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At the core of model-driven development (MDD) of collaborative embedded systems 
(CESs) are models that realize the different participating stakeholders’ views of the 
systems. For CESs, these views contain various models to represent requirements, logical 
functions, collaboration functions, and technical realizations. To enable automated 
processing, these models must conform to modeling languages. Domain-specific 
languages (DSLs) that leverage concepts and terminology established by the stakeholders 
are key to their success. The variety of domains in which CESs are applied has led to a 
magnitude of different DSLs. These are manually engineered, composed, and customized 
for different applications, a process which is costly and error-prone. We present an 
approach for engineering independent language components and composing these using 
systematic composition operators. To support structured reuse of language components, 
we further present a methodology for building up product lines of such language 
components. This fosters engineering of collaborative embedded systems with modeling 
techniques tailored to each application. 
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11.1 Introduction 

Engineering collaborative embedded systems (CESs) and 
collaborative system groups (CSGs) usually demands the cooperation 
of experts from various domains with different backgrounds, 
methods, and solution paradigms that contribute to different 
viewpoints (e.g., requirements, functional, logical, or technical 
viewpoints) of the system [Pohl et al. 2012]. 

The need to translate domain-specific solution concepts into 
software artifacts introduces a conceptual gap between the experts’ 
problem domains and the solution domain of software engineering. 
This gap can give rise to accidental complexities [France and Rumpe 
2007] due to the mismatch of solving problem domain challenges with 
solution domain (programming) concepts. 

Model-driven development (MDD) [France and Rumpe 2007] is a 
software engineering paradigm that lifts models to the primary 
development artifacts. In contrast to program code, which reifies 
concepts of the solution domain, models can leverage domain-specific 
concepts and terminology to express concepts of the problem domain, 
which facilitates contribution by domain experts. Models can also be 
more abstract and leave implementation details to smart software 
engineering tools (e.g., model transformations or code generators). 

To enable models to be processed automatically, they must 
conform to explicit modeling languages [Hölldobler et al. 2018]. 
Engineering modeling languages is a challenging endeavor due to the 
multitude of formalisms and technologies involved, such as (i) 
grammars [Hölldobler and Rumpe 2017] or metamodels [Eysholdt et 
al. 2009] to define the languages’ syntax, (ii) the Object Constraint 
Language (OCL) [Cabot and Gogolla 2012] or programming languages 
to define their well-formedness, and (iii) code generators [Kelly and 
Tolvanen 2008] or model transformations [Mens and van Gorp 2006] 
to realize their semantics (in the sense of meaning [Harel and Rumpe 
2004]). As “software languages are software too” [Favre 2005], they 
are also subject to all the challenges typical to complex software as 
well. And similar to general software engineering, reuse is also the key 
to the efficient engineering of modeling languages. This holds 
especially for engineering collaborative embedded systems under the 
contribution of domain experts through viewpoints that are realized 
via domain-specific languages. 

Collaborative  
embedded systems 

Model-driven 
development 
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Software language engineering (SLE) [Hölldobler et al. 2018] is a 
field of research that investigates the engineering, maintenance, 
evolution, and reuse of software languages. Research in SLE has 
produced a variety of solutions for reusing languages and language 
parts. However, the approaches for reusing complete (comprising 
realizations of syntax and semantics) language parts are missing, 
which severely hampers modeling for CESs and CSGs. 

To address this, we present a method for modularizing modeling 
languages as language components, composing these, and ultimately 
building product lines of modeling languages to increase the reuse of 
languages beyond clone-and-own [Dubinsky et al. 2013]. 

