),

2) selecting proper generators for the languages to be
processed and the intended platform,

3) configuring MontiArcAutomaton with the selected gen-
erators,

4) invoking a descendant of MAAADLTool (depending
on the chosen language integration mechanism), which
parses the ASTs of components with embedded be-
havior models, checks their well-formedness, and ulti-
mately composes the selected code generators to pro-
duce platform-specific GPL artifacts.

To support this process, MontiArcAutomaton comprises not
only modeling languages for C&C structures and component
behavior, but also for code generator description, and applica-
tion configuration (including generator selection).

The code generator composition mechanism of MontiArc-
Automaton exploit the C&C nature of its ADL and relies on
generator types explicating the different aspects of this nature.
The types govern the information required by conforming
participating generators and are realized by code generator
interfaces. These interfaces describe the properties MontiArc-
Automaton code generators require from and contribute to
composition.

In the following, Section 6.1 introduces code generator
types. Afterwards, Section 6.2 presents the code generator
types employed with MontiArcAutomaton and their usage dur-
ing code generator development. Finally, Section 6.3 explains
how to select code generators for a software architecture and
their composition by MontiArcAutomaton.

6.1 Generator Properties and Types
Code generation in MontiArcAutomaton amounts to code gen-
eration for the structure of components, the different embedded
behavior languages, and data types. This separation leads to
three types of generators: component generators, behavior
generators, and data type generators. Component generators
translate C&C modeling elements, while behavior generators

*

«interface»

ComponentGenerator

1

«interface»

DataTypeGenerator
«interface»

BehaviorGenerator

CDinput modeling language

getStart()

getContextConditions()

configure()

starting pointwell-formedness rules

context information additional input modeling languages

getStart()

getContextConditions()

getRTE()

getModelingLanguage()

configure(className,

packageName,

imports)

getStart()

getContextConditions()

getRTE()

geBehaviorLanguages()

configure(behaviorGenerators)

Fig. 7: Java interfaces for the different code generator types.

translate component behavior models free from C&C details.
Hence, the behavior generator developers can be liberated from
C&C expertise. Each type governs the properties conforming
code generators must exhibit, which is a subset of the follow-
ing:

1) Modeling languages: One or more modeling languages
the code generator can translate.

2) Generation well-formedness rules: These constraints re-
strict the set of valid input models for the generator. For
example, a code generator for embedded automata might
reject models with nondeterminism.

3) Output representation: A description of produced output
to ensure compatible GPL artifacts. For example, a
component generator might generate Java artifacts while
a behavior it should be composed with produces Python
artifacts only. This may lead to incompatibilities.

4) Execution information: Information on how the code
generator can be invoked.

5) Generation context information: Information the gen-
erator requires at run-time. This can be information
about the model or about the generation process of
participating generators. Rather than relying on implicit
assumptions about the generation process and generated
artifacts, we make these assumptions explicit with the
generation context information.

The three generator types of MontiArcAutomaton restrict
these properties differently: While all generator types prescribe
the declaration of execution information and allow to declare
well-formedness rules, only behavior generators and compo-
nent generators may declare output properties. Behavior gen-
erators also may explicate the supported modeling language
and component generators may declare a set of additionally
supported behavior modeling languages.

Component generators must process MontiArcAutomaton
ADL components, but may process behavior languages as
well. They may add well-formedness rules and exhibit proper-
ties regarding their output. Data type generators must translate
UML/P classdiagram models. Thus, specifying additional sup-
ported modeling language is prohibited. All code generators
in MontiArcAutomaton conform to exactly one code generator
type. Thus, each participating generators provides the informa-
tion characterized by its type and is processed accordingly.

44 Journal of Software Engineering for Robotics 6(1), December 2015

6.2 Code Generator Types of MontiArcAutomaton

Each MontiArcAutomaton code generator must conform to
a single generator type. This conformance is expressed by
implementing an interface describing the properties of each
type. For MontiArcAutomaton, which is implemented in Java,
the code generator interfaces are as depicted in Figure 7.
These interfaces realize the information that generators of the
individual types may provide as presented in Section 6.1 via
the provided methods. For instance, a method getModel-
ingLanguage() returns the MontiCore Language class of
the modeling language that generators of this type can process.
Furthermore, they describe the required generation context
information as parameters of the configure() method.
Please note that the interface for component generators expects
conforming generators to receive and execute behavior gener-
ators. In MontiArcAutomaton component generators process
the complete AST of composed models and delegate parts to
behavior generators. With these interfaces, composition may
treat participating code generators as black-boxes and does not
rely on code generator internals as proposed in [35].

Implementations of the generator interfaces can be hand-
crafted by generator developers or defined in terms of genera-
tor models. In the first case, the generator developer provides
a Java class implementing the interface of the generator type
under development following a naming convention. In the
second case, she provides a generator model that conforms
to the generator description modeling language depicted in
the overview in Figure 3 and employs MontiArcAutomaton to
produce an implementation from it.

These models contain keywords that correspond to prop-
erties of generator interfaces and provide corresponding val-
ues. Listing 4 displays a generator model for the Robo-
tArmPython generator. The models begins with the keyword
generator, followed by its name, the keyword conforms
and the name of its generator type’s interface (ll. 1-2).
The model for RobotArmPython, for instance, declares
that is is a behavior generator (l. 2). The model’s body
contains keyword-value pairs to describe it starting point
(executing information, l. 4), its modeling language (l. 5),
its run-time environment (output representation, l. 6), and
its context conditions (well-formedness rules, ll. 8-10). This
generator can be started using its FreeMarker template robo-
tarmpy.Main and is capable to translate models of the lan-
guage robotarmpy.RobotArm.Content. Furthermore,
it produces artifacts compatible to the run-time environment
runtimes.pythontimesync and declares a single well-
formedness rule in form of the context condition robo-
tarmpy.NoGenericDataTypes (which prohibits to use
it with RA models that rely on generic data types for their in-
puts). The name robotarmpy.RobotArm.Content iden-
tifies the production Content of MontiCore grammar Rob-
otArm residing in package robotarmpy. This granularity
supports code generation for language aggregates where only

GeneratorConfiguration

1 generator RobotArmPython
2 conforms generators.BehaviorGenerator {
3

4 start robotarmpy.Main;
5 language robotarmpy.RobotArm.Content;
6 rte runtimes.pythontimesync;
7

8 contextconditions {
9 robotarmpy.NoGenericDataTypes

10 }
11 }

Listing 4: The generator configuration for the RobotArm
generator describes that it implements the interface
BehaviorGenerator and provides further information.

parts of behavior modeling languages are embedded.
MontiArcAutomaton supports automated translation of such

models into Java classes implementing the declared generator
type interfaces. These classes implement all methods of the
generator type’s interface and return the generator information
from the model where applicable (e.g., getContextCon-
ditions() returns a set of context condition instances
as declared in the contextcondition block). MontiArc-
Automaton requires such implementations for all participating
generators and composes these according to their types.

6.3 Composing and Executing Code Generators
Translating a C&C architecture model into GPL artifacts
requires a set of code generators that contains one component
generator, one behavior generator for each embedded modeling
language not supported by the component generator, and a data
type generator. If all generators produce artifacts conforming
to the same GPL and the component generator and the
behavior generators produce artifacts of the same RTE, we
denote such a collection as a generator family.

The application modeler defines which generators to apply
in order to translate a software architecture. Adding this
information to the component models would tie models to
code generators. Instead, such is defined in application con-
figuration models. These models conform to the application
configuration language depicted in Figure 3 and reference a
single software architecture as well as multiple code generator
families to apply as shown in Listing 5.

Each model begins with the keyword application,
followed by a name, the keyword for, and the name of the
software architecture it references (l. 1). Afterwards, a body
delimited by curly brackets follows, which contains plat-
form blocks (ll. 2-6 and ll. 7-11). Each block begins with the
keyword platform, followed by a name, and a body. This
body contains a set of code generator names that references
the code generators of a generator family. Specifying the
individual roles of the participating generators is unnecessary

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 45

ApplicationConfiguration

1 application TR for ToastServiceRobot {
2 platform rospython {
3 componentgenerators.ComponentsTSPython;
4 behaviorgenerators.RobotArmPython;
5 behaviorgenerators.IOAutomatonPython;
6 }
7 platform nxtjava {
8 nxtjava.Components;
9 nxtjava.RobotArmJava;

10 nxtjava.AutomataJava;
11 }
12 }

Listing 5: Application configuration model for the toaster
robot application using the RobotArmPython and
the RobotArmJava generators for components with
embedded RA models.

as MontiArcAutomaton resolves the corresponding generator
models.

Given a MontiArcAutomaton ADL software architecture
with embedded behavior modeling languages, families of code
generators for specific platforms, and an application configu-
ration selecting these families, the process of translating the
architectures is as depicted in Figure 8. First, the generator
orchestrator of MontiArcAutomaton loads the application con-
figuration model. Afterwards, its loads the referenced software
architecture model and the generator models. Based on these,
it performs intra-language well-formedness checks and inter-
language well-formedness checks to validate the models. In
case of successful validation, it instantiates the participating
code generators via their interfaces and starts code generation.
The generation of data types is decoupled from that of
components with embedded behavior and can be performed
in any order. The generator orchestrator starts the component
generator by passing the participating behavior generators to
it. The component generator starts processing the component
model elements. For each component element visited, the
generator produces code. For each unknown element, it tries
to identify the responsible behavior generator (via its mod-
eling language property). In case a generator is found, the
component generator passes generation context information
as required by its configure() method to it and executes
it. Per agreement on a RTE, the behavior generator produces
compatible GPL artifacts. After it finished, control is passed
back to the component generator, the processed element is
marked finished, and AST traversal continues. The code gen-
eration process finishes when all AST elements have been
traversed.

