
Int J Software Informatics, Volume 5, Issue 1-2 (2011), Part I, pp. 29–53 E-mail: ijsi@iscas.ac.cn
International Journal of Software and Informatics, ISSN 1673-7288 http://www.ijsi.org
c©2011 by ISCAS. All rights reserved. Tel: +86-10-62661040

A Little Synopsis on Streams, Stream Processing
Functions, and State-Based Stream Processing

Jan Oliver Ringert and Bernhard Rumpe

Software Engineering

RWTH Aachen University, Germany

http://www.se-rwth.de/

Abstract Specification of interactive distributed systems has been a challenge for decades.

We present an overview of the specification techniques for these systems based on dataflow

networks and stream processing. It covers models of streams and specification of stream

processing systems that are related to and based on the development method Focus invented

by Manfred Broy and his group. We introduce a basic set of manipulator operations for

streams, stream bundles, stream processing functions, and give a summary of related state-

based specification techniques. Furthermore we sketch an overview of implementations for

the Focus framework. These range from formalizations using interactive proof assistants

and model checkers to the modeling IDE AutoFocus.

Key words: Focus, stream processing, automata, semantics

J. O. Ringert and B. Rumpe. Jan Oliver Ringert, et al.: A little synopsis on

streams, stream processing functions, Int J Software Informatics, 2011, 5(1-2

(2011), Part I): 29–53. http://www.ijsi.org/1673-7288/5/i75.htm

“Software development is a difficult and complex engineering task. It would be very

surprising if such a task could be carried out properly without a proper theoretical

framework.”, Manfred Broy [Bro03, Bro05]

1 Introduction

The specification of large and safety critical hard- and software systems is an on-

going challenges that has been addressed over the last decades in computer science

and software/hardware systems engineering. Specific challenges arise from the de-

sign, specification and verification of reactive systems [HP85, BS01] and real-time

systems [MS97, Bro97, Lee09]. Reliable distributed software has now become one of

the big challenges of software development: Not only traditional embedded systems,

such as plant construction, vehicle, aircraft and train construction but nowadays also

reliable internet services, many-cores, scientific and cloud-computing are heavily dis-

tributed reactive systems without shared memory, but communication via networks

of messages.

Stream processing models have been used to approach these challenges and dis-

played some stories of success in the engineering of software systems as well as hard-

ware design and verification. An early survey on the advances of stream processing of

This work is sponsored by DFG GK/1298 AlgoSyn.
Corresponding author: Bernhard Rumpe, Email: rumpe@se-rwth.de, http://www.se-rwth.de/
Received 2010-10-13; Accepted 2011-01-03; Final revised version 2011-01-17

[RR11] J. O. Ringert, B. Rumpe
A Little Synopsis on Streams, Stream Processing Functions, and State-Based Stream Processing
In: International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I,
pp. 29-53. July 2011. Also available from: IJSI.
www.se-rwth.de/publications

30 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

the last century is given in [Ste97]. Manfred Broy and his group are major players in

the exploration of possible semantic models as well as specification and verification

techniques for the modeled systems. As these techniques evolve over time, this spe-

cial issue is a great opportunity to give a little synopsis, of what forms of streams,

operators and specification techniques have been defined and proven useful.

The history of stream processing systems has its roots in Kahn networks [Kah74,

KM77], which describe reactive systems as networks of concurrent stream processors

using fixed point semantics. Streams are possibly infinite sequences of data messages

and can be used to define the behavior of systems modeled as dataflow networks. They

are used to observe the interaction between components constituting the network.

These traces are built of discrete messages or continuous data exchanged on channels

between components. Traces are formalized mathematically in a number of theories,

which can be of diverse nature as described in Sect. 2.

Distributed reactive systems are composed of entities described as actors, corou-

tines, processes, stream processing functions, agents or simply components [Kah74,

KM77, Bur75, BDD+92, Rum96]. In different stages of a system development these

are formalized using a number of specification methods (see Sect. 3).

In detailed design reactive systems can be modeled using states, transitions,

input and output operations as known from statecharts [HP85, Har87, OMG07]. This

methodology has been used, e.g., in [Bro95, GR95] and extended to I/Oω automata

with fully formalized semantics in [Rum96]. The semantics of I/Oω automata is given

by a translation to sets of stream processing functions. An overview over state- and

transition-based modeling of dataflow networks is given in Sect. 4 and related ideas

of suitable models and tools are presented.

Modeling systems as entities with input consumption and output production

has motivated the term of stream processing functions [Bur75, Bro81] that describe

a component’s dataflow reaction to given input sequences. Extensions of this idea

together with elements of system development processes such as creating specifications

and successive refinement steps have lead to the Focus framework [BDD+92, BS01].

This framework is introduced in Sect. 3 and an overview of its tool support is given

in Sect. 5.