Example 11-1: A family of architecture description languages 
Consider a company that develops software for various kinds of CESs that 
operate in a smart factory. The company employs an architecture 
description language (ADL) [Medvidovic and Taylor 2000] to develop 
software component models for the software architecture of the CESs. The 
different kinds of CESs yield particularities regarding their software 
architecture. For some systems, it should be possible to perform dynamic 
reconfiguration of their software architecture based on mode automata 
[Butting et al. 2017], while for other systems, this is not allowed due to 
security restrictions. Similarly, some systems support dynamic re-
deployment of software components to other systems, while this is not 
intended for other systems. To reify this properly in the models, the 
company uses different variants of ADLs — that is, variants of logical and 
technical viewpoints [Pohl et al. 2012]. These variants have several 
common language concepts and share large parts of the code generators 
employed. Without proper language modularization and reuse, these 
language variants co-exist in the form of cloned-and-owned, monolithic 
software tools. 

In the following, Section 11.2 introduces the MontiCore language 
workbench, which our solution builds upon. Section 11.3 then 
introduces our notion of language components, before Section 11.4 
explains their composition. Section 11.5 explains how we leverage 
composable language components to structure language reuse 
through explicit variability models, which we employed in CrESt to 
develop variants [Butting et al. 2019] of the MontiArc ADL [Haber et 
al. 2012] tailored to the use cases of “Autonomous Transport Robots” 
and “Adaptable and Flexible Factory” (cf. Chapter 1). Section 11.6 
concludes this chapter. 

Software  
language  
engineering 
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11.2 MontiCore 

MontiCore [Hölldobler and Rumpe 2017] is a language workbench 
[Erdweg et al. 2015] that facilitates the engineering of compositional 
modeling languages. MontiCore languages are based on a context-free 
grammar (CFG) that defines the (concrete and abstract) syntax of the 
respective language to which its models must conform. MontiCore 
uses this CFG to generate a parser that can process models of that 
language, along with abstract syntax classes that can store the 
machine-processable representation of the models once they have 
been parsed. 

After parsing, the models are translated into abstract syntax trees 
(ASTs) — that is, instances of the abstract syntax classes generated 
from the grammar. Using MontiCore’s extensional function library, 
these models are checked for well-formedness and other properties, 
transformed, and ultimately translated into other models, reports, 
source code, or other target representations. All of these activities rely 
on MontiCore’s modular visitors that process parts of the AST. Visitors 

[Gamma et al. 1995] separate operations on object structures from the 
object structures themselves and thus enable the addition of further 
operations without requiring modifications to the object structures. 

To facilitate operation on different nodes of the AST, MontiCore 
supports the definition of symbols—meaningfully abstracted model 
parts—based on grammar rules. Symbols are stored in symbol tables 
and can be resolved within a language as well as by other languages, 
enabling different forms of language composition. 

Using CFGs and symbol tables, MontiCore supports the modular 
composition of languages through extension, embedding, and 
aggregation: language extension enables a CFG to extend another CFG, 
thereby inheriting all productions of the extended CFG. This process 
produces a new AST that may reuse productions of the extended CFG. 
This is useful, for example, for extending a base language in different 
ways with domain-specific extensions that would otherwise 

Abstract syntax tree 

Symbols 

Fig. 11–2: The quintessential components of MontiCore’s language processing tool 
chain support model loading, checking, and transformation 
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convolute the base. Language embedding is the integration of selected 
productions of the client CFG into extension points of the host CFG. 
The resulting AST is the AST of the host CFG with a sub-AST of the 
client CFG embedded into selected nodes. This supports the creation 
of (incomplete) languages that provide an overall structure but 
demand (domain-specific) extension. Language aggregation is the 
integration of languages through references between their modeling 
elements. These references are resolved using MontiCore’s symbol 
table framework and do not yield integrated ASTs. Instead, the models 
of the integrated languages remain separate artifacts. This supports, 
for example, the separation of different, yet integrated, concerns in 
models, such as structure and behavior. 

For well-formedness checking and code generation, MontiCore 
provides generic infrastructures that can be customized by adding 
well-formedness rules (context conditions) and FreeMarker 
[Forsythe 2013] templates that define the code generation by 
processing the AST using template control structures and target 
language text. Consequently, a MontiCore language usually comprises 
a CFG, context conditions, and FreeMarker templates. 

