

Language Engineering for
Heterogeneous Collaborative

Embedded Systems

At the core of model-driven development (MDD) of collaborative embedded systems
(CESs) are models that realize the different participating stakeholders’ views of the
systems. For CESs, these views contain various models to represent requirements, logical
functions, collaboration functions, and technical realizations. To enable automated
processing, these models must conform to modeling languages. Domain-specific
languages (DSLs) that leverage concepts and terminology established by the stakeholders
are key to their success. The variety of domains in which CESs are applied has led to a
magnitude of different DSLs. These are manually engineered, composed, and customized
for different applications, a process which is costly and error-prone. We present an
approach for engineering independent language components and composing these using
systematic composition operators. To support structured reuse of language components,
we further present a methodology for building up product lines of such language
components. This fosters engineering of collaborative embedded systems with modeling
techniques tailored to each application.

Arvid Butting, RWTH Aachen University
Andreas Wortmann, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_11

239

[BW21] A. Butting, A. Wortmann:
Language Engineering for Heterogeneous Collaborative Embedded Systems.
In: Model-Based Engineering of Collaborative Embedded Systems, pp. 239–253, Springer, Jan. 2021.
www.se-rwth.de/publications/

https://doi.org/10.1007/978-3-030-62136-0_11
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_11&domain=pdf

240 Language Engineering for Heterogeneous Collaborative Embedded Systems

11.1 Introduction

Engineering collaborative embedded systems (CESs) and
collaborative system groups (CSGs) usually demands the cooperation
of experts from various domains with different backgrounds,
methods, and solution paradigms that contribute to different
viewpoints (e.g., requirements, functional, logical, or technical
viewpoints) of the system [Pohl et al. 2012].

The need to translate domain-specific solution concepts into
software artifacts introduces a conceptual gap between the experts’
problem domains and the solution domain of software engineering.
This gap can give rise to accidental complexities [France and Rumpe
2007] due to the mismatch of solving problem domain challenges with
solution domain (programming) concepts.

Model-driven development (MDD) [France and Rumpe 2007] is a
software engineering paradigm that lifts models to the primary
development artifacts. In contrast to program code, which reifies
concepts of the solution domain, models can leverage domain-specific
concepts and terminology to express concepts of the problem domain,
which facilitates contribution by domain experts. Models can also be
more abstract and leave implementation details to smart software
engineering tools (e.g., model transformations or code generators).

To enable models to be processed automatically, they must
conform to explicit modeling languages [Hölldobler et al. 2018].
Engineering modeling languages is a challenging endeavor due to the
multitude of formalisms and technologies involved, such as (i)
grammars [Hölldobler and Rumpe 2017] or metamodels [Eysholdt et
al. 2009] to define the languages’ syntax, (ii) the Object Constraint
Language (OCL) [Cabot and Gogolla 2012] or programming languages
to define their well-formedness, and (iii) code generators [Kelly and
Tolvanen 2008] or model transformations [Mens and van Gorp 2006]
to realize their semantics (in the sense of meaning [Harel and Rumpe
2004]). As “software languages are software too” [Favre 2005], they
are also subject to all the challenges typical to complex software as
well. And similar to general software engineering, reuse is also the key
to the efficient engineering of modeling languages. This holds
especially for engineering collaborative embedded systems under the
contribution of domain experts through viewpoints that are realized
via domain-specific languages.

Collaborative
embedded systems

Model-driven
development

11.1 Introduction 241

Software language engineering (SLE) [Hölldobler et al. 2018] is a
field of research that investigates the engineering, maintenance,
evolution, and reuse of software languages. Research in SLE has
produced a variety of solutions for reusing languages and language
parts. However, the approaches for reusing complete (comprising
realizations of syntax and semantics) language parts are missing,
which severely hampers modeling for CESs and CSGs.

To address this, we present a method for modularizing modeling
languages as language components, composing these, and ultimately
building product lines of modeling languages to increase the reuse of
languages beyond clone-and-own [Dubinsky et al. 2013].

Example 11-1: A family of architecture description languages
Consider a company that develops software for various kinds of CESs that
operate in a smart factory. The company employs an architecture
description language (ADL) [Medvidovic and Taylor 2000] to develop
software component models for the software architecture of the CESs. The
different kinds of CESs yield particularities regarding their software
architecture. For some systems, it should be possible to perform dynamic
reconfiguration of their software architecture based on mode automata
[Butting et al. 2017], while for other systems, this is not allowed due to
security restrictions. Similarly, some systems support dynamic re-
deployment of software components to other systems, while this is not
intended for other systems. To reify this properly in the models, the
company uses different variants of ADLs — that is, variants of logical and
technical viewpoints [Pohl et al. 2012]. These variants have several
common language concepts and share large parts of the code generators
employed. Without proper language modularization and reuse, these
language variants co-exist in the form of cloned-and-owned, monolithic
software tools.