For instance, translating MontiArcAutomaton architecture
models with embedded RobotArm programs component be-
havior modeling languages to ROS [39] in its C++ implemen-
tation requires three code generators:

G
e
n
e
ra

to
r

O
rc

h
e
s
tr

a
to

r

AD

load
application

configuration

traverse
model

elements

produce
behavior
artifact

[finished][unfinished]
[component

element]

[unknown

element]

produce
component

code

behavior

generators

C
o
m

p
o
n
e
n
t

G
e
n
e
ra

to
r

[responsible

behavior generator available]

[responsible generator missing]

B
e
h
a
v
io

r

G
e
n
e
ra

to
rs

check well-
formedness

start
data type
generator

act Generator Composition

[OK]

[Error]

mark model
element as

finished

start
component
generator

instantiate
code

generators

load
architecture

and generators

Fig. 8: Overview of code generator composition with a gen-
erator orchestrator and generator interfaces.

• A component generator that translates components, ports,
and connectors to C++ ROS nodes. This code generator
must provide a generator model identifying it as a com-
ponent generator and explicate the properties required by
generators of this type. The generator is independent of
any behavior modeling language and hence can be reused
for arbitrary behavior language combinations to be used
with ROS.

• A behavior generator that translates RobotArm programs
into C++ motor commands and provides a proper gen-
erator model. Translation of RA primitives into arm
commands maybe independent of ROS or ROS-specific.
In the former case, the generator can be reused for any
translation of RobotArm programs to C++; otherwise, this
is specific to ROS.

• A data type generator to translate UML/P port class
diagram data types to ROS messages.

A component generator for ROS must flatten the hierarchy
of the architecture prior to code generation as ROS does not
support hierarchical nodes. Afterwards, the resulting archi-
tecture can be translated into a graph of nodes connected
by topics. The latter correspond to the connectors between
ports of component models. Topics resemble typed message
buses that support n:m communication, whereas connectors
express 1:n communication in the underlying FOCUS [26]
semantics. Thus, the component generator should ensure that
each generated topic has a single publisher only. Otherwise,
the semantics of model and generated code may diverge.
Furthermore, ROS messages do not support generic data types
yet. Consequently, translation from UML/P class diagrams to
ROS messages must take care of eliminating generic data
types. This can be achieved by calculating the values of the
generic parameters for each usage and produce specific data
types from the result.

Given these three code generators, specifying their usage

46 Journal of Software Engineering for Robotics 6(1), December 2015

for a MontiArcAutomaton architecture model is as simple
as presented in Listing 5 and MontiArcAutomaton takes
care of proper composition and code generation as depicted
in Figure 8. Hence, with this framework, migration of the
system under development to new platform versions amounts
to providing compatible generators only. The models can
remain unchanged.

7 PLATFORMS AND CASE STUDIES

To evaluate MontiArcAutomaton on different platforms, we
have developed four code generators to different target lan-
guages [12]. Some applications require additional compo-
nent models to access platform-specific software and hard-
ware. MontiArcAutomaton organizes these models and their
platform-specific implementations

• for Robotino robots using ROS [39] with Python,
• for Robotino robots using SmartSoft [2] with Java,
• for Lego NXT robots using leJOS4,
• for arbitrary ROS-compatible robots using rosjava5, and
• for simulators including ROS turtlebot and Simbad6.

Besides these robot-specific collections of models, code
generators and RTE, we have also developed GPL-specific
models and RTE that provide GPL functionalities to Monti-
ArcAutomaton (e.g., file I/O). The collections contain between
4 (ROS turtlesim) and 21 (leJOS NXT) components and can be
easily imported by MontiArcAutomaton applications to deploy
these to different platforms.

We have evaluated MontiArcAutomaton in professional
and educational settings with different platforms to test our
concepts, modeling languages, and code generators.

7.1 Case Study NXT

With MontiArcAutomaton, a behavior language based on
automata, a Java code generator family, and a Java RTE,
we evaluated the MontiArcAutomaton framework during a
university lab course. Evaluation took place in the winter term
2012/13 with eight master level students [40]. The students
had previous experience with Java from courses throughout
their studies. The students developed a distributed robotic
coffee service consisting of the three robots illustrated in Fig-
ure 9. The run-time environment and system component im-
plementations were given. During the lab course the students
participated in a survey and interviews regarding the effort
and benefits of applying MontiArcAutomaton to a distributed
robotics application. The results are discussed in [40].

4. leJOS website: http://lejos.sourceforge.net/
5. rosjava website: https://code.google.com/p/rosjava/
6. Simbad website: http://simbad.sourceforge.net/

coffee preparation robot

mug provider robot

coffee delivery robot

Fig. 9: The distributed robotic coffee service as implemented
with Lego NXT robots running leJOS as platform.

7.2 Case Study ROS

We also evaluated MontiArcAutomaton with another automa-
ton language, the ROS-Python code generator family, and
the ROS-Python Robotino modules in another lab course in
winter term 2013/14. The group of nine master level students
acted as application modelers and application programmers to
develop a logistics application using the Robotino platform
(Figure 11). The students had little to no previous experience
with ROS [39] or Python, which allowed for a better evaluation
than in the previous lab course. The software architecture of
this application consists of 31 components, of which 9 contain
automata and 17 have platform specific implementations.
Figure 10 shows the top-level architecture with the compo-
nents Navigation, MapProvider, and TaskManager
being composed from other components. During this course,
the students acted as application modelers and applications
programmers (as, for instance, the behavior of the ROS-
specific components wrapping the user interaction had to be
implemented manually). In this application, the robot receives
tasks such as “deliver item X to room Y” from a web site.
Automata embedded in components translate these into motion
and interaction commands. These commands are passed to
the components Navigation and UserInterface, which
translate these into platform-specific GPL primitives.

To interface ROS, the students have developed components
with Python behavior implementations that acted as publishers
or subscribers. Components sending message to ROS receive
these messages via ports, wrap these into ROS messages,
and send these to the connected nodes. Components reading
messages from ROS yield a behavior implementation that sub-
scribes to topics and emits the received, unwrapped, messages
via their ports. Buffering and translation of ROS messages
is subject to the individual components and was optimized
depending on the interfaced topics.

The students participated in two surveys on the efforts

http://lejos.sourceforge.net/
https://code.google.com/p/rosjava/
http://simbad.sourceforge.net/

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 47

UserInterfaceNavigation

MapProvider

TaskManager

RobotHealth

Dispatcher

Kinect

LogisticsRobot

contains a webserver

provides robot
state data

connects to ROS MAA

component is atomic and
uses embedded automaton

component is composed

composed component and its sub-
components use embedded automata

Fig. 10: The top-level architecture of the logistics application
implemented during winter term 2013/14 for a Robotino
running ROS and Python as platform.

and benefits of modeling with MontiArcAutomaton. The first
survey of 12 questions was conducted after a few weeks, the
second survey of 18 questions at the end of the course. In the
beginning, the students did require less effort understanding
the MontiArcAutomaton and the I/Oω automata language than
understanding ROS. The students were more confident in
the Python artifacts produced by themselves (6.8 out of 10)
and their team mates (6.7 out of 10), than in the behavior
models they had developed (6.5 out of 10). Nonetheless, the
students spend ten times as much time developing conceptually
wrong artifacts with Python (34% of their time) than with the
behavior modeling language (3% of their time). We consider
this an indicator for the benefits of modeling abstractness over
accidental complexities of a GPL.

In the second survey, the students estimated they spent
44% of their time learning ROS, which had doubled from the
first survey. The times actually spend learning the MontiArc-
Automaton ADL and the I/Oω automata languages were con-
sidered reduced by ca. 33%. Interestingly, the time spend do-
ing conceptually wrong things with the MontiArcAutomaton
ADL, I/Oω automata, and Python converged during the lab
course. In the second survey, the students have reduced con-
ceptually wrong Python programming to 8% of their time,
while conceptually wrong behavior modeling increased to 9%.
In the same time, the estimated efforts to fix bugs in Python
artifacts and ROS nodes doubled, while the estimated time to
fix bugs in MontiArcAutomaton ADL components and I/Oω

automata remained constantly low. This also points to the
benefits accredited to modeling (such as their abstraction being
beneficial to understanding and maintenance).

Due to the task’s complexity and the small group size, a
separation of a control group was not feasible. This raises
threats to both the evaluation’s internal and external validity.
First, there is a selection bias as the students were well-trained

Robotino used in lab course
of summer term 2014

Robotino used in
lab course of
winter term

2013/14

uses SmartSoft
with MontiArcAutomaton

Java code generators

uses ROS with MontiArcAutomaton
Python generators

Fig. 11: The Robotino platforms used in the lab courses.

in developing object-oriented systems. Also, instrumenting
questionnaires suffers from biased answers due to the students’
self-perception as well as from biases regarding avoidance of
the provided scales upper and lower ends. The evaluation’s
external validity is threatened as the course was held under the
topic of model-driven development and the students received
grades for their participation. Hence, there may have been an
implicit bias to assume MDD is beneficial.

7.3 Case Study SmartSoft
In a lab course of summer term 2014 we again assigned the
task to develop a robotics logistics application. In this course,
we used Robotino robots with the SmartSoft [2] middleware to
control the robot. The students modeled the application logic
with MontiArcAutomaton and an I/Oω automata behavior
modeling language. Handcrafted behavior was implemented
in Java. The students acted as application modelers and
applications programmers again.