11.3 Language Components 

Component-based software engineering is a paradigm for increasing 
software reusability by means of modularization. This paradigm is 
successfully applied in different domains and well suited for the 
engineering of embedded systems. The techniques of this paradigm 
can be applied to software languages as well. As a consequence, all 
advantages of component-based software engineering, such as 
increased reusability and better maintainability, can be leveraged to 
facilitate SLE. Similar to [Clark et al. 2015], we use the term language 
component for modular, composable software language realizations. 

Definition 11-3: Language component 
A language component is a reusable unit encapsulating a potentially 
incomplete language definition. A language definition comprises the 
realization of syntax and semantics of a (software) language. 

This definition reduces the notion of language components to the 
constituents of the language infrastructure without being dependent 
on a specific technological space [Kurtev et al. 2002]. Ultimately, this 
means that a language component is a set of artifacts that form a 
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reusable unit. This set includes both handwritten as well as generated 
artifacts of language-processing tooling. For textual languages, it may 
include, for example, a grammar as a description of the syntax, the 
source code realizing well-formedness rules, a generated parser, and 
a generated AST data structure. In other technological spaces, a 
language component may contain a metamodel instead of a grammar 
and parser. Some language workbenches, such as MontiCore, enable 
language engineers to customize generated artifacts. Such 
handwritten customizations are part of a language component as well. 

Ideally, software components are black boxes whose internal 
workings are not relevant in their environment [McIlroy 1968]. 
Consequently, language components may also hide implementation 
details from their environment. To this end, language engineers can 
plan explicit extension points of a language component for which 
other language components can provide extensions. The realization of 
the extension points and extensions depends on the technological 
space used to realize the language components. In MontiCore, for 
example, syntax extension points can be realized through 
underspecification in grammars realized as interfaces or external 
productions [Hölldobler and Rumpe 2017]. Other language 
constituents, such as code generators, may yield different 
mechanisms for extension points and extensions. 

 

Fig. 11–4: Artifacts of a language component can be distributed among software 
modules and some artifacts belong to multiple language components 

A language component consists of many interrelated artifacts that 
may be distributed across different software modules and a single 
software module may contain artifacts for one or more language 
components (cf. Figure 11–4). This is due to the fact that the 
modularization of software into modules is typically driven by build 
tools (e.g., Maven or Gradle) that intend a different level of granularity. 

Extension points 

Artifact organization 
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Furthermore, an artifact may be part of multiple language 
components. 

Example 11-5: BaseADL language component in MontiCore 
The BaseADL language component contains a context-free grammar to 
describe the concrete and abstract syntax of a basic architecture 
description language (ADL). From this grammar, MontiCore generates a 
set of AST and symbol table classes that represent the abstract syntax data 
structure, a parser, a visitor infrastructure, and an infrastructure for 
realizing and checking context conditions. The handwritten context 
conditions, code generator classes, and templates are part of the language 
component as well. 

 

 

 

 

 

 

In this example, the language engineers have planned two extension 
points for the BaseADL language component. One extension point can be 
extended to introduce a new notation for components and another one to 
introduce a new kind of connector. The extension point for components, 
for example, can be extended to add dynamic components that contain a 
mode automaton (cf. Example 11-1). 

To identify, analyze, compose, and distribute language 
components, the large number of source code artifacts that realize the 
language component have to be extracted from the software modules. 
The constituents of a language component can be described and typed 
through a suitable artifact model [Butting et al. 2018b]. This produces 
the opportunity to identify the constituents of a language component 
by means of an artifact data extractor in a semi-automated process. 
This process collects potential artifacts of a language component, 
starting with a central artifact such as a grammar or a metamodel. 
With an underlying artifact model, an artifact data extractor can 
extract all associations from this artifact to other artifacts. For 
instance, in the technological space of MontiCore, this automated 
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extraction handles the identification of all Java classes that realize 
context conditions that can be checked against abstract syntax classes 
generated from a grammar. 

However, the result of this automatic extraction (1) can produce 
artifacts that are not intended to be part of a language component or 
(2) can lack artifacts intended to be part of the language component. 
Therefore, handwritten adjustments of this result must be considered. 
In other technological spaces, these data extractors must be provided 
accordingly. 