In the following, Section 11.2 introduces the MontiCore language
workbench, which our solution builds upon. Section 11.3 then
introduces our notion of language components, before Section 11.4
explains their composition. Section 11.5 explains how we leverage
composable language components to structure language reuse
through explicit variability models, which we employed in CrESt to
develop variants [Butting et al. 2019] of the MontiArc ADL [Haber et
al. 2012] tailored to the use cases of “Autonomous Transport Robots”
and “Adaptable and Flexible Factory” (cf. Chapter 1). Section 11.6
concludes this chapter.

Software
language
engineering

242 Language Engineering for Heterogeneous Collaborative Embedded Systems

11.2 MontiCore

MontiCore [Hölldobler and Rumpe 2017] is a language workbench
[Erdweg et al. 2015] that facilitates the engineering of compositional
modeling languages. MontiCore languages are based on a context-free
grammar (CFG) that defines the (concrete and abstract) syntax of the
respective language to which its models must conform. MontiCore
uses this CFG to generate a parser that can process models of that
language, along with abstract syntax classes that can store the
machine-processable representation of the models once they have
been parsed.

After parsing, the models are translated into abstract syntax trees
(ASTs) — that is, instances of the abstract syntax classes generated
from the grammar. Using MontiCore’s extensional function library,
these models are checked for well-formedness and other properties,
transformed, and ultimately translated into other models, reports,
source code, or other target representations. All of these activities rely
on MontiCore’s modular visitors that process parts of the AST. Visitors

[Gamma et al. 1995] separate operations on object structures from the
object structures themselves and thus enable the addition of further
operations without requiring modifications to the object structures.

To facilitate operation on different nodes of the AST, MontiCore
supports the definition of symbols—meaningfully abstracted model
parts—based on grammar rules. Symbols are stored in symbol tables
and can be resolved within a language as well as by other languages,
enabling different forms of language composition.

Using CFGs and symbol tables, MontiCore supports the modular
composition of languages through extension, embedding, and
aggregation: language extension enables a CFG to extend another CFG,
thereby inheriting all productions of the extended CFG. This process
produces a new AST that may reuse productions of the extended CFG.
This is useful, for example, for extending a base language in different
ways with domain-specific extensions that would otherwise

Abstract syntax tree

Symbols

Fig. 11–2: The quintessential components of MontiCore’s language processing tool
chain support model loading, checking, and transformation

11.3 Language Components 243

convolute the base. Language embedding is the integration of selected
productions of the client CFG into extension points of the host CFG.
The resulting AST is the AST of the host CFG with a sub-AST of the
client CFG embedded into selected nodes. This supports the creation
of (incomplete) languages that provide an overall structure but
demand (domain-specific) extension. Language aggregation is the
integration of languages through references between their modeling
elements. These references are resolved using MontiCore’s symbol
table framework and do not yield integrated ASTs. Instead, the models
of the integrated languages remain separate artifacts. This supports,
for example, the separation of different, yet integrated, concerns in
models, such as structure and behavior.

For well-formedness checking and code generation, MontiCore
provides generic infrastructures that can be customized by adding
well-formedness rules (context conditions) and FreeMarker
[Forsythe 2013] templates that define the code generation by
processing the AST using template control structures and target
language text. Consequently, a MontiCore language usually comprises
a CFG, context conditions, and FreeMarker templates.

11.3 Language Components

Component-based software engineering is a paradigm for increasing
software reusability by means of modularization. This paradigm is
successfully applied in different domains and well suited for the
engineering of embedded systems. The techniques of this paradigm
can be applied to software languages as well. As a consequence, all
advantages of component-based software engineering, such as
increased reusability and better maintainability, can be leveraged to
facilitate SLE. Similar to [Clark et al. 2015], we use the term language
component for modular, composable software language realizations.

Definition 11-3: Language component
A language component is a reusable unit encapsulating a potentially
incomplete language definition. A language definition comprises the
realization of syntax and semantics of a (software) language.

This definition reduces the notion of language components to the
constituents of the language infrastructure without being dependent
on a specific technological space [Kurtev et al. 2002]. Ultimately, this
means that a language component is a set of artifacts that form a

244 Language Engineering for Heterogeneous Collaborative Embedded Systems

reusable unit. This set includes both handwritten as well as generated
artifacts of language-processing tooling. For textual languages, it may
include, for example, a grammar as a description of the syntax, the
source code realizing well-formedness rules, a generated parser, and
a generated AST data structure. In other technological spaces, a
language component may contain a metamodel instead of a grammar
and parser. Some language workbenches, such as MontiCore, enable
language engineers to customize generated artifacts. Such
handwritten customizations are part of a language component as well.

Ideally, software components are black boxes whose internal
workings are not relevant in their environment [McIlroy 1968].
Consequently, language components may also hide implementation
details from their environment. To this end, language engineers can
plan explicit extension points of a language component for which
other language components can provide extensions. The realization of
the extension points and extensions depends on the technological
space used to realize the language components. In MontiCore, for
example, syntax extension points can be realized through
underspecification in grammars realized as interfaces or external
productions [Hölldobler and Rumpe 2017]. Other language
constituents, such as code generators, may yield different
mechanisms for extension points and extensions.

Fig. 11–4: Artifacts of a language component can be distributed among software
modules and some artifacts belong to multiple language components

A language component consists of many interrelated artifacts that
may be distributed across different software modules and a single
software module may contain artifacts for one or more language
components (cf. Figure 11–4). This is due to the fact that the
modularization of software into modules is typically driven by build
tools (e.g., Maven or Gradle) that intend a different level of granularity.

Extension points

Artifact organization

11.3 Language Components 245

Furthermore, an artifact may be part of multiple language
components.

Example 11-5: BaseADL language component in MontiCore
The BaseADL language component contains a context-free grammar to
describe the concrete and abstract syntax of a basic architecture
description language (ADL). From this grammar, MontiCore generates a
set of AST and symbol table classes that represent the abstract syntax data
structure, a parser, a visitor infrastructure, and an infrastructure for
realizing and checking context conditions. The handwritten context
conditions, code generator classes, and templates are part of the language
component as well.

In this example, the language engineers have planned two extension
points for the BaseADL language component. One extension point can be
extended to introduce a new notation for components and another one to
introduce a new kind of connector. The extension point for components,
for example, can be extended to add dynamic components that contain a
mode automaton (cf. Example 11-1).

To identify, analyze, compose, and distribute language
components, the large number of source code artifacts that realize the
language component have to be extracted from the software modules.
The constituents of a language component can be described and typed
through a suitable artifact model [Butting et al. 2018b]. This produces
the opportunity to identify the constituents of a language component
by means of an artifact data extractor in a semi-automated process.
This process collects potential artifacts of a language component,
starting with a central artifact such as a grammar or a metamodel.
With an underlying artifact model, an artifact data extractor can
extract all associations from this artifact to other artifacts. For
instance, in the technological space of MontiCore, this automated

246 Language Engineering for Heterogeneous Collaborative Embedded Systems

extraction handles the identification of all Java classes that realize
context conditions that can be checked against abstract syntax classes
generated from a grammar.

However, the result of this automatic extraction (1) can produce
artifacts that are not intended to be part of a language component or
(2) can lack artifacts intended to be part of the language component.
Therefore, handwritten adjustments of this result must be considered.
In other technological spaces, these data extractors must be provided
accordingly.

11.4 Language Component Composition

In general, the engineering of language components as described in
Section 11.3 is the basis for building languages by composing
language components. There are various forms of language

composition [Erdweg et al. 2012] that are supported by different
language workbenches [Méndez-Acuña et al. 2016]. Some forms of
language composition produce composed languages that can process
integrated model artifacts, while other forms—such as language
aggregation—integrate languages whose models remain in individual
artifacts. Certain kinds of language composition—for example,
language extension and language inheritance—require that one
language depends on another language. These forms are not suitable
for independent engineering of the participating languages and, when
applied to language components, may introduce dependencies to the
language component context. Some forms of language composition
also require configuration with integration “glue,” such as adapters
between two kinds of symbols [Nazari 2017]. Therefore, care must be
taken to select a suitable form of language composition.

For the composition of language components, we generalize the
concrete form of language composition and denote that each
composition of two language components is specified through a

Forms of language
composition

Language component
composition operators

Fig. 11–6: Composing two language components A and B requires composition of their
constituents

11.4 Language Component Composition 247

configuration, as depicted in Figure 11–6. The configuration connects
an extension point of a language component with an extension of
another language component and states which form of composition
has to be applied. Depending on the form of composition, the
composition may also have to be configured with glue code. The actual
composition of two language components is realized through the
composition of their constituents. To this end, composition operators
must be defined for each kind of constituent individually.

For example, MontiCore enables the composition of language
components through embedding. The actual embedding has to be
performed for handwritten constituents—such as grammars, context
conditions, and generators—but also for generated constituents such
as the AST data structures, the symbol table, and the visitor
infrastructure. Thus, for all these constituents, an individual
composition operator that realizes the embedding must be defined.

MontiCore enables grammars to inherit from one or more other
grammars. If a grammar inherits from another (super-)grammar, it
can reuse and, optionally, extend or override the productions of the
super-grammar. This influences the syntax through the generated
parser and the integrated AST infrastructure, but also affects many
other parts of the language-processing infrastructure generated from
a grammar. Multi-inheritance in grammars can be used to compose
two independently developed grammars and through this, realize
language embedding. Therefore, the composition operator for
embedding a MontiCore grammar into another MontiCore grammar
produces a new grammar that inherits from both source grammars
[Butting et al. 2019]. Furthermore, a grammar production integrating
extension point and extension are generated, depending on the kind
of syntax extension point (e.g., an interface production) and the kind
of extension (e.g., a parser production).

In the context of language composition, we distinguish between
intra-language and inter-language context conditions. Intra-language
context conditions check the well-formedness of the syntax of a single
language component, while inter-language context conditions affect
syntax elements of more than one language component. Intra-
language context conditions are part of a language component,
whereas we regard inter-language context conditions as part of the
configuration of the composition. Context conditions in MontiCore are
evaluated against the abstract syntax by means of a visitor. To this
end, composing context conditions of different language components
requires the composition of the underlying visitor infrastructures.
This is realized via inheritance and delegator visitors [Heim et al.

Composing grammars

Composing context
conditions

248 Language Engineering for Heterogeneous Collaborative Embedded Systems

2016]. Once the visitors are integrated, the context conditions can be
checked against the integrated structure.

Code generators are commonly used for translating models into
implementations that can be executed on embedded systems.
However, few techniques for the composition of code generators exist,
and these rarely enable composition of independent code generators.
Code generator composition is challenging, as the result of the
composition should produce correct code. While this is generally
impossible, we can support language engineers in developing code
generators that produce code that is structurally compatible with
code generated by other code generators [Butting et al. 2018a]. This
is realized by requiring each generator to indicate an artifact interface
to which the generated code conforms. An adapter resolves potential
conflicts between the artifact interfaces of two different code
generators.

A further challenge in code generator composition is the
coordination of the code generator execution. For some forms of
composition, such as language embedding, code generators have to
exchange information and thus comply with each other in a similar
way to the generated code. To this end, generators provide generator
interfaces to which the code generators conform. Again, potential
conflicts between two code generators that are to be composed are
resolved via adapters.

11.5 Language Product Lines

Reuse of languages or language parts is not only beneficial for
language engineers due to the decreasing development cost and the
increase in the language tooling quality, but also for language users,
as the accidental complexity [Brooks 1987] posed by the effort of
learning the syntax of new languages is reduced. In the context of
engineering CESs and CSGs, language product lines are very
applicable. Despite the variety in fields of application for which CESs
and CSGs are employed, their model-driven engineering often relies
on the same general-purpose modeling languages (e.g., UML) to
describe aspects such as the geometry of physical entities of CESs,
their system functions, collaboration functions, their communication
paradigms, architectures, goals, capabilities, and much more.

This raises a gap between the problems in the application domain
and the ability to express these in the modeling languages in a
compact and understandable way. Enriching general purpose

Composing code
generators

11.5 Language Product Lines 249

modeling language with application domain-specific language
concepts helps to bridge this gap. Modular language engineering in
terms of developing language components as presented in Section
11.3 and composing these as presented in Section 11.4 can be used to
realize product lines of languages [Butting et al. 2019]. Such language
product lines enable systematic reuse of language components for a
family of similar languages and, therefore, enable individual tailoring
of the modeling languages to the application fields of CESs and CSGs.

The variability of the language product line in terms of language
features is modeled as a feature diagram, where language features are
realized as language components. Therefore, a binding of the product
line connects features with the language components that realize
them. Furthermore, the binding configures the pairwise language
component compositions that occur in all products of the language
product line.

Example 11-7: MyADL language product line

The company developing CESs described in Example 11-1 can employ a
language product line for their ADLs to eliminate clones of redundant
language parts and the resulting effort in maintaining and evolving these
individually. All ADL variants have a common base language, and different
combinations of extensions to this base language are considered in the
product line. The optional behavior of software components can be
modeled via input-output automata, an action language, or both. Some
application scenarios benefit from using SI units as data types for
messages sent via ports.

A product of the product line is specified via a feature
configuration. The language components of all selected features are
composed in pairs, as specified via the binding. The result of
composition is a language component. Derivation of languages from

Modeling language
product lines

250 Language Engineering for Heterogeneous Collaborative Embedded Systems

the product line is automated, but the resulting language component
can be customized manually (optional). Engineering reusable
language components and using these within language product lines
fosters separation of concerns among different roles, as depicted in
Figure 11–8.

 Language engineers develop language components and their
extension points independently of one another. The artifacts of a
language component are identified and collected via an artifact data
extractor.

 A product line manager selects suitable language components for a
field of application scenarios, arranges these in the form of a feature
model, and configures the composition of the language components in
a binding.

 A language product owner selects features of a language product
line that are useful for a concrete application and, on a pushbutton
basis, can use generated language-processing tools for this language.
The generated tooling can be customized (optional). In Figure 11–8,
the language product is an ADL with the name “MontiArc.”

 A modeler uses a language product through the generated language-
processing tools without being aware of the language product line —
for instance, to model specific system functions or collaboration
functions of collaborative transport robot systems.

 Fig. 11–8: Processes and stakeholders involved in engineering language product lines

251

11.6 Conclusion

We have presented concepts for composing modeling languages from
tried-and-tested language components. Leveraging these concepts
facilitates engineering of the most suitable domain-specific languages
for the different stakeholders involved in systems engineering. This
mitigates an important barrier in the model-driven development of
CESs and CSGs. Future research should encompass generalization of
language composition beyond technical spaces and support for
language evolution.

11.7 Literature
[Brooks 1987] F. P. Brooks, Jr.: No Silver Bullet: Essence and Accidents of Software

Engineering, IEEE Computer (20:4), 1987, pp 10-19.

[Butting et al. 2017] A. Butting, R. Heim, O. Kautz, J. O. Ringert, B. Rumpe, A. Wortmann:
A Classification of Dynamic Reconfiguration in Component and Connector
Architecture Description Languages. In: Proceedings of MODELS 2017. Workshop
ModComp, CEUR 2019, 2017.

[Butting et al. 2018a] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Modeling Language Variability with Reusable Language Components, In:
International Conference on Systems and Software Product Line (SPLC'18), 2018,
ACM.

[Butting et al. 2018b] A. Butting, T. Greifenberg, B. Rumpe, A. Wortmann: On the Need
for Artifact Models in Model-Driven Systems Engineering Projects. In: Software
Technologies: Applications and Foundations, Springer, 2018, pp. 146-153.

[Butting et al. 2019] A. Butting, R. Eikermann, O. Kautz, B. Rumpe, A. Wortmann:
Systematic Composition of Independent Language Features. In: Journal of Systems
and Software, 152, 2019, pp. 50-69.

[Cabot and Gogolla 2012] J. Cabot, M. Gogolla: Object Constraint Language (OCL): A
Definitive Guide. In: International School on Formal Methods for the Design of
Computer, Communication and Software Systems, Springer, Berlin, Heidelberg,
2012, pp. 58-90.

[Clark et al. 2015] T. Clark, M. v. d. Brand, B. Combemale, B. Rumpe: Conceptual Model
of the Globalization for Domain-Specific Languages. In: Globalizing Domain-Specific
Languages (Dagstuhl Seminar), LNCS 9400, Springer, 2015, pp. 7-20.

[Dubinsky et al. 2013] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski, M. Becker, K.
Czarnecki: An Exploratory Study of Cloning in Industrial Software Product Lines.
In: Proceedings of the 2013 17th European Conference on Software Maintenance
and Reengineering, CSMR ’13, Washington, DC, USA, 2013, pp. 25–34.

[Erdweg et al. 2012] S. Erdweg, P. G. Giarrusso, T. Rendel: Language Composition
Untangled. In: Proceedings of the Twelfth Workshop on Language Descriptions,
Tools, and Applications, 2012, pp. 1-8.

11.7 Literature

252 Language Engineering for Heterogeneous Collaborative Embedded Systems

[Erdweg et al. 2015] S. Erdweg et al.: Evaluating and Comparing Language
Workbenches: Existing Results and Benchmarks for the Future. In: Computer
Languages, Systems & Structures 44, 2015, pp. 24-47.

[Eysholdt et al. 2009] M. Eysholdt, S. Frey, W. Hasselbring: EMF Ecore based meta model
evolution and model co-evolution. In: Softwaretechnik-Trends 29.2, 2009, pp. 20-
21.

[Favre 2005] J. M. Favre: Languages Evolve Too! Changing the Software Time Scale. In:
Eighth International Workshop on Principles of Software Evolution (IWPSE'05)
IEEE, 2005, pp. 33-42.

[Forsythe 2013] C. Forsythe: Instant FreeMarker Starter. Packt Publishing Ltd, 2013.

[France and Rumpe 2007] R. France, B. Rumpe: Model-Driven Development of Complex
Software: A Research Roadmap. In: Future of Software Engineering 2007 at ICSE.
Minneapolis, IEEE, 2007, pp. 37-54.

[Gamma et al. 1995] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns.
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[Haber et al. 2012] A. Haber, J. O. Ringert, B. Rumpe: MontiArc - Architectural Modeling
of Interactive Distributed and Cyber-Physical Systems. Technical Report AIB-2012-
03, RWTH Aachen University, 2012.

[Harel and Rumpe 2004] D. Harel, B. Rumpe: Meaningful Modeling: What's the
Semantics of "Semantics"?. In: IEEE Computer, Volume 37, No. 10, 2004, pp 64-72.

[Heim et al. 2016] R. Heim, P. Mir Seyed Nazari, B. Rumpe, A. Wortmann: Compositional
Language Engineering using Generated, Extensible, Static Type-Safe Visitors. In:
Conference on Modelling Foundations and Applications (ECMFA'16), LNCS 9764.
Springer, July 2016, pp. 67–82.

[Hölldobler and Rumpe 2017] K. Hölldobler, B. Rumpe: MontiCore 5 Language
Workbench Edition 2017. In: Aachener Informatik-Berichte, Software Engineering,
Band 32. Shaker Verlag, 2017.

[Hölldobler et al. 2018] K. Hölldobler, B. Rumpe, A. Wortmann: Software Language
Engineering in the Large: Towards Composing and Deriving Languages. In: Journal
of Computer Languages, Systems & Structures, 54, Elsevier, 2018, pp. 386-405.

[Kelly and Tolvanen 2008] S. Kelly, J. P. Tolvanen: Domain-Specific Modeling: Enabling
Full Code Generation. John Wiley & Sons, 2008.

[Kurtev et al. 2002] I. Kurtev, J. Bézivin, M. Aksit: Technological Spaces: An Initial
Appraisal. In: 4th International Symposium on Distributed Objects and
Applications (DOA), 2002.

[McIlroy 1968] M. D. McIlroy: Mass-Produced Software Components, Software
Engineering Concepts and Techniques. NATO Conference on Software Engineering,
Van Nostrand Reinhold, 1976, pp. 88-98.

[Medvidovic and Taylor 2000] N. Medvidovic, R. N. Taylor: A Classification and
Comparison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering 26.1, 2000, pp. 70-93.

[Méndez-Acuña et al. 2016] D. Méndez-Acuña, J. A. Galindo, T. Degueule, B. Combemale,
B. Baudry: Leveraging Software Product Lines Engineering in the Development of
External DSLs: A Systematic Literature Review. Computer Languages, Systems &
Structures, 46, 2016, pp. 206-235.

11.7 Literature 253

[Mens and van Gorp 2006] T. Mens, P. Van Gorp: A Taxonomy of Model Transformation.
Electronic notes in theoretical computer science 152, 2006, pp. 125-142.

[Nazari 2017] P. Mir Seyed Nazari: MontiCore: Efficient Development of Composed
Modeling Language Essentials. In: Aachener Informatik-Berichte, Software
Engineering, Band 29. Shaker Verlag, 2017.

[Pohl et al. 2012] K Pohl, H. Hönninger, R. Achatz, M. Broy (Eds.): Model-Based
Engineering of Embedded Systems, Springer-Verlag, Berlin Heidelberg, 2012.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	11 Language Engineering for Heterogeneous Collaborative Embedded Systems
	11.1 Introduction
	11.2 MontiCore
	11.3 Language Components
	11.4 Language Component Composition
	11.5 Language Product Lines
	11.6 Conclusion
	11.7 Literature