The produced architecture is depicted in Figure 12. Of the
depicted subcomponents, five are composed components and
two are atomic. The students of this lab course answered
similar questionnaires (again, one in the beginning and one
in the end) as the group of 2013/14. In the beginning,
the students considered learning the middleware (estimated
40% of their time) more complex than learning the modeling
languages (15% for MontiArcAutomaton ADL and 13% for
I/Oω automata). The students spend much more time doing
conceptually wrong things with SmartSoft (35% of their time)
and Java (26%) than with MontiArcAutomaton ADL and
I/Oω automata (13% and 9%). They also estimated to have
recreated or revised the Java implementations (8 times) and
SmartSoft models (5 times) more often than structural Monti-
ArcAutomaton ADL elements (3 times) and I/Oω automata (1
times).

48 Journal of Software Engineering for Robotics 6(1), December 2015

JobManager Backend

Communication

Controller

TaskToSpeech MaryTTSClient

Sequencer

Proxy

TCPConnector

RobotLab14

comprises web server
and data base

composed component using subcomponents
with automata to schedule jobs

connects to SmartSoft via TCP

MAA

atomic component
using embedded

automaton

Fig. 12: Top-level architecture of the logistics application
implemented in summer term 2014 for a Robotino running
SmartSoft and Java. Five of the displayed components types
are composed.

In the the second survey, the time estimated learning the
modeling languages reduced to 5% each, while the time
to understand SmartSoft increased to 47%. Interestingly, the
time spend doing conceptually wrong things with SmartSoft
(17% of their time) and Java (7%) and MontiArcAutomaton
ADL (8%) decreased significantly, while the time spend to
conceptually wrong I/Oω automata modeling remained stable
(8%). In the same time, the students’ confidence in I/Oω

automata models decreased (from 8.3 to 5.2 out of 10) and
the confidence in SmartSoft models increased (from 4.6 to 7.4
out of 10). This contradicts the previous lab course, where the
students’ confidence in models remained stable over time.

Again, the group was too small to separate into control
group and experimental group. Furthermore, the students were
not only well-trained in object-oriented programming, but in
Java programming. Hence, trying to solve tasks in Java instead
of modeling techniques provided a strong bias. Besides the
students experience in Java, the same threats to external and
internal validity as above hold for this case study.

7.4 iserveU Service Robotics Project
We are applying and evaluating MontiArcAutomaton in the
ongoing 3-year iserveU7 project with industrial partners from
automotive and robotics. The project is funded by the German
Federal Ministry for Education and Research to investigate the
pervasive model-driven engineering of robotics applications.

7. See http://www.pt-it.pt-dlr.de/de/3046.php

In this project, the MontiArcAutomaton ADL is used to
model the architecture and parts of the behavior for a hospital
logistics service [41]. The MontiArcAutomaton ADL serves as
ADL for a high-level controller that interfaces SmartSoft [2].
To this end, the architecture model describes the structure of
that controller and most components are modeled using a state-
based component behavior language.

8 RELATED WORK

We presented the MontiArcAutomaton architecture modeling
framework with its MontiArcAutomaton ADL and exten-
sions for component behavior language embedding and code
generator composition. MontiArcAutomaton aims to increase
abstraction and reuse in engineering robotics applications.
However, there are other approaches to robotics software
development that employ models as primary development
artifacts as well. Section 8.1 discusses these. Developing
software as C&C architectures is not specific to robotics and
there is a multitude of related C&C modeling languages as
well. Thus, Section 8.2 presents and discusses these. As the
language integration features of MontiArcAutomaton rely on
the language workbench MontiCore, Section 8.3 examines
related language workbenches. Finally, Section 8.4 reviews
other approaches to code generator composition.

8.1 Model-Driven Engineering in Robotics
Research in robotics produced many approaches to employ
component-based software engineering [3], [4], [6], [39], [42],
[43]. Lately, robotics has turned to model-driven engineering
as well. This has brought forth languages for imperative
and event-driven robot programming [44]–[48], geometric
relations and kinematics [49]–[51], assembly task model-
ing [52], [53], perception [54], [55], and software archi-
tectures [2], [56]–[59]. Many popular robotics architecture
modeling toolchains [11], such as SmartSoft [2], SafeR-
obots [60], RobotML [57], or BRICS [59] facilitate robotics
software engineering and provide solutions to domain-specific
issues. These issues, such as advanced communication pat-
terns, deployment, or planning, are not tackled by Monti-
ArcAutomaton. Although many of these toolchains employ
state of the art language workbenches, they neither consider
exchangeable component behavior languages, nor composition
of code generators.

Most robotics ADLs employ notions of components and
connectors to describe the structure of the system under devel-
opment and require development of component behavior with
GPLs [2], [56], [59]. The RobotML [57] modeling language
employs finite state machines to model component behavior. In
this, it is similar to the MontiArcAutomaton version presented
in [12]. In contrast to MontiArcAutomaton, RobotML does
support embedding of other component behavior modeling
languages. The AMARSi language family [58] supports mod-
eling of “Motor Skill Architectures” that employ software

http://www.pt-it.pt-dlr.de/de/3046.php

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 49

components with behavior descriptions as well. Here, the
behavior of components is modeled via differential equations
and AMARSi does not support behavior language embedding.
The BRICS [59], [61] meta-model of C&C software archi-
tectures focuses on the separation of concerns between the
development responsibilities. Therefore, it explicates features
like scheduling, monitoring, and component configuration.
BRICS does not support behavior modeling yet and thus
relies on GPL component behavior implementations as well.
DiasSpec [62] is a modeling language for development of
Sense/Compute/Control [63] architectures that contains struc-
tural modeling elements as well. With DiaSpec, component be-
havior has to be defined via GPL artifacts. The OpenRTM [64],
[65] architecture modeling language provides a component
model where components may contain state machines that
use GPL expressions to enable and fire transitions. OpenRTM
does not support exchanging component behavior languages.
Orocos [43], [66] is a modeling language for robotic software
architectures that supports component behavior description
in C++, Python, and Lua. Embedding other DSLs is not
supported. Generally, we employ models over GPL component
behavior descriptions, as these can be translated into different
target platform-specific GPLs more easily. Furthermore, this
approach allows to embed problem-specific component be-
havior languages, such as the RobotArm language. In contrast,
component implementation with DSELs, such as SMACH [67]
or other state-based formalisms, widens the conceptual gap [7]
again.

8.2 Component & Connector Modeling Languages

The Architecture Analysis & Design Language (AADL) [31]
is a similar modeling language for C&C systems compris-
ing software and hardware components. AADL does neither
provide a semantic foundation similar to FOCUS [26], nor
mechanisms for code generator composition as presented here.

The AutoFocus [68] C&C ADL and modeling toolchain for
the engineering of distributed system is based on FOCUS [26]
as well. In AutoFocus, component behavior is modeled with
state transition diagrams which are similar to I/Oω automata.
In contrast to MontiArcAutomaton, AutoFocus lacks a distinc-
tion between component types and instances which restricts
component reuse.

Ptolemy II [69] is a modeling and simulation tool for actor
(=component) systems. Ptolemy II allows the composition of
models with heterogeneous models of computation (semantics
domains and scheduling) [70]. A code generation module of
Ptolemy II supports Java and C [71] for some of Ptolemy II’s
supported models of computation. Code for different target
platforms may be generated by manually selecting templates
from different packages.8

8. See developer documentation at http://ptolemy.eecs.berkeley.edu/
ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/README.html

GenoM3 is an approach towards middleware independence
of robotics software components to achieve a clear separation
of concerns [72]. The separation addresses reusable algorith-
mic parts and integration frameworks. Any possible language
can be used to describe the applications. GenoM3 employs
template-based code generation and integrating additional tem-
plates is possible. However code generation and reuse take
place on template level rather than on code generation level.
Thus it requires a white-box insight into the templates to
reuse and their integration lacks stable interfaces. Additionally,
neither inter-language constraints, that have to be addressed
between code generation templates, are addressed, nor the
separation of code generators into different types.

MathWorks Simulink [73] comprises a block diagram lan-
guage to model components & connectors. With Stateflow9,
blocks can be extended with state transition diagrams. Similar
to AADL, Simulink lacks the compositionality in terms of
modeling language integration and generator composition as
well.

SysML [74], [75] is a modeling language family based on
a subset of extended UML [76]. It comprises a language in-
ternal block diagrams which resembles MontiArcAutomaton.
As component behavior can be modeled as state machine
diagrams, SysML enables to express architectures similar to
MontiArcAutomaton. Modeling with SysML focuses on the
requirements phase [77] and thus does not take code generator
composition into account.

The xADL [78], [79] is based on a meta-model for XML-
based ADLs and focuses on architecture extensibility as well.
It shares many features with the MontiArcAutomaton ADL
but focuses on syntactic language integration. It does neither
support black-box language integration, nor integration of
model processing infrastructure [32]. Also, to the best of our
knowledge, xADL does not support code generator composi-
tion. Instead, its “architecture instantiation schemas” [78] tie
software architecture models to specific implementations.

Other ADLs, such as ArchJava [80] or Plastik [81], are
implemented as domain-specific embedded languages [82],
[83]. While this allows to reuse arbitrary concepts of the host
language, including loops and conditional expressions, it limits
their application to platforms supporting the host GPL, yields
the “notational noise” [84] DSLs aim to avoid, and gives rise to
“accidental complexities” [7]. The majority of ADLs however,
does not consider integration of component behavior modeling
languages [85]–[94].

8.3 Language Workbenches
MontiArcAutomaton is no full-fledged language workbench,
but a framework to configure its ADLs with component behav-
ior modeling languages. Its language integration capabilities
rely on the language workbench MontiCore. The authors
of [95] have conducted a review of language workbenches

9. Website of Stateflow: http://www.mathworks.de/products/stateflow/.

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/README.html
http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII10.0/ptII10.0.1/ptolemy/cg/README.html
http://www.mathworks.de/products/stateflow/

50 Journal of Software Engineering for Robotics 6(1), December 2015

related to MontiCore. They reviewed the workbenches Ensō
[96], Más [97], MetaEdit+ [98], MPS [99], Onion [95], Rascal
[100], Spoofax [101], SugarJ [102], Whole Platform [103],
and XText [104]. The review examined syntax, validation,
semantics, and editor services. All language workbenches sup-
port syntactical composition, but compositional validation of
integrated models, for instance for naming and type checking,
similar to MontiCore is supported only by MPS and XText.
None of the workbenches supports black-box code generator
composition.

The Meta Programming System (MPS) [105] follows a
parser-less, projectional, approach to language integration.
Language designers directly model the AST and editors for
specific AST nodes. Lacking an abstraction from the AST
language integration breaks whenever the AST changes suffi-
ciently.

An interesting application of MPS is mbeddr [106], a
domain-specific IDE for embedded systems development.
mbeddr is an implementation of C in MPS that can be extended
with domain-specific languages. Embedded languages are then
translated to the base language C of mbeddr. In contrast,
MontiArcAutomaton keeps embedded languages on the model
level to support later transition to different target GPLs and
target platforms.

Xtext [104] also generates parsers from context-free gram-
mars to produce ASTs. It supports language inheritance and
language aggregation similar to MontiCore but does not pro-
vide support for language embedding.

Further discussions of related language workbenches have
been presented earlier and detailed arguments for the devel-
opment of modeling languages [107], their integration [34],
and development of code generators [35] with MontiCore have
been raised accordingly.

8.4 Generator Composition
The presented approach for code generator composition is
based on explicit generator types, explicit generator interfaces
and models, and run-time composition. Although it relies on
the C&C nature of MontiArcAutomaton and restricts partici-
pating generators to three types, it is closely related to modular
code generator design.

GenVoca [108], [109] is an approach to build software
systems generators based on composing object-oriented layers.
Different layers can use control blocks to exchange infor-
mation. A layer is not seen as a code generator but the
composition of all layers is a code generator. In contrast to
this approach, we do not focus on a layered architecture of
a code generator but an infrastructure for code generators
composition. Our approach can be expressed in GenVoca
terminology where each layer is a code generator with an
explicit interface and relations to other layers. Each code
generator (GenVoca layer) has to be executed to generated
artifacts. In contrast in GenVoca all layers are composed and
then executed.

The application building center [110] is a multi-
purpose modular framework for modeling software systems.
Genesys [111] is an extension that allows to develop service-
oriented code generators. Each code generator represents a
service that can be composed with other services. Information
exchange is managed by using shared memory communica-
tion. Our approach is similar if we consider code generators
to be services with interfaces. However, our approach intro-
duces a broader generator interface to regard input language,
output representation, input language constraints, execution
information, artifact dependencies, and generation context
information. This information is used to manage the execution
and composition of the code generators.

Code generator composition using aspect-orientation at the
artifact level has been described in [112]. The authors assume
that a code generator produces operationally complete code
fragments that are merged by a code fragment weaver. Ad-
ditionally, in feature-oriented model-driven development (FO-
MDD) [113], multiple code generators are used to produce a
software product line. Composition of code is achieved after
code generation by manually writing glue code. In contrast,
we do not consider manual artifact composition but focus on
an infrastructure to compose code generators. We nevertheless
consider composing generated artifacts relevant for reusing
code generators and will address this topic in future work.

8.5 Previous MontiArcAutomaton Publications
This article is based on our previous works in the context
of MontiArcAutomaton [12]–[20], [25]. In the MontiArc-
Automaton report [25], we presented an earlier version of the
MontiArcAutomaton ADL, where a state-based behavior mod-
eling language was fixed part of the MontiArcAutomaton ADL
grammar. In [12] we have presented a code generation frame-
work for MontiArcAutomaton for different target languages.
We extended this framework with code generator composition
in [15]. In the current article we present the notion of code
generator types that are realized as code generator interfaces,
which abstracts from the MontiArcAutomaton implementation
presented in [15]. Our previous publications on language inte-
gration [14], [17] presented a general overview of the language
composition mechanisms of MontiCore on the example of
MontiArcAutomaton. The current article focuses on syntactic
and symbol language behavior language embedding in Monti-
ArcAutomaton and contributes a technical description as well
as a concrete language configuration mechanism in Section 5.
The short paper [13] and the tool demonstration paper [18]
introduced the ideas and goals of the MontiArcAutomaton
framework and the capabilities of our implementation. This
article can be seen as an extension of [13], which provides
technical details of the implementation presented in [18]. The
first lab course of the evaluation (Section 7) is discussed
in [40]. We presented concepts for supporting multiple plat-
forms for code generation in [16] and supporting transforma-
tions in [20]. We describe in Section 4 how these integrate into

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 51

the MontiArcAutomaton framework. Finally, [19] presented
tailoring activities for MontiArcAutomaton, which are part of
the development process description in Section 4 as well.

9 DISCUSSION

This section presents and discusses some of our observations
during development and application of MontiArcAutomaton.

9.1 Development Process

We have introduced the MontiArcAutomaton MDD process
based on software language integration and code generator
composition in Section 4. The process relies on participant
roles adapted from [114]. In the case studies reported in
Section 7, we have instantiated the process with different
sets of roles and restricted to subsets of activities. We have
observed that the separation into the reported roles is feasible
in practice and helps to tailor MontiArcAutomaton to the given
skills available and tasks necessary in a development project.
As an example, for the first case study described in Section 7.1,
the students enacted the role of application modelers and were
able to produce a running system of three robots in six weeks
(for more details see also [40]).

9.2 Repetition in Semantic Language Integration
Utilizing the most appropriate component behavior model-
ing languages requires to integrate these properly into the
MontiArcAutomaton host ADL. While, with the language
workbench MontiCore, the syntactic integration is naturally
provided, the semantic integration still requires the language
developer to implement infrastructure for symbolic reasoning
about (inter-)language elements.

During language development and extension, we have ob-
served that key concepts of the host language are adapted
and translated for every embedded language. As an example,
language elements representing ports or variables have to
be present in most embedded component behavior modeling
languages. This repetition of similar tasks happens because all
behavior languages are embedded at the same point in the host
language, namely inside atomic components.

We believe that this special case of language embedding has
a potential for further automation on the framework level to
further assist language engineers. This assistance could pro-
duce adapters automatically from symbol descriptions, check
whether the languages to be embedded are actually compatible,
or propose required code generators to the developers.

9.3 Generalization of Code Generator Composition
We presented a conceptual approach for composition of code
generators based on the notion of generator types in Section 6.
The ideas are implemented within the MontiArcAutomaton
framework to enable post hoc embedding and use of new

component behavior modeling languages. To broaden its appli-
cability this approach requires future work on syntax, methods,
and technical solutions.

Composition of arbitrary code generators without assump-
tions on their actual integration is hardly realizable because,
in general, generator composition demands a more expressive
composition configuration than the application configuration
presented above. For instance, the composition of the code
generation process may require a code generator to be executed
multiple times for every input model or to fill extension
points provided by another generator. Moreover, execution of
a code generator may not be triggered by a model type but by
selecting a code generator for a particular set of input models.
A generic model to configure an application has to express
such process information and constraints. Thus, future research
will look into modeling these aspects. In addition, for general
composition of code generators, a clear understanding of code
generator composition on the different levels (input model,
generator, and generated output) is required.

The generator composition illustrated above assumes that
the composition of generators reflects the language embedding
for component behavior. Other language integration mech-
anisms, such as language aggregation or language inheri-
tance [14] will require a more complex composition. The
generator for an inheriting language might, for example,
require the generator for the inherited language to be executed
first, such that the latter only generates additional artifacts
for the model elements introduced by the inheriting language.
Even the code generator interface might be adapted to support
language inheritance. Future work will therefore examine the
notion of generator extension points as well.

Finally, modeling language composition mechanisms have
led to language reuse and language libraries. We hope to
gain similar libraries and advantages from facilitating code
generator composition.

10 CONCLUSION
We have motivated two main challenges for successful ap-
plication of MDD to robotics applications. These challenges
are first the need for adequate representations of multi-domain
solutions in modeling languages and second the support of het-
erogeneous target platforms for code generation. We address
these challenges in the context of C&C software architectures
in MontiArcAutomaton by providing powerful extension and
composition mechanisms for languages and code generators.

MontiArcAutomaton is a framework for model-driven gen-
erative development of robotics applications as C&C software
architectures. At its core, it comprises a C&C ADL that allows
extension with component behavior modeling languages. It
further comprises modeling languages to describe framework
parts and configuration. Code generators systematically trans-
form integrated architecture models to GPL code.

With the MontiArcAutomaton ADL, component behavior
can be modeled with domain-specific languages provided

52 Journal of Software Engineering for Robotics 6(1), December 2015

by language developers and used by domain experts. This
reduces the conceptual gap between domain challenges and
software engineering solutions. Sophisticated language inte-
gration mechanisms based on MontiCore’s capabilities support
extensibility of MontiArcAutomaton with component behavior
modeling languages.

This extensibility requires efficient generator composition
to avoid development of multiple similar code generators for
slightly different language combinations. We have detailed
our concept for code generator composition based on explicit
code generator types and generator models. The types are
generic to C&C language integration and are realized by
generator interfaces specific to MontiArcAutomaton. They
enable code generators to explicate information required for
composition. MontiArcAutomaton composes and executes the
code generators based on models describing properties of the
represented generators. Although our implementation of code
generator composition is based on the language workbench
MontiCore and the C&C nature of MontiArcAutomaton, we
belief that these concepts generalize well into a broader scope.

Finally, we have presented case studies of different plat-
forms MontiArcAutomaton has successfully been used with.
These case studies employed different robots, middlewares,
and simulators, including ROS, SmartSoft, and leJOS.

ACKNOWLEDGMENTS

We thank the anonymous reviewers of JOSER who helped to
improve the focus and presentation of this article.

APPENDIX

GRAMMARS

This section presents simplified MontiCore grammars of the
MontiArcAutomaton ADL and the RobotArm language. These
grammars present the essence of both languages with respect
to integration, but omit technical details (e.g., annotations to
control AST generation) for better comprehension.

MontiArcAutomaton ADL Grammar Excerpt with Ex-
tension Point
An excerpt of the MontiArcAutomaton ADL grammar is
shown in Listing 6. The grammar uses the extended EBNF
form of MontiCore [33], which introduces keywords and
rules to control the generation of AST classes. The grammar
begins with the keyword grammar, followed by its name,
the grammar keyword extend and the name of the Mon-
tiArc [36] grammar (ll. 1-2). Thus, the MontiArcAutomaton
ADL grammar inherits all productions of the MontiArc gram-
mar listed in the appendix of [36]. Afterwards, it declares
a component (ll. 4-7) to begin with the model keyword
component, followed by a name, a ComponentHead, and
a body delimited by curly brackets. The AST part produced
by ComponentHead will be stored in the member head

MontiCore Grammar

1 grammar MontiArcAutomatonADL
2 extends MontiArc {
3

4 Component = "component" Name
5 head:ComponentHead "{"
6 ArcElement*
7 "}";
8

9 ComponentHead =
10 generics:TypeParameters?
11 ("[" Parameter ("," Parameter)* "]")?
12 ("extends" ReferenceType)?;
13

14 interface ArcElement;
15

16 Ports implements ArcElement =
17 "port" Port ("," Port)* ";";
18

19 Port = (["in"] | ["out"]) Type Name;
20

21 Connector implements ArcElement =
22 source:Name "->" targets:Name
23 ("," targets:Name)*;
24

25 ComponentBehavior implements ArcElement =
26 "behavior" Name? "{"
27 BehaviorModel
28 "}";
29

30 external BehaviorModel;
31

32 // ...
33 }

Listing 6: Excerpt of the MontiCore grammar of MontiArc-
Automaton. The language inherits many productions from
the MontiArc grammar [36].

of the AST node for Component (l. 5). The body (l. 6) is
characterized by a set of ArcElement productions and may
be empty (as denoted by the star operator “*”).

The production ComponentHead (ll. 9-12) captures
generic type parameters, configuration parameters, and exten-
sion declaration of components (cf. [25]). Generic type (l. 10)
parameters are optional (as denoted by the question mark
operator “?”) and stored in the member generics of the
ComponentHead AST.

Component parameters (l. 11) are optional and may be
specified as a comma-separated list between square brackets.
They are stored in a member of name parameter of the
ComponentHead AST, which is a list of Parameter
elements. The member’s name is derived from its type. Each
component may extend from another component as denoted
by the model keyword extends (l. 12). The productions
TypeParameters, Parameter, and ReferenceType
are inherited from MontiArc.
ArcElement (l. 14) is an interface production, which

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 53

MontiCore Grammar

1 grammar RobotArm {
2 Programs = "robotarm" Name "{"
3 Context Content
4 "}";
5

6 Context = ("input" Type Name ";")*;
7

8 Content = Location* Program+;
9

10 Location = "location" Name
11 degrees:Int "deg"
12 height:Int "cm" ";";
13

14 Program = "program" Name "{"
15 (Command ";")+
16 "}";
17

18 interface Command;
19

20 Grasp implements Command =
21 (["open"] | ["close"]);
22

23 Move implements Command =
24 "move" (["top"] | ["bottom"] |
25 Name | Name Name);
26 }

Listing 7: MontiCore grammar of the RobotArm language

resembles interfaces from object-oriented languages, i.e., these
productions are abstract (cannot be parsed) and the language
must provide proper interface implementations. Everything
usable in a component body must hence implement this
interface production.

The component interface consists of a set of typed ports cov-
ered by the production Ports (ll. 16-17), which implements
the ArcElement interface. The production begins with the
model keyword port followed by a non-empty list of ports.
Each port is captured by the Port production, which begins
either with model keyword in or out to designate the port’s
direction. Afterwards, the port’s type and name follow.

The component body also contains a set of connectors as
instances of the production Connector (ll. 21-23), which
also implements the interface ArcElement. Each connector
begins with a name indicating its source, followed by the token
-> and a non-empty, comma-separated list of names indicating
its targets. Most important, the MontiArcAutomaton ADL
grammar introduces the production ComponentBehavior
(ll. 25-28), which implements the ArcElement interface and
begins with the model keyword behavior. After an optional
name, a body enclosed in curly brackets follows. The body
consists of the production BehaviorModel, which is an
external production (l. 30) and denotes that a production of
another language must be embedded here. This is the extension
point for additional behavior description languages discussed
in Section 5.

RobotArm Grammar

The RobotArm grammar is shown in Listing 7 and comprises
eight productions. Its main production Programs (ll. 2-4)
describes a set of RobotArm programs. Such a set begins with
the model keyword robotarm, followed by a name and a
body delimited by curly braces. The body (l. 3) contains a
Context (l. 6), which describes a set of inputs, followed by
a Content (l. 8). The latter consists of a set of locations
followed by a set of programs. While the set of locations may
be empty, the set of programs may not (as indicated by the
plus operator “+”).

Locations begin with the model keyword location fol-
lowed by a name, a number, the model keyword deg, another
number, and the model keyword cm (ll. 10-12).

A program (ll. 14-16) begins with the model keyword
Program, followed by its name, and curly brackets. Each
program contains a non-empty list of commands that are
terminated by semicolons (l. 15). Command (l. 18) is an in-
terface production that behaves similar to interfaces in object-
oriented languages. It does not prescribe syntax, but can be
implemented by other productions. The RobotArm grammar
provides two implementations of Command: one is Grasp
(ll. 20-21), the other is Move (ll. 23-25). Grasp commands
either open or close the gripper and thus correspond to the
model keyword open or close. Move commands begin with
the model keyword move followed by one of the keywords
top or bottom, a single name (interpreted as a location
name), or two names (interpreted as names of inputs).

REFERENCES

[1] M. Hägele, N. Blümlein, and O. Kleine, “Wirtschaftlichkeitsanalysen
neuartiger Servicerobotik- Anwendungen und ihre Bedeutung für die
Robotik-Entwicklung,” BMBF, Tech. Rep., 2011. 1

[2] C. Schlegel, A. Steck, and A. Lotz, “Model-Driven Software Devel-
opment in Robotics : Communication Patterns as Key for a Robotics
Component Model,” in Introduction to Modern Robotics, D. Chugo
and S. Yokota, Eds. iConcept Press, 2011. 1, 3.1, 7, 7.3, 7.4, 8.1

[3] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback, “To-
wards Component-Based Robotics,” in 2005 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2005,
pp. 163–168. 1, 8.1

[4] D. Brugali, A. Brooks, A. Cowley, C. Côté, A. Domı́nguez-Brito,
D. Létourneau, F. Michaud, and C. Schlegel, “Trends in Component-
Based Robotics,” in Software Engineering for Experimental Robotics,
ser. Springer Tracts in Advanced Robotics, D. Brugali, Ed. Springer
Berlin Heidelberg, 2007, vol. 30, ch. 8, pp. 135–142. 1, 8.1

[5] D. Brugali and E. Prassler, “Software Engineering for Robotics,” IEEE
Robotics and Automation Magazine, vol. 16, no. 1, pp. 9–15, 2009. 1

[6] T. Niemueller, A. Ferrein, D. Beck, and G. Lakemeyer, Design Princi-
ples of the Component-Based Robot Software Framework Fawkes, ser.
Lecture Notes in Computer Science. Darmstadt, Germany: Springer,
2010, vol. 6472, pp. 300–311. 1, 8.1

[7] R. France and B. Rumpe, “Model-Driven Development of Complex
Software: A Research Roadmap,” in Future of Software Engineering
2007 at ICSE., 2007, pp. 37–54. 1, 8.1, 8.2

[8] M. Völter, S. Benz, C. Dietrich, B. Engelmann, M. Helander, L. C. L.
Kats, E. Visser, and G. Wachsmuth, DSL Engineering - Designing,
Implementing and Using Domain-Specific Languages. dslbook.org,
2013. 1

54 Journal of Software Engineering for Robotics 6(1), December 2015

[9] R. Bischoff, T. Guhl, E. Prassler, W. Nowak, G. Kraetzschmar,
H. Bruyninckx, P. Soetens, M. Haegele, A. Pott, P. Breedveld et al.,
“BRICS – Best practice in robotics,” in Robotics (ISR), 2010 41st
International Symposium on and 2010 6th German Conference on
Robotics (ROBOTIK). VDE, 2010, pp. 1–8. 1

[10] A. Nordmann, N. Hochgeschwender, and S. Wrede, “A survey on
domain-specific languages in robotics,” in Simulation, Modeling, and
Programming for Autonomous Robots. Springer, 2014, pp. 195–206.
1

[11] A. Ramaswamy, B. Monsuez, and A. Tapus, “Model-driven Software
Development Approaches in Robotics Research,” in Proceedings of
the 6th International Workshop on Modeling in Software Engineering,
2014. 1, 8.1

[12] J. O. Ringert, B. Rumpe, and A. Wortmann, “From Software Architec-
ture Structure and Behavior Modeling to Implementations of Cyber-
Physical Systems,” in Software Engineering 2013 Workshopband, ser.
LNI, Stefan Wagner and Horst Lichter, Ed., vol. 215. GI, Köllen
Druck+Verlag GmbH, Bonn, 2013, pp. 155–170. 1, 3.2, 7, 8.1, 8.5

[13] ——, “MontiArcAutomaton: Modeling Architecture and Behavior of
Robotic Systems,” in Workshops and Tutorials Proceedings of the
IEEE International Conference on Robotics and Automation (ICRA),
Karlsruhe, Germany, May 6-10 2013. 1, 8.5

[14] M. Look, A. Navarro Perez, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “Black-box Integration of Heterogeneous Modeling Languages
for Cyber-Physical Systems,” in Proceedings of the 1st Workshop on
the Globalization of Modeling Languages (GEMOC), Miami, Florida,
USA, 2013. 1, 3.2, 3.2, 8.5, 9.3

[15] J. O. Ringert, A. Roth, B. Rumpe, and A. Wortmann, “Code Generator
Composition for Model-Driven Engineering of Robotics Component &
Connector Systems ,” in 1st International Workshop on Model-Driven
Robot Software Engineering (MORSE 2014), ser. CEUR Workshop
Proceedings, vol. 1319, York, Great Britain, July 2014, pp. 66 – 77.
1, 8.5

[16] J. O. Ringert, B. Rumpe, and A. Wortmann, “Multi-Platform Generative
Development of Component & Connector Systems using Model and
Code Libraries,” in 1st International Workshop on Model-Driven Engi-
neering for Component-Based Systems (ModComp 2014), ser. CEUR
Workshop Proceedings, vol. 1281, Valencia, Spain, September 2014,
pp. 26 – 35. 1, 8.5

[17] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez, B. Rumpe,
S. Voelkel, and A. Wortmann, “Integration of Heterogeneous Modeling
Languages via Extensible and Composable Language Components,”
in Proceedings of the 3rd International Conference on Model-Driven
Engineering and Software Development. Angers, France: Scitepress,
2015. 1, 3.2, 8.5

[18] J. O. Ringert, B. Rumpe, and A. Wortmann, “Composing Code Gen-
erators for C&C ADLs with Application-Specific Behavior Languages
(Tool Demonstration),” in Proceedings of the 2015 ACM SIGPLAN
International Conference on Generative Programming: Concepts and
Experiences, ser. GPCE 2015. New York, NY, USA: ACM, 2015, pp.
113–116. 1, 8.5

[19] ——, “Tailoring the MontiArcAutomaton Component & Connector
ADL for Generative Development,” in Proceedings of the 2015 Joint
MORSE/VAO Workshop on Model-Driven Robot Software Engineer-
ing and View-based Software-Engineering, U. Aßmann, C. Atkinson,
E. Burger, T. Goldschmidt, and R. Reussner, Eds., ACM New York,
NY, USA. L’Aquila, Italy: ACM New York, NY, USA, July 2015,
pp. 41–47. 1, 4, 4.3, 8.5

[20] ——, “Transforming Platform-Independent to Platform-Specific Com-
ponent and Connector Software Architecture Models,” in 2nd Interna-
tional Workshop on Model-Driven Engineering for Component-Based
Software Systems (ModComp) 2015, ser. CEUR Workshop Proceedings,
vol. 1463, Ottawa, Canada, September 2015, pp. 30 – 35. 1, 3.3, 4,
4.2, 8.5

[21] N. Medvidovic and R. Taylor, “A Classification and Comparison
Framework for Software Architecture Description Languages,” IEEE
Transactions on Software Engineering, 2000. 2, 3.1

[22] D. Brugali and P. Salvaneschi, “Stable Aspects In Robot Software
Development,” International Journal of Advanced Robotic Systems,
vol. 3, 2006. 2, 3.1

[23] B. Rumpe, “Formale Methodik des Entwurfs verteilter objektorien-

tierter Systeme,” Doktorarbeit, Technische Universität München, 1996.
2.1

[24] J. O. Ringert and B. Rumpe, “A Little Synopsis on Streams, Stream
Processing Functions, and State-Based Stream Processing,” Interna-
tional Journal of Software and Informatics, vol. 5, no. 1-2, pp. 29–53,
July 2011. 2.1

[25] J. O. Ringert, B. Rumpe, and A. Wortmann, Architecture and Behavior
Modeling of Cyber-Physical Systems with MontiArcAutomaton, ser.
Aachener Informatik-Berichte, Software Engineering. Shaker Verlag,
2014, no. 20. 3, 3.2, 8.5, A

[26] M. Broy and K. Stølen, Specification and Development of Interactive
Systems. Focus on Streams, Interfaces and Refinement. Springer Verlag
Heidelberg, 2001. 3, 6.3, 8.2

[27] N. Medvidovic, E. M. Dashofy, and R. N. Taylor, “Moving architectural
description from under the technology lamppost,” Information and
Software Technology, vol. 49, no. 1, pp. 12–31, 2007. 3.1

[28] B. Rumpe, Modellierung mit UML, 2nd ed., ser. Xpert.press. Springer
Berlin, September 2011. 3.1

[29] C. Schlegel, T. Hassler, A. Lotz, and A. Steck, “Robotic software
systems: From code-driven to model-driven designs,” in Advanced
Robotics, 2009. ICAR 2009. International Conference on, 2009, pp.
1–8. 3.1

[30] R. Bedin Franca, J.-P. Bodeveix, M. Filali, and J.-F. Rolland, “The
AADL behavior annex-experiments and roadmap,” in Proceedings
of the 12th IEEE International Conference on Engineering Complex
Computer Systems. Washington, DC: IEEE Computer Society, 2007,
pp. 377–382. 3.1

[31] P. H. Feiler and D. P. Gluch, Model-Based Engineering with AADL:
An Introduction to the SAE Architecture Analysis & Design Language.
Addison-Wesley, 2012. 3.1, 8.2

[32] L. Naslavsky, L. Xu, H. Ziv, and D. J. Richardson, “Extending
xADL with Statechart Behavioral Specification,” in Third Workshop on
Architecting Dependable Systems (WADS), Edinburgh, Scotland. IET,
2004, pp. 22–26. 3.1, 8.2

[33] H. Krahn, B. Rumpe, and S. Völkel, “Monticore: a framework for com-
positional development of domain specific languages,” in International
Journal on Software Tools for Technology Transfer (STTT), vol. 12,
2010, pp. 353 – 372. 3.2, A

[34] S. Völkel, Kompositionale Entwicklung domänenspezifischer Sprachen,
ser. Aachener Informatik-Berichte, Software Engineering Band 9. 2011.
Shaker Verlag, 2011. 3.2, 4.1, 5.3, 8.3

[35] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung mit
der UML/P, ser. Aachener Informatik-Berichte, Software Engineering,
Band 11. Shaker Verlag, 2012. 3.2, 3.2, 6.2, 8.3

[36] A. Haber, J. O. Ringert, and B. Rumpe, “MontiArc - Architectural
Modeling of Interactive Distributed and Cyber-Physical Systems,”
RWTH Aachen, Tech. Rep. AIB-2012-03, february 2012. 3, A, 34

[37] D. König, P. King, G. Laforge, H. D’Arcy, C. Champeau, E. Pragt, and
J. Skeet, Groovy in Action. Manning Publications, 2015. 5.3

[38] D. Ghosh, DSLs in Action, 1st ed. Greenwich, CT, USA: Manning
Publications Co., 2010. 5.3

[39] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System,” in ICRA Workshop on Open Source Software, 2009.
6.3, 7, 7.2, 8.1

[40] J. O. Ringert, B. Rumpe, and A. Wortmann, “A Case Study on
Model-Based Development of Robotic Systems using MontiArc with
Embedded Automata,” in Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme, H. Giese, M. Huhn, J. Philipps, and
B. Schätz, Eds., 2013, pp. 30–43. 7.1, 8.5, 9.1

[41] R. Heim, P. M. S. Nazari, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Modeling Robot and World Interfaces for Reusable Tasks,” in 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2015, pp. 1793–1798. 7.4

[42] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The CLARAty Architecture for Robotic Autonomy,” in Aerospace
Conference, 2001, IEEE Proceedings., vol. 1, 2001. 8.1

[43] H. Bruyninckx, “Open Robot Control Software: the OROCOS project,”
in 2001 ICRA IEEE International Conference on Robotics and Automa-
tion (ICRA), vol. 3. IEEE, 2001, pp. 2523–2528. 8.1

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 55

[44] H. Mühe, A. Angerer, A. Hoffmann, and W. Reif, “On reverse-
engineering the KUKA Robot Language,” in First International Work-
shop on Domain-Specific Languages and Models for ROBotic Systems,
2010. 8.1

[45] J.-C. Baillie, A. Demaille, Q. Hocquet, and M. Nottale, “Events!
(Reactivity in urbiscript),” in First International Workshop on Domain-
Specific Languages and Models for ROBotic Systems, Oct. 2010. 8.1

[46] I. Lütkebohle and S. Wachsmuth, “Requirements and a Case-Study
for SLE from Robotics: Event-oriented Incremental Component Con-
struction,” Workshop on Software-Language-Engineering for Cyber-
Physical Systems, 2011. 8.1

[47] A. Angerer, R. Smirra, A. Hoffmann, A. Schierl, M. Vistein, and
W. Reif, “A Graphical Language for Real-Time Critical Robot Com-
mands,” in Proceedings of the Third International Workshop on
Domain-Specific Languages and Models for Robotic Systems (DSLRob
2012), 2012. 8.1

[48] J. Baumgartl, T. Buchmann, and D. Henrich, “Towards Easy Robot
Programming: Using DSLs, Code Generators and Software Product
Lines,” 8th International Conference on Software Paradigm Trends
(ICSOFT-PT’13), 2013. 8.1

[49] U. P. Schultz, D. J. Christensen, and K. Stoy, “A Domain-Specific
Language for Programming Self-Reconfigurable Robots,” in Workshop
on Automatic Program Generation for Embedded Systems, 2007, pp.
28–36. 8.1

[50] M. Frigerio, J. Buchli, and D. G. Caldwell, “A Domain Specific
Language for kinematic models and fast implementations of robot
dynamics algorithms,” in Proceedings of the Second International
Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2011), 2011. 8.1

[51] T. D. Laet, W. Schaekers, J. D. Greef, and H. Bruyninckx, “Domain
Specific Language for Geometric Relations between Rigid Bodies tar-
geted to robotic applications,” in Proceedings of the Third International
Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2012), 2012. 8.1

[52] U. Thomas, G. Hirzinger, B. Rumpe, C. Schulze, and A. Wortmann,
“A New Skill Based Robot Programming Language Using UML/P
Statecharts,” in 2013 ICRA IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany, 2013. 8.1

[53] Vanthienen, Dominick and Klotzbuecher, Markus and De Laet, Tinne
and De Schutter, Joris and Bruyninckx, Herman, “Rapid application
development of constrained-based task modelling and execution using
Domain Specific Languages,” in Proceedings of the 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Tokyo,
Japan: IROS2013, 2013, pp. 1860–1866. 8.1

[54] Blumenthal, Sebastian and Bruyninckx, Herman, “Towards a Domain
Specific Language for a Scene Graph based Robotic World Model,”
in Fourth International Workshop on Domain-Specific Languages and
Models for ROBotic Systems, November 2013. 8.1

[55] Hochgeschwender, Nico and Schneider, Sven and Voos, Holger, and
Kraetzschmar, Gerhard K., “Towards a Robot Perception Specification
Language,” in Fourth International Workshop on Domain-Specific
Languages and Models for ROBotic Systems, November 2013. 8.1

[56] P. Trojanek, “Model-driven engineering approach to design and im-
plementation of robot control system,” in Proceedings of the Second
International Workshop on Domain-Specific Languages and Models for
Robotic Systems (DSLRob 2011), 2011. 8.1

[57] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane, “RobotML,
a Domain-Specific Language to Design, Simulate and Deploy Robotic
Applications,” in Simulation, Modeling, and Programming for Au-
tonomous Robots, ser. Lecture Notes in Computer Science, I. Noda,
N. Ando, D. Brugali, and J. Kuffner, Eds. Springer Berlin Heidelberg,
2012, vol. 7628, pp. 149–160. 8.1

[58] A. Nordmann and S. Wrede, “A Domain-Specific Language for Rich
Motor Skill Architectures,” in Proceedings of the Third International
Workshop on Domain-Specific Languages and Models for Robotic
Systems (DSLRob 2012), 2012. 8.1

[59] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraet-
zschmar, L. Gherardi, and D. Brugali, “The BRICS Component Model:
A Model-Based Development Paradigm For Complex Robotics Soft-
ware Systems,” in Proceedings of the 28th Annual ACM Symposium

on Applied Computing, ser. SAC ’13. New York, NY, USA: ACM,
2013, pp. 1758–1764. 8.1

[60] A. Ramaswamy, B. Monsuez, and A. Tapus, “SafeRobots: A
Model-Driven Framework for Developing Robotic Systems,” in 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2014, pp. 1517–1524. 8.1

[61] D. Vanthienen, M. Klotzbuecher, and H. Bruyninckx, “The 5C-
based architectural Composition Pattern: lessons learned from re-
developing the iTaSC framework for constraint-based robot program-
ming,” JOSER: Journal of Software Engineering for Robotics, vol. 5,
no. 1, pp. 17–35, 2014. 8.1

[62] D. Cassou, P. Koch, and S. Stinckwich, “Using the DiaSpec design
language and compiler to develop robotics systems,” in Proceedings
of the Second International Workshop on Domain-Specific Languages
and Models for Robotic Systems (DSLRob 2011), 2011. 8.1

[63] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architec-
ture: Foundations, Theory, and Practice, 1st ed. John Wiley and Sons,
Inc., 2009. 8.1

[64] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “RT-
Middleware: Distributed Component Middleware for RT (Robot Tech-
nology),” in 2005 IEEE/RSJ International Conference on Intelligent
Robots and Systems, vol. 1, 2005, pp. 3933–3938. 8.1

[65] N. Ando, T. Suehiro, and T. Kotoku, “A Software Platform for Compo-
nent Based RT-System Development: OpenRTM-Aist,” in Simulation,
Modeling, and Programming for Autonomous Robots. Springer, 2008,
pp. 87–98. 8.1

[66] M. Klotzbücher, P. Soetens, and H. Bruyninckx, “Orocos RTT-Lua:
an Execution Environment for building Real-time Robotic Domain
Specific Languages,” in International Workshop on Dynamic languages
for RObotic and Sensors, 2010. 8.1

[67] J. Bohren and S. Cousins, “The smach high-level executive [ros news],”
IEEE Robotics & Automation Magazine, vol. 4, no. 17, pp. 18–20,
2010. 8.1

[68] F. Hölzl and M. Feilkas, “AutoFocus 3-A Scientific Tool Prototype for
Model-Based Development of Component-Based, Reactive, Distributed
Systems,” in Model-Based Engineering of Embedded Real-Time Sys-
tems. Springer, 2011, pp. 317–322. 8.2

[69] C. Ptolemaeus, Ed., System Design, Modeling, and Simulation
using Ptolemy II. Ptolemy.org, 2014, accessed 10/13, cited
like this on request by the authors. [Online]. Available: http:
//ptolemy.org/books/Systems 8.2

[70] E. A. Lee, “Disciplined heterogeneous modeling - invited paper,” in
MoDELS (2), 2010, pp. 273–287. 8.2

[71] G. Zhou, M. Leung, and E. A. Lee, “A code generation framework for
actor-oriented models with partial evaluation,” in Embedded Software
and Systems, [Third] International Conference, ICESS 2007, Daegu,
Korea, May 14-16, 2007, Proceedings, 2007, pp. 193–206. 8.2

[72] A. Mallet, C. Pasteur, M. Herrb, S. Lemaignan, and F. Ingrand,
“GenoM3: Building middleware-independent robotic components,” in
Robotics and Automation (ICRA), 2010 IEEE International Conference
on, May 2010, pp. 4627–4632. 8.2

[73] A. K. Tyagi, MATLAB and SIMULINK for Engineers. Oxford
University Press, 2012. 8.2

[74] T. Weilkiens, Systems Engineering mit SysML/UML. UML. dpunkt.
verlag, 2006. 8.2

[75] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML:
The Systems Modeling Language, ser. The MK/OMG Press. Elsevier
Science, 2011. 8.2

[76] Object Management Group, “OMG Unified Modeling Language (OMG
UML), Superstructure Version 2.3 (10-05-05),” May 2010, http://www.
omg.org/spec/UML/2.3/Superstructure/PDF/ [Online; accessed 2015-
12-17]. 8.2

[77] H. Giese and S. Henkler, “A survey of approaches for the visual model-
driven development of next generation software-intensive systems,”
Journal of Visual Languages & Computing, vol. 17, no. 6, pp. 528–550,
2006. 8.2

[78] E. M. Dashofy, A. Van der Hoek, and R. N. Taylor, “A Highly-
Extensible, XML-Based Architecture Description Language,” in Work-
ing IEEE/IFIP Conference on Software Architecture. IEEE, 2001, pp.
103–112. 8.2

http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/
http://www.omg.org/spec/UML/2.3/Superstructure/PDF/

56 Journal of Software Engineering for Robotics 6(1), December 2015

[79] ——, “An Infrastructure for the Rapid Development of XML-based
Architecture Description Languages,” in 24rd International Conference
on Software Engineering (ICSE 2002). IEEE, 2002, pp. 266–276. 8.2

[80] J. Aldrich, C. Chambers, and D. Notkin, “Connecting Software Archi-
tecture to Implementation,” in Proceedings of the 24th International
Conference on Software Engineering (ICSE 2002). IEEE, 2002, pp.
187–197. 8.2

[81] A. Joolia, T. Batista, G. Coulson, and A. T. Gomes, “Mapping ADL
Specifications to an Efficient and Reconfigurable Runtime Component
Platform,” in Software Architecture, 2005. WICSA 2005. 5th Working
IEEE/IFIP Conference on. IEEE, 2005, pp. 131–140. 8.2

[82] P. Hudak, “Building Domain-Specific Embedded Languages,” ACM
Computing Surveys (CSUR), vol. 28, no. 4, p. 196, 1996. 8.2

[83] A. van Deursen, P. Klint, and J. Visser, “Domain-Specific Languages:
An Annotated Bibliography,” ACM SIGPLAN Notices, vol. 35, no. 6,
pp. 26–36, 2000. 8.2

[84] D. S. Wile, “Supporting the DSL Spectrum,” Computing and Informa-
tion Technology, vol. 4, pp. 263–287, 2001. 8.2

[85] N. Medvidovic, D. S. Rosenblum, and R. N. Taylor, “A language
and environment for architecture-based software development and
evolution,” in Software Engineering, 1999. Proceedings of the 1999
International Conference on. IEEE, 1999, pp. 44–53. 8.2

[86] R. Van Ommering, F. Van Der Linden, J. Kramer, and J. Magee,
“The Koala Component Model for Consumer Electronics Software,”
Computer, vol. 33, no. 3, pp. 78–85, 2000. 8.2

[87] M. Bernardo, L. Donatiello, and P. Ciancarini, “Stochastic Process
Algebra: From an Algebraic Formalism to an Architectural Description
Language,” in Performance Evaluation of Complex Systems: Tech-
niques and Tools. Springer, 2002, pp. 236–260. 8.2

[88] S. Faucou, A.-M. Déplanche, and Y. Trinquet, “AN ADL CENTRIC
APPROACH FOR THE FORMAL DESIGN OF REAL-TIME SYS-
TEMS,” in Architecture Description Languages. Springer, 2005, pp.
67–82. 8.2

[89] A. Smeda, M. Oussalah, and T. Khammaci, “MADL: Meta Architecture
Description Language,” in Software Engineering Research, Manage-
ment and Applications, 2005. Third ACIS International Conference on.
IEEE, 2005, pp. 152–159. 8.2

[90] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani,
“The FRACTAL component model and its support in Java,” Software,
Practice, and Experiance, vol. 36, no. 11-12, pp. 1257–1284, 2006.
8.2

[91] P. Cuenot, D. Chen, S. Gerard, H. Lönn, M.-O. Reiser, D. Servat, C.-
J. Sjöstedt, R. T. Kolagari, M. Törngren, and M. Weber, “Managing
Complexity of Automotive Electronics Using the EAST-ADL,” in En-
gineering Complex Computer Systems, 2007. 12th IEEE International
Conference on. IEEE, 2007, pp. 353–358. 8.2

[92] A. Amirat and M. Oussalah, “C3: A Metamodel for Architecture
Description Language Based on First-Order Connector Types,” in 11th
International Conference on Enterprise Information Systems (ICEIS
2009), 2009, pp. 76–81. 8.2

[93] S. Becker, H. Koziolek, and R. Reussner, “The palladio component
model for model-driven performance prediction,” Journal of Systems
and Software, vol. 82, no. 1, pp. 3–22, 2009. 8.2

[94] N. Ubayashi, J. Nomura, and T. Tamai, “Archface: A contract place
where architectural design and code meet together,” in Proceed-
ings of the 32nd ACM/IEEE International Conference on Software
Engineering-Volume 1. ACM, 2010, pp. 75–84. 8.2

[95] S. Erdweg, T. van der Storm, M. Völter, M. Boersma, R. Bosman, W. R.
Cook, A. Gerritsen, A. Hulshout, S. Kelly, A. Loh, G. D. Konat, P. J.
Molina, M. Palatnik, R. Pohjonen, E. Schindler, K. Schindler, R. Solmi,
V. A. Vergu, E. Visser, K. van der Vlist, G. H. Wachsmuth, and
J. van der Woning, “The State of the Art in Language Workbenches,”
in Software Language Engineering, ser. Lecture Notes in Computer
Science, M. Erwig, R. Paige, and E. Van Wyk, Eds. Springer
International Publishing, 2013, vol. 8225, pp. 197–217. 8.3

[96] T. van der Storm, W. R. Cook, and A. Loh, “The design and imple-
mentation of Object Grammars,” Science of Computer Programming,
2014. 8.3

[97] Más website http://www.mas-wb.com, [Online; accessed 2014-10-12].
8.3

[98] S. Kelly, K. Lyytinen, and M. Rossi, “Metaedit+ A Fully Configurable
Multi-User and Multi-Tool CASE and CAME Environment,” in Ad-
vanced Information Systems Engineering, 1996. 8.3

[99] S. Dmitriev, “Language Oriented Programming: The Next Program-
ming Paradigm,” JetBrains onBoard, vol. 1, no. 2, 2004. 8.3

[100] P. Klint, T. van der Storm, and J. Vinju, “RASCAL: A Domain
Specific Language for Source Code Analysis and Manipulation,” in
Ninth IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM ’09), 2009. 8.3

[101] L. C. L. Kats and E. Visser, “The Spoofax language workbench. Rules
for declarative specification of languages and IDEs,” in Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010,
October 17-21, 2010, Reno, NV, USA, M. Rinard, Ed., 2010, pp. 444–
463. 8.3

[102] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann, “SugarJ: Library-
based Syntactic Language Extensibility,” in ACM SIGPLAN Notices,
2011. 8.3

[103] R. Solmi, “Whole platform,” Ph.D. dissertation, University of Bologna,
2005. 8.3

[104] M. Eysholdt and H. Behrens, “Xtext - Implement your Language
Faster than the Quick and Dirty way,” in Proceedings of the ACM
international conference companion on Object oriented programming
systems languages and applications companion, ser. SPLASH ’10.
New York, NY, USA: ACM, 2010, pp. 307–309. 8.3

[105] M. Voelter and K. Solomatov, “Language and IDE Modularization, Ex-
tension and Composition with MPS,” Software Language Engineering
(SLE’10), p. 16, 2010. 8.3

[106] M. Voelter, D. Ratiu, B. Kolb, and B. Schätz, “mbeddr: instantiating a
language workbench in the embedded software domain,” Autom. Softw.
Eng., vol. 20, no. 3, pp. 339–390, 2013. 8.3

[107] H. Krahn, MontiCore: Agile Entwicklung von domänenspezifischen
Sprachen im Software-Engineering, ser. Aachener Informatik-Berichte,
Software Engineering, Band 1. Shaker Verlag, 2012. 8.3

[108] D. Batory and S. O’Malley, “The design and implementation of
hierarchical software systems with reusable components,” ACM Trans.
Softw. Eng. Methodol., vol. 1, no. 4, pp. 355–398, Oct. 1992. 8.4

[109] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and M. Sirkin,
“The genvoca model of software-system generators,” IEEE Softw.,
vol. 11, no. 5, pp. 89–94, Sep. 1994. 8.4

[110] B. Steffen, T. Margaria, R. Nagel, S. Jörges, and C. Kubczak, “Model-
driven development with the jabc,” in Hardware and Software, Verifi-
cation and Testing, ser. Lecture Notes in Computer Science, E. Bin,
A. Ziv, and S. Ur, Eds. Springer Berlin Heidelberg, 2007, vol. 4383,
pp. 92–108. 8.4

[111] S. Jörges, Construction and Evolution of Code Generators: A Model-
Driven and Service-Oriented Approach, ser. LNCS sublibrary: Pro-
gramming and software engineering. Springer Berlin Heidelberg,
2013. 8.4

[112] S. Zschaler and A. Rashid, “Towards modular code generators using
symmetric language-aware aspects,” in Proceedings of the 1st Interna-
tional Workshop on Free Composition, ser. FREECO ’11. New York,
NY, USA: ACM, 2011, pp. 6:1–6:5. 8.4

[113] S. Trujillo, D. Batory, and O. Diaz, “Feature oriented model driven
development: A case study for portlets,” in Proceedings of the 29th
International Conference on Software Engineering, ser. ICSE ’07.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 44–53. 8.4

[114] H. Krahn, B. Rumpe, and S. Völkel, “Roles in Software Development
using Domain Specific Modelling Languages,” in Proceedings of the
6th OOPSLA Workshop on Domain-Specific Modeling 2006. Finland:
University of Jyväskylä, 2006, pp. 150–158. 9.1

 http://www.mas-wb.com

J.O. RINGERT, et al./ Language and Code Generator Composition for Model-Driven Engineering of Robotics Component & Connector Systems 57

Jan Oliver Ringert received his computer sci-
ence diploma from Technical University Braun-
schweig, in 2009, and the Ph. D. degree in com-
puter science from RWTH Aachen University, in
2014. Currently, he has a post doc position at
Tel Aviv University. His research interest covers
software engineering, model-driven software de-
velopment, and robotics. J. O. Ringert received
scholarships from the German National Aca-
demic Foundation, the German Research Foun-
dation, the Minerva Foundation, and the ACM

and Springer Best Paper Awards of the MoDELS conference in 2011
and 2015. He is a member of ACM and IEEE.

Alexander Roth received his B. Sc. and M. Sc.
degrees in computer science from RWTH
Aachen University in 2010 and 2012. Currently,
he is a research assistant and Ph.D. candidate
at Software Engineering at RWTH Aachen Uni-
versity. His research interest covers software
engineering, design and development of code
generator, and code generator product lines.

Bernhard Rumpe is chair of the Department
for Software Engineering at the RWTH Aachen
University, Germany. His main interests are
software development methods and techniques
that benefit form both rigorous and practical
approaches. This includes the impact of new
technologies such as model-engineering based
on UML-like notations and domain-specific lan-
guages and evolutionary, test-based methods,
software architecture as well as the methodical
and technical implications of their use in industry.

He has furthermore contributed to the communities of formal methods
and UML. Since 2009 he started combining modeling techniques and
cloud computing. He is author and editor of eight books and editor-in-
chief of the Springer International Journal on Software and Systems
Modeling. See http://www.se-rwth.de/topics/ for more.

Andreas Wortmann received his computer sci-
ence and business informatics diplomas from
RWTH Aachen University in 2010 and 2011.
Currently, he is a research assistant and Ph.D.
candidate at Software Engineering at RWTH
Aachen University. His research interest cov-
ers software engineering, model-driven software
development, robotics, and software language
engineering. He is a member of IEEE and the
Technical Committtee on Software Engineering
for Robotics and Automation.

http://www.se-rwth.de/topics/

	Introduction
	Problem Statement and Example
	Example

	MontiArcAutomaton and MontiCore
	The MontiArcAutomaton ADL
	The MontiCore Language Workbench
	The MontiArcAutomaton Framework

	Developing Robotics Applications with MontiArcAutomaton
	Component Behavior Language Integration
	Software Architecture Modeling
	Code Generation

	Language Integration
	Syntactic Behavior Language Embedding
	Symbolic Language Integration
	Language Integration Infrastructure

	Code Generator Composition and Execution
	Generator Properties and Types
	Code Generator Types of MontiArcAutomaton
	Composing and Executing Code Generators

	Platforms and Case Studies
	Case Study NXT
	Case Study ROS
	Case Study SmartSoft
	iserveU Service Robotics Project

	Related Work
	Model-Driven Engineering in Robotics
	Component & Connector Modeling Languages
	Language Workbenches
	Generator Composition
	Previous MontiArcAutomaton Publications

	Discussion
	Development Process
	Repetition in Semantic Language Integration
	Generalization of Code Generator Composition

	Conclusion
	Appendix
	References
	Biographies
	Jan Oliver Ringert
	Alexander Roth
	Bernhard Rumpe
	Andreas Wortmann