11.4 Language Component Composition 

In general, the engineering of language components as described in 
Section 11.3 is the basis for building languages by composing 
language components. There are various forms of language 

composition [Erdweg et al. 2012] that are supported by different 
language workbenches [Méndez-Acuña et al. 2016]. Some forms of 
language composition produce composed languages that can process 
integrated model artifacts, while other forms—such as language 
aggregation—integrate languages whose models remain in individual 
artifacts. Certain kinds of language composition—for example, 
language extension and language inheritance—require that one 
language depends on another language. These forms are not suitable 
for independent engineering of the participating languages and, when 
applied to language components, may introduce dependencies to the 
language component context. Some forms of language composition 
also require configuration with integration “glue,” such as adapters 
between two kinds of symbols [Nazari 2017]. Therefore, care must be 
taken to select a suitable form of language composition. 

For the composition of language components, we generalize the 
concrete form of language composition and denote that each 
composition of two language components is specified through a 

Forms of language 
composition 

Language component 
composition operators 

Fig. 11–6: Composing two language components A and B requires composition of their 
constituents 
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configuration, as depicted in Figure 11–6. The configuration connects 
an extension point of a language component with an extension of 
another language component and states which form of composition 
has to be applied. Depending on the form of composition, the 
composition may also have to be configured with glue code. The actual 
composition of two language components is realized through the 
composition of their constituents. To this end, composition operators 
must be defined for each kind of constituent individually. 

For example, MontiCore enables the composition of language 
components through embedding. The actual embedding has to be 
performed for handwritten constituents—such as grammars, context 
conditions, and generators—but also for generated constituents such 
as the AST data structures, the symbol table, and the visitor 
infrastructure. Thus, for all these constituents, an individual 
composition operator that realizes the embedding must be defined. 

MontiCore enables grammars to inherit from one or more other 
grammars. If a grammar inherits from another (super-)grammar, it 
can reuse and, optionally, extend or override the productions of the 
super-grammar. This influences the syntax through the generated 
parser and the integrated AST infrastructure, but also affects many 
other parts of the language-processing infrastructure generated from 
a grammar. Multi-inheritance in grammars can be used to compose 
two independently developed grammars and through this, realize 
language embedding. Therefore, the composition operator for 
embedding a MontiCore grammar into another MontiCore grammar 
produces a new grammar that inherits from both source grammars 
[Butting et al. 2019]. Furthermore, a grammar production integrating 
extension point and extension are generated, depending on the kind 
of syntax extension point (e.g., an interface production) and the kind 
of extension (e.g., a parser production). 

In the context of language composition, we distinguish between 
intra-language and inter-language context conditions. Intra-language 
context conditions check the well-formedness of the syntax of a single 
language component, while inter-language context conditions affect 
syntax elements of more than one language component. Intra-
language context conditions are part of a language component, 
whereas we regard inter-language context conditions as part of the 
configuration of the composition. Context conditions in MontiCore are 
evaluated against the abstract syntax by means of a visitor. To this 
end, composing context conditions of different language components 
requires the composition of the underlying visitor infrastructures. 
This is realized via inheritance and delegator visitors [Heim et al. 

Composing grammars 

Composing context 
conditions 
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2016]. Once the visitors are integrated, the context conditions can be 
checked against the integrated structure. 

Code generators are commonly used for translating models into 
implementations that can be executed on embedded systems. 
However, few techniques for the composition of code generators exist, 
and these rarely enable composition of independent code generators. 
Code generator composition is challenging, as the result of the 
composition should produce correct code. While this is generally 
impossible, we can support language engineers in developing code 
generators that produce code that is structurally compatible with 
code generated by other code generators [Butting et al. 2018a]. This 
is realized by requiring each generator to indicate an artifact interface 
to which the generated code conforms. An adapter resolves potential 
conflicts between the artifact interfaces of two different code 
generators. 