2 Streams and Stream Processing

A stream describes the communication history on a channel connecting entities of

a dataflow network. Such a history describes the observation of communication be-

tween two agents, interaction of software components, events in distributed pieces of

hardware, etc. Examples of special types of dataflow networks are among others:

• sensors, control units, and actuators in automobiles exchanging data values and

control signals,

• real-time software controlling actions of actuators depending on sensors’ data,

• interaction between objects via message passing in object oriented software sys-

tems or

• messages transmitted between web services in cloud computing applications.

The history on a directed channel connecting two components in a network is

modeled as a stream of messages. The general notion of a stream is a possibly infinite

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 31

Topology Kind of Stream Basic Form Application Domain

discrete event stream Mω software systems

discrete time-sync. stream N→M time synchronous systems

discrete timed event stream Mω := Mω
X timed specification1

discrete time slice stream N→M∗ time pulsed specification

dense hybrid streams R+ →M hybrid hardware systems

dense signal set streams R+ → ℘(M) discrete/hybrid systems

super dense super dense streams R+ →M∗ hybrid systems

Table 1. Overview of kinds of streams

list of elements of some domain M . This domain M can according to the specified

network be an abstraction of:

• event signals, e.g., messages on a bus,

• continuous values measured by sensors and discrete event signals,

• simple messages for signaling or method invocations or

• complex data structures passed between software services.

The notation of streams as finite and infinite sequences of messages of domain M

is M∗ and M∞. Mω is used to denote both finite and infinite sequences. Despite this

general model of data histories, more detailed representations of streams are possible

and necessary for specific modeling and specification tasks (see Table 1).

Whereas discrete streams model systems with event occurrences at discrete points

in time, hybrid streams can have dense domains and even model continuous valued

behavior as needed to express, e.g., analogous hardware and hybrid systems.

Another dimension to distinguish between stream system models is their way

to express timing of events or values [SRS99]. The kinds of streams in Table 1 typi-

cally have further constraints regarding timing or the continuity of values on certain

intervals, discussed below.

While each of these kinds of streams has its advantages, relationships such as

embedding, refinement and abstraction help to map between these kinds. Some re-

finement and abstraction relations between stream kinds are presented in [Bro97].

This variety of streams is necessary, as the more a stream distinguishes the more ef-

fects can be expressed, but the more involved a specification of such streams typically

is. The merge anomaly [Bro88] is a famous example.

2.1 Untimed Streams

The most generic model Mω describes untimed discrete event streams. It however

cannot talk about timing and has some problems to distinguish unfinished specifica-

tions (prefixes) of communication histories and histories where nothing will happen

anymore. However, it is relatively easy to use for specification.

An algebraically sound and useful set of specification operators on streams Mω is

given in Table 2. The consolidated version shown in Table 2 is syntactically inspired

by functional languages such as Haskell and its definitions are given, e.g., in [GR07,

1 Mx is a shorthand for M ∪ {x}.

32 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

Let s, s′ ∈Mω,m ∈M,n ∈ N∞, A ∈ (M → B):

Notation Signature Functionality

〈〉 or ε sempty : Mω empty stream

m:s scons : M ×Mω →Mω append first element

ŝs′ sconc : Mω ×Mω →Mω concatenation of streams

s v s′ spref : Mω ×Mω → B prefix relation

#s ∈ N∞ slen : Mω → N∞ length of stream

shd : Mω →M first element of stream

srt : Mω →Mω stream without first element

s.n snth : N×Mω →M nth element of stream

s|n stake : N∞ ×Mω →Mω prefix of length n

sdrop : N∞ ×Mω →Mω remove first n elements

mn sntimesm : N∞ ×M →Mω message iterated n times

sn sntimes : N∞ ×Mω →Mω stream iterated n times

f ∗ s smap : (M →M)×Mω →Mω elementwise function application

siterate : (M →M)×M →Mω infinite iteration of function

Ass sfilter : (M → B)×Mω →Mω filtering function

stakewhile : (M → B)×Mω →Mω prefix where predicate holds

sdropwhile : (M → B)×Mω →Mω drop prefix while predicate holds

α.s srcdups : Mω →Mω remove duplicates

Table 2. Operations on discrete event streams

GGR06], but not all of them are realizable (see Sect. 3.1). Quite a range of laws apply,

some more important but rather obvious ones are given in Table 3.

2.2 Discrete Timed Streams

We distinguish three kinds of discrete event streams with timing information: time

synchronous, time slice and timed event streams.

A function N → M is typically used to model time synchronous streams, where

there exists exactly one event at every discrete point of time. While N→M is techni-

cally isomorphic to the subset of infinite streams from Mω, its semantic interpretation

differs, as we assume a pulse driven system with one message per pulse, like in elec-

tronic circuits. A pseudo message ⊥ can be used to model time slices, where no real

message is present: N→M⊥. Causality as well as timing issues can be modeled easily

with N → M . However, instant feedback in loops must be prevented and makes a

delay necessary in each loop. This delay is also necessary in single-component-loops,

which implies less elegant specifications. For practical purposes the set of incomplete

observations [1..n]→M should be allowed, e.g., when specifying inductively. This is

then isomorphic to Mω (modulo different interpretations in the real world).

Timing can alternatively be introduced into discrete event streams by adding

a pseudo message X (tick) denoting the end of a time interval. The tick separates

equidistant intervals that may carry finitely many messages. These messages are still

ordered, but the exact time of appearance within the time slice is left open. As a

constraint, streams are only well formed when infinite observations contain infinitely

many ticks: ∀s ∈M∞ : {X}ss = X∞.

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 33

Let s, s′, s′′ ∈Mω,m ∈M,n ∈ N, p ∈ (M → B):

Property Info

〈〉:s = s neutral empty stream

(ŝs′)̂s′′ = ŝ(s′̂s′′) associativity of concatenation

#(ŝs′) = #s+ #s′ length over concatenation

s v s′ ⇔ ∃s′′ : ŝs′′ = s′ prefix operator

shd(m:s) = m first element

srt(m:s) = s rest element

sn = ŝŝŝ ...̂s stream iterated n times

(ŝs′)|#s = s prefix

sdrop(#s, ŝs′) = s′ remove first #s elements (s is finite)

s.n = shd(sdrop(n− 1, s)) access to nth element

sntimes(∞, s) = ŝ sntimes(∞, s) stream infinite iteration

siterate(f,m) = 〈m, f(m), f(f(m)), f3(m), ...〉 function infinite iteration

ps〈〉 = 〈〉 filtering function

p(m)⇒ ps(m:s) = m:(pss)

¬p(m)⇒ ps(m:s) = pss

stakewhile(p, 〈〉) = 〈〉 prefix where predicate holds

p(m)⇒ stakewhile(p,m:s) = m:(stakewhile(p, s))

¬p(m)⇒ stakewhile(p,m:s) = 〈〉
stakewhile(p, s)̂ sdropwhile(p, s) = s stakewhile + sdropwhile

α.〈〉 = 〈〉 remove duplicates

α.(m:s) = m:(α.(λx.x 6= m)ss)

Table 3. Some properties of stream operators

Timed event streams do not represent continuous time but rather group messages

that occur in the same interval. The granularity of time, i.e., length of intervals is not

part of the stream itself but can for example be given by a system’s context. There

are also mechanisms to map between interface granularity, e.g., through application

of [Bro93] techniques.

Time synchronous streams (N → M) carry exactly one message per time unit.

Thus kind N→M is embedded in Mω by restricting the latter to exactly one message

per interval: #s =∞∧ (even(n)⇔ s.n = X).

As Mω has some interesting properties, we consolidate a set of operations in

Table 4. Please note that operations from Table 2 also apply, furthermore alternate

versions with special treatment of ticks exist (listed in the lower part of Table 4).

These versions are often helpful in writing specifications and some of their properties

are shown in Table 5.

As a third kind, we introduce time slice streams N → M∗, which look very

similar to timed event streams Mω. Actually their subsets of infinite streams are

isomorphic, as both can contain arbitrary finite sequences of messages in a time slice.

The operation slice2event maps between the two: slice2event : (N→M∗)→Mω:

slice2event(s) = s′ ⇒ ∀n ∈ N : s(n) = s′.tn

Both forms of streams differ strongly in their inductive construction, one based on

34 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

Let s, s′ ∈Mω,m ∈M,n ∈ N∞, p ∈ (M → B):

Notation Signature Functionality

X X : M tick denoting end of time interval

tscons : M∗ ×Mω →Mω prefix first time interval

ŝ ts
′ tsconc : M∗ ×Mω →Mω concatenation with finite timed prefix

#ts tslen : Mω → N∞ number of time intervals in stream

tshd : Mω →M∗ first time interval

tsrt : Mω →Mω stream without first time interval

s.tn tsnth : N×Mω →M∗ nth time interval

s↓n tstake : N∞ ×Mω →Mω first n time intervals

s↑n tsdrop : N∞ ×Mω →Mω drop first n time intervals

3s tsabs : Mω →Mω abstraction to untimed stream

delay : Mω →Mω prefixing with one empty time interval

#Xs tlen : Mω → N∞ number of data messages in stream (not X)

thd : Mω →M first data message on stream

trt : Mω →Mω stream starting after first data message

s.Xn tnth : N×Mω →M nth data message

ttake : N∞ ×Mω →Mω first n non-empty time intervals

tdrop : N∞ ×Mω →Mω stream after n non-empty time intervals

f ∗X s tmap : (M →M)×Mω →Mω message wise function application

psXs tfilter : (M → B)×Mω →Mω message wise filtering function

αX.s trcdups : Mω →Mω remove duplicate data messages

Table 4. Operations for timed streams (lower part explicitly treats X)

events, the other on time slices. So, e.g., streams 〈1, 2〉 and 〈1, 2,X〉 can only be

distinguished in the event-based case Mω. Mω describes processing of individual

events (with a tick as special event), whereas time sliced streams N → M∗ have to

describe handling of complete slices. This difference also induces different forms of

processing of messages in an implementation. Event-based systems handle events on

arrival, while time slice-based systems typically collect inputs and run on equidistant

interrupts (representing intervals). The former are more efficient, the latter more

amenable for deterministic distributed behavior modeling. It is noteworthy, that time

sliced streams N → M∗ are isomorphic to time synchronous streams N → O, when

using sequences of messages as single new message: O = M∗.

For specifications it may also be helpful to abstract from time using tsabs : Mω →
Mω (short 3) defined by 3s = Mss.

2.3 Dense Timed Streams

A further refinement of discrete time is dense time where timing information is

not restricted to abstract time intervals of arbitrary length but uses R+ as time

axis [MS96, Bro97]. The dense time model is also used in timed automata and related

approaches to describe continuous and hybrid systems [AD90, AR02]. Dense streams

can be represented as a function R+ →M assigning a message to each point in time.

This timing model is, e.g., used in [GSB98] for the specification of real-time systems.

Signal set streams with structure R+ → ℘(M) are streams to model the indepen-

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 35

Let s ∈Mω,m ∈M \ {X}, n ∈ N∞, p ∈ (M → B):

Property Info

delay(s) = X:s delay stream

tlen(s) = #(3s) length abstracting from timing

thd(X:s) = thd(s) first data message of timed stream

thd(m:s) = m

tnth(s) = snth(3s) nth data message

tmap(f,X:s) = X: tmap(f, s) function application ignoring X

tmap(f,m:s) = f(m): tmap(f, s)

psX(X:s) = X:(psXs) filtering data messages

p(m)⇒ psX(m:s) = m:(psXs)

¬p(m)⇒ psX(m:s) = psXs

αX.(X:s) = X:(αX.(s)) remove duplicate data messages

αX.(m:s) = m:(αX.(λx.x 6= m)sXs)

Table 5. Some properties of operators for timed streams treating X explicitly

dent occurrence of events in time intervals [SRS99]. Signal sets have to be present for

an interval I ⊆ R+ and model the occurrence of signals in discrete hardware struc-

tures [Sch98]. A mapping of signal set streams to super dense event streams is possible

by introducing messages ms and me to denote start and end of a signal m ∈M .

Super-dense time [MMP91] allows to observe a sequence of signals at each point

in dense time. This model is strictly more expressive than dense time and used, e.g.,

for the specification of hardware systems and semantics of hybrid systems [LML06,

MP93].

Although a discrete timed model Mω is strictly less expressive, we can transfer a

super-dense (or dense) time model to a discrete if the dense timed specification does

not allow zeno behavior (infinitely many messages in a finite interval) [AL91, LML06].

The abstraction denseAbs : (R+ →M∗)→ (N→M∗) is well-defined by

(denseAbs s)(n) = ̂r∈]n−1...n]s(r)

There are further approaches to encode time into streams. In the component

coordination and composition framework Reo [Arb04] timed streams are modeled as a

pair of streams. One stream carries data and the other one timing information [AR02].

The semantics of timed automata [AD90, AD94] are given as timed traces/streams

in the dense time model as a pair of two sequences (ρ, τ) of data and timestamps.

An overview in Fig. 1 shows the discussed stream kinds and their most interesting

embedding and abstraction relations. A solid arrow depicts embedding while a dashed

arrow denotes a possible abstraction. Using timeAbs : Mω → Mω (3) is always a

valid abstraction while denseAbs : R+ → ℘(M) only works if zeno is absent.

3 Specification of Stream Processing Systems

While Mω can also describe traces of events [Die95], we get strictly more expressive-

ness when distinguishing input and output. There are several approaches that focus

on stream processing as fundamental blocks of their system model [Ste97], while by far

36 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

M! M!

N! M*

N! M

R+ ! M

R+ ! M*
denseAbs

tsabs

Fig. 1. Abstraction and inclusion relations of stream kinds

Component with input (Iω1 × ..× Iωn) =
−→
I and output (Oω

1 × ..×Oω
m) =

−→
O :

Concept Body Description

relational R :
−→
I ×
−→
O Specification as relation of observable

I/O behavior, [Stø96, Lot96]

set-based function f :
−→
I → ℘(

−→
O) Specifying nondeterminism by allow-

ing multiple output histories (using set-
based functions)

set of functions F : ℘(
−→
I →

−→
O) Definition of functions describ-

ing deterministic I/O behavior,
[Bro95, BRSS97]

A/G A, G :
−→
I →

−→
O → B Based on assumption A the system

guarantees that G holds, [FP95, Bro95,
SM97, Bro05, Spi07]

state-based δ :
−→
I × S →

−→
O × S I/O depending on state – see Sect. 4

and, e.g., [GR95, GKRB96, Rum96,
BS01]

Table 6. Intuition of specification styles in Focus

the most elaborate method of the recent decades for the development of distributed

systems based on stream processing is Manfred Broy’s Focus [BDD+92, BS01].

Denotational semantics have been investigated to describe deterministic and non-

deterministic systems [Kah74, Bro81, KP85, BA81, Abr83], where only some tried

to handle component specifications as first class entities. For example [Kah74] uses

history functions mapping input streams to output streams. But its natural extension

for non-deterministic processes to simply relate input streams to a set of possible

output streams turned out to be inadequate [Kel78, BA81], e.g., for non-deterministic

merge with feedback or the merge anomaly where components with equal history

relations do not behave alike when embedded in a network.

Focus provides several specification styles: relational style, assumption/guarantee

style, equational/functional style and graphical style, which subsumes state transition

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 37

R: I! £ O!

f: I!! O!

℘(I!! O!)

F: I!! ℘(O!)

r2spf

r2sb

f2sb

sb2spf

Fig. 2. Transformations of relational and functional specifications

diagrams, tables and composition diagrams [BS01]. These specification styles corre-

spond to underlying concepts denoted in Table 6. Again, the more detailed behavior

can be distinguished, the less anomalies exist, but the more complicated the mecha-

nisms to deal with become. The most fine grained model of components are sets of

stream processing functions (SPF) ℘(
−→
I →

−→
O). While inspired by Kahn process net-

works among others the merge anomaly is avoided using sets of SPF to describe non-

deterministic behavior [Bro88]. Set-based functions
−→
I → ℘(

−→
O) are strictly weaker,

still distinguishing enough to avoid anomalies, but have a problem to ensure realiz-

ability (see below). Relations
−→
I ×
−→
O are again strictly weaker and exhibit too many

problems with composition.

As a single function is a deterministic description of behavior and can directly

be understood as realization, all other styles allow non-deterministic and underspec-

ified descriptions. Realizability deals with the question, whether such a specification

has any possible implementations. While this is trivial to answer for sets of SPF,

realizability needs more caution with set-based functions and relations.

Fortunately there are transformations between the styles as shown in Fig. 2 using:

r2spf(R) = {f : Iω → Oω|∀i ∈ Iω : R(i, f(i))}
f2sb(f) = F : Iω → ℘(Oω) where ∀i ∈ Iω : F (i) = {f(i)}
r2sb(R) = F : Iω → ℘(Oω) where ∀i ∈ Iω : R(i, F (i))

sb2spf(F) = {f : Iω → Oω|∀i ∈ Iω : f(i) ∈ F (i)}

Please note that these translations between specification styles are not taking care of

realizability. Properties of realizable stream processing functions follow in the next

two subsections.

3.1 Stream Processing Functions - Untimed Case

An untimed stream processing function f : Iω → Oω maps an input stream to a

corresponding output stream. However, when receiving new input, it may not undo

messages that have been emitted (monotonicity):

∀x, y ∈ Iω : x v y ⇒ f(x) v f(y)

38 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

Let s ∈Mω, c, c′ ∈ C,C′ ⊆ C, b, b′ ∈ BΩ ⊃ BΦ:

Notation Signature Functionality

c ∈ C C channel names

BΦ BΦ ⊆ C ⇀ M∗ finite stream bundles

BΣ BΣ ⊆ C ⇀ M∞ infinite stream bundles

BΩ BΩ ⊆ C ⇀ Mω stream bundles BΦ, BΣ ⊂ BΩ

bdom : BΩ → ℘(C) channel names in bundle

b ∪ b′ bunion : BΩ ×BΩ → BΩ merge of bundles

b\c bremch : BΩ × C → BΩ remove channel

b[c 7→ s] bsetch : BΩ × C ×Mω → BΩ add or replace channel

bc bgetch : BΩ × C →Mω retrieve channel content

b[c→ c′] brenamech : BΩ × C × C → BΩ rename channel

b
.
= b′ beq : BΩ ×BΩ → B equality on common channels

b
C′
= b′ beqch : BΩ ×BΩ × ℘(C)→ B equality on specific channels

Table 7. Operations on stream bundles

In addition it may not emit any message based on knowledge that nothing happens

anymore (continuity):

∀ chainxn ⊂ Iω : f(txn) = tf(xn)

This definition of continuity is based on the important property that (Iω,v) and

(Oω,v) are complete partial orders (for details see [Kah74, Bro86]). Continuity and

monotonicity are necessary for a function to be implementable (realizable). Table 2 of

Sect. 2.2 shows a number of realizable functions, such as . : ., shd, srt, s.n, s|n, sdrop,

mn, sn, smap, siterate, Ass, stakewhile, sdropwhile, α.s. However, #s and s v s′ are

not realizable (due to infiniteness) and concatenation is realizable only in its second

argument.

The above formulated continuity allows behavior observable on infinite streams

to be approximated from finite input histories. This property guarantees the existence

of a least fixed point when describing compositions such as feedback loops [Kah74,

Bro88, BDD+92, Den95]. Most importantly, the above formulated continuity of SPF

is preserved under function composition [Bro86] allowing to conveniently develop new

functions.

For general component models, SPFs need to be expanded to several input and

output streams typically of different message types and are thus of the form f :

I1 × · · · × In → O1 × · · · × Om. Such n-to-m functions can be rewritten in a closed

form using stream bundles BΩ [Fuc94, Rum96]. Assuming a given set of channel names

C and a typing function ctype : C → ℘(M), a bundle b ∈ BΩ is a partial function

C ⇀ Mω mapping channel names c ∈ C to their corresponding streams with the

typing constraint that each stream must have its correct type (bc ∈ ctype(c)ω). Some

operations on stream bundles are shown in Table 7. Stream bundles are only partial

functions since not every channel name has a corresponding stream in a bundle. A

special equality on shared channels of two bundles is defined by:

b
.
= b′ ⇔ ∀c ∈ bdom(b) ∩ bdom(b′) : bc = b′c

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 39

Let f, g ∈ SPF , ci, co ∈ C, C′ ⊆ C:

Notation Signature Functionality

f ∈ SPF SPF = BΩ → BΩ stream processing functions

spfdom : SPF → ℘(C) domain of an SPF

spfrange : SPF → ℘(C) range of an SPF

f ⊗ g spfcomp : SPF × SPF → SPF composition of SPFs

f |C′ spfrestrict : SPF × ℘(C)→ SPF range restriction of SPF (hiding)

flcoci spflift : (Iω → Oω)× C × C → SPF lifting of an SPF to bundle

Table 8. Operations on SPF

Property Info

spfrange(f |C) = spfrange(f) ∩ C range restriction

∀b ∈ BΩ : (f |C)(b)
.
= f(b)

b
.
= b′ ⇔ ∀c ∈ bdom(b) ∩ bdom(b′) : bc = b′c equal on common channels

b
C′
= b′ ⇔ ∀c ∈ C′ : bc = b′c equal on selected channels

∀b ∈ BΩ : (flcoci (b))co = f(bci) lifted SPF

spfrange(f ⊗ g) = spfrange(f) ∪ spfrange(g) ⊗ not hiding output

spfdom(f ⊗ g) = (spfdom(f) ∪ spfdom(g)) \ spfrange(f ⊗ g) ⊗ hiding local inputs

∀b ∈ BΩ : bdom(b) = spfdom(f) ∪ spfdom(g)⇒ composition

f(b)
.
= (f ⊗ g)(b)

.
= g(b)

Table 9. Properties of SPF operators

Bundles can be merged, and channels can be removed from a bundle’s domain or

added as a new channel pointing to a given stream. Also many functions like the head

and rest operator for streams and others like map and filter can be extended pointwise

to stream bundles.

The domain of stream processing functions SPF is defined as the set of all mono-

tonic and continuous functions f : BΩ → BΩ. The defined input and output channels

of f are spfdom(f), spfrange(f) ⊆ C. As discussed, continuous operations from Table 2

can be lifted to domain SPF , e.g., using operators like spflift (Table 8). Furthermore

function composition straightforwardly extends to SPF and the most important op-

erator on SPF is bundle-based composition f ⊗ g for f, g ∈ SPF , which composes

all shared input and output channels (Table 8 and 9). Bundle composition can be

extended to finite sets of components and if hidden channels are not reused several

times it is associative and commutative. Moreover, it comprises classic operators, like

sequential composition g � f , where only f feeds into g, parallel composition f ‖ g
where no channels coincide and feedback µf , where the output of a component is fed

back to its own input.

As a major result f ⊗ g is compositional, thus allowing to define decomposed

glass box definitions of components as in the Focus graphical composite style. Even

hierarchical decomposition is possible. The overall system is realizable, when each of

its components is and the composed behavior can be derived from the behavior of its

subcomponents using ⊗.

40 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

3.2 Stream Processing Functions - Timed Case

The mechanism introduced for the untimed case can uniformly be adapted to the

timed case. In particular the bundle mechanism can be adapted to each kind of

streams. It is even possible to mix those kinds within one specification by adapt-

ing the typing function ctype appropriately.

Timed functions however need to obey timing appropriately to be realizable.

In the case of f : I∞ → O∞ realizability is a causality restriction [BDDW91, Bro95,

BS01]. Let us denote timed bundles with BΩ and timed SPF with SPF . A component

cannot predict the future and thus all its behavior describing functions f ∈ SPF have

to be weakly causal:

∀b1, b2 ∈ BΩ, t ∈ N : Ci := spfdom(f), Co := spfrange(f) :

b1↓t
Ci= b2↓t ⇒ f(b1)↓t

Co= f(b2)↓t
This means output can only rely on input that already has arrived. But weakly causal

functions may react instantly, which leads to problems when a feedback loop has no

delay. Thus weak causality is not necessarily preserved in compositions. A slightly

stronger constraint is strong causality, which is preserved:

∀b1, b2 ∈ BΩ, t ∈ N : Ci := spfdom(f), Co := spfrange(f) :

b1↓t
Ci= b2↓t ⇒ f(b1)↓t+1

Co= f(b2)↓t+1

If a composition (like ⊗ above) has one strong causal function in each feedback loop

then it is well defined. Please note that weak causality replaces monotonicity and

continuity of untimed SPF.

3.3 Component Specifications with Sets of Stream Processing Functions

A single SPF f ∈ SPF resp. f ∈ SPF can by nature be regarded as a deterministic

implementation. Specification of systems however intrinsically is interested in allowing

underspecification. A component specification therefore describes a set of SPF where

all functions are of the same signature. Underspecification is removed by allowing all

possibly non-deterministic behavior. We define PSPF ⊆ ℘(SPF) as the semantics

domain of specifications. Semantics of a specification S is denoted JSK ⊆ PSPF .

Any specification S, e.g., in relational or A/G-style, is realizable, exactly when

its semantics is a nonempty set of SPF, i.e., JSK 6= ∅. Certain specification styles, such

as the use of state machines in Section 4.1, are realizable by construction. For others,

such as the relational or set-based function style this is sometimes tricky to prove.

In the timed case, we call a specification (strongly/weakly) realizable if at least

one (strongly/weakly) causal SPF exists that conforms to the I/O relation induced

by the specification [BS01].

On the domain of PSPF we can use set operations as well as elementwise applica-

tion of SPF operations. This gives us two major techniques that any good specification

technique needs and Manfred Broy’s Focus delivers: semantically sound hierarchical

decomposition with ⊗ and behavioral refinement based on set inclusion ⊆ that are

compatible:

JSK ⊆ JS′K⇒ (JSK⊗ JT K) ⊆ (JS′K⊗ JT K)
This means that refinement is transitive, refinement of components leads to refinement

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 41

of the overall system and thus allows us to refine components independently of their

hierarchic embedding.

Additional operators allow to adapt interfaces, e.g., for different abstraction lev-

els. The given specification S is refined via an interface refinement to S′ if and only if

JSK ⊇ (JDK ⊗ JS′K ⊗ JUK) with sequential composition of suitable interface mapping

specifications D and U . Even conditional refinement is possible [Bro93].

It is also very helpful that these refinement techniques work in the same form for

any underlying kind of streams. Furthermore, the semantic refinement relation can be

adapted to various specification styles by definition of refinement rules on the syntax

of the specification. This is for example done in [PR94, Rum96, RK96] for several

types of automata and in [PR97, PR99] for pipes and filters dataflow networks.

4 Automata and State-Based Specification

State-based modeling of the behavior of reactive systems has proven useful and prac-

tical to describe systems in a succinct and comprehensive way [HP85, Har87, Rum97,

BS01]. Reactive systems have to respond to messages and events generally depending

on their history. States comprise an abstraction of this history relevant to the compo-

nent to react properly. A transition allows to model such a reaction, defining source

and destination states, an event to occur as trigger and the performed action. In a fi-

nite representation, guard conditions, more complex event descriptions, and actions as

well as state invariants may be used. State machines are a rather successful and widely

adapted modeling and specification technique. The representation of interactive state

transition systems ranges from simple Mealy automata with pure I/O transitions to

UML state charts [Har87, OMG07] with guarded transitions, hierarchy, concurrency

and communication concepts as well as related forms of automata inspired by these

languages [GR95, Rum96, BS01, GGR06].

As discussed in Table 6 of Sect. 3 Focus provides a state-based specification of

the form (Iω × S → Oω × S). One way to integrate this with the functional style is

to start from an SPF specification by grouping equivalent behaviors (so called “con-

tinuation functions”) and regard those as states [BDD+92, Den95]. This reflects that

a component’s state comprises the history of all its messages received and produced

so far and thus determines the future behavior (modulo nondeterminism). However,

this implicit I/O history state is often rather complex to describe in a functional

implementation. We thus describe a direct approach that uses states and transitions

descriptions for specification purposes [Rum96, BS01]. We go into detail for the state-

and transition-based modeling and specification approach in the next section and

concentrate on the basic form of state machines (without transition guards, state

invariants etc.), but allow, e.g., an infinite state space. A general concept of state

transition diagrams is presented in [GKRB96] with graphical and textual syntax.

4.1 Automata for Stream Processing - Untimed Case

The notion of automata to describe interactive distributed systems based on the

Focus calculus is investigated in [Rum96]. A component is modeled as an I/Oω

automaton, where in contrast to I/O-automata [LT89, dAH01] each transition accepts

one input message and produces a sequence of output messages. An I/Oω automaton

is a tuple (S,Min,Mout, δ, I) with a non-empty set of possibly infinite states S, in- and

42 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

output alphabet Min and Mout, a state transition function δ ⊆ S ×Min × S ×Mω
out

and initial state and output pairs I ⊆ S ×Mω
out. A transition with infinite output is

called final since no other action is visible after it. Final transitions typically resemble

non-terminating actions. A restriction to finite transitions is possible and resembles

that technology enforces all actions to terminate.

A denotational semantics for an I/Oω automaton is given by a mapping to a set

of stream processing functions [Rum96] as shown in Def. 4.1 for the case of a total

transition function δ: ∀s ∈ S, i ∈Min. ∃o ∈Mω
out, t ∈ S. (s, i, t, o) ∈ δ.

Definition 4.1 (Semantics of total I/Oω automata) The set of SPF realized by

the total automaton (S,Min,Mout, δ, I) is

J(S,Min,Mout, δ, I)K = {g ∈Mω
in →Mω

out|
∃h ∈ J(S,Min,Mout, δ, I)Kp, (si, outi) ∈ I.
∀in. g(in) = outîh(si, in)}

where J.Kp is the unique largest solution of the following recursive definition:

J(S,Min,Mout, δ, I)Kp = {h ∈ S →Mω
in →Mω

out|(∀s. h(s, 〈〉) = 〈〉) ∧
∀m ∈Min, s ∈ S. ∃t ∈ S, out ∈Mω

out. (s,m, t, out) ∈ δ ∧
∃h′ ∈ J(S,Min,Mout, δ, I)Kp.
∀in ∈Mω

in. h(s,m:in) = out̂h′(t, in)}

While the first part of the definition handles the selection of a start state and

initial output, the second defines a predicate J.Kp recursively over the transition re-

lation. This recursive definition is well formed and does have a unique largest solu-

tion [Rum96]. The core idea of predicate J.Kp is to unfold the transition relation one

step, by defining the state parametrized function h through selection of a transition

(s,m, t, out) ∈ δ and a continuation function h′ that handles the rest. Taking the

largest solution resembles that nondeterminism is interpreted as underspecification.

Please note that the ability to respond with infinite output motivates the notion of

non-terminating execution and neither destination state nor further input contribute

to the components behavior anymore.

[Rum96] shows that for any nonempty set S of SPF there is a corresponding I/Oω

automaton A with JAK = S. This demonstrates the equivalence of expressiveness for

both approaches, but only works, because we do not restrict the state space to be

finite.

If transition function δ is furthermore deterministic (∀s ∈ S, i ∈ Min. ∃1o ∈
Mω

out, t ∈ S. (s, i, t, o) ∈ δ) then JAK is also deterministic, i.e., exactly one SPF. A

simplified definition of J.K is then possible [Rum96].

As an extension, partiality of the transition relation is interpreted as under-

specification, where arbitrary behavior is possible. Thus a partial automaton can via

non-deterministic chaos completion be mapped to a total automaton.

I/Oω automata are quite an amenable style of specification with quite a nice

concrete representation ([Rum96]). Due to their more expressive transitions they also

allow to describe many systems with finite state spaces where, e.g., Lynch’s I/O-

automata already have an infinite state space. However, they (still) lack of a sound

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 43

Refinement rules for (S,Min,Mout, δ, Init) ; (S′,M ′in,M
′
out, δ

′, Init′)

Change Semantics Condition & Description

Init′ ⊆ Init refined removing initial non-determinism

δ′ ⊆ δ refined removing non-deterministic transitions (with
same input in same state); constraint: only for re-
duction of nondeterminism

δ′ ⊇ δ refined add transitions: removing partiality of accepted
input; constraint: not allowed to introduce alter-
natives to existing transitions

S′ ⊆ S, δ′ ⊆ δ preserved removing states not reachable with any finite or
infinite transition sequence

S′ ⊇ S preserved adding states

S ; S′ preserved S replaced by S′ with a total, surjective relation
that respects δ′ from S to S′ (adapting δ′ and
Init′)

Init; Init′ preserved changing initial state where initial output is infi-
nite

δ ; δ′ preserved changing destination state where output is infinite

Min ⊆M ′in preserved extending input alphabet: semantics preserved for
inputs of Mω

in

S′ = S⊥