A further challenge in code generator composition is the 
coordination of the code generator execution. For some forms of 
composition, such as language embedding, code generators have to 
exchange information and thus comply with each other in a similar 
way to the generated code. To this end, generators provide generator 
interfaces to which the code generators conform. Again, potential 
conflicts between two code generators that are to be composed are 
resolved via adapters. 

11.5 Language Product Lines 

Reuse of languages or language parts is not only beneficial for 
language engineers due to the decreasing development cost and the 
increase in the language tooling quality, but also for language users, 
as the accidental complexity [Brooks 1987] posed by the effort of 
learning the syntax of new languages is reduced. In the context of 
engineering CESs and CSGs, language product lines are very 
applicable. Despite the variety in fields of application for which CESs 
and CSGs are employed, their model-driven engineering often relies 
on the same general-purpose modeling languages (e.g., UML) to 
describe aspects such as the geometry of physical entities of CESs, 
their system functions, collaboration functions, their communication 
paradigms, architectures, goals, capabilities, and much more. 

This raises a gap between the problems in the application domain 
and the ability to express these in the modeling languages in a 
compact and understandable way. Enriching general purpose 

Composing code 
generators 
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modeling language with application domain-specific language 
concepts helps to bridge this gap. Modular language engineering in 
terms of developing language components as presented in Section 
11.3 and composing these as presented in Section 11.4 can be used to 
realize product lines of languages [Butting et al. 2019]. Such language 
product lines enable systematic reuse of language components for a 
family of similar languages and, therefore, enable individual tailoring 
of the modeling languages to the application fields of CESs and CSGs. 

The variability of the language product line in terms of language 
features is modeled as a feature diagram, where language features are 
realized as language components. Therefore, a binding of the product 
line connects features with the language components that realize 
them. Furthermore, the binding configures the pairwise language 
component compositions that occur in all products of the language 
product line. 

 

Example 11-7: MyADL language product line 

The company developing CESs described in Example 11-1 can employ a 
language product line for their ADLs to eliminate clones of redundant 
language parts and the resulting effort in maintaining and evolving these 
individually. All ADL variants have a common base language, and different 
combinations of extensions to this base language are considered in the 
product line. The optional behavior of software components can be 
modeled via input-output automata, an action language, or both. Some 
application scenarios benefit from using SI units as data types for 
messages sent via ports. 

 

 

 

 

 

 

A product of the product line is specified via a feature 
configuration. The language components of all selected features are 
composed in pairs, as specified via the binding. The result of 
composition is a language component. Derivation of languages from 

Modeling language 
product lines 



250 Language Engineering for Heterogeneous Collaborative Embedded Systems 

the product line is automated, but the resulting language component 
can be customized manually (optional). Engineering reusable 
language components and using these within language product lines 
fosters separation of concerns among different roles, as depicted in 
Figure 11–8. 

 Language engineers develop language components and their 
extension points independently of one another. The artifacts of a 
language component are identified and collected via an artifact data 
extractor. 

 A product line manager selects suitable language components for a 
field of application scenarios, arranges these in the form of a feature 
model, and configures the composition of the language components in 
a binding. 
 

 A language product owner selects features of a language product 
line that are useful for a concrete application and, on a pushbutton 
basis, can use generated language-processing tools for this language. 
The generated tooling can be customized (optional). In Figure 11–8, 
the language product is an ADL with the name “MontiArc.” 

 A modeler uses a language product through the generated language-
processing tools without being aware of the language product line — 
for instance, to model specific system functions or collaboration 
functions of collaborative transport robot systems. 

 Fig. 11–8: Processes and stakeholders involved in engineering language product lines 
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11.6 Conclusion 

We have presented concepts for composing modeling languages from 
tried-and-tested language components. Leveraging these concepts 
facilitates engineering of the most suitable domain-specific languages 
for the different stakeholders involved in systems engineering. This 
mitigates an important barrier in the model-driven development of 
CESs and CSGs. Future research should encompass generalization of 
language composition beyond technical spaces and support for 
language evolution. 
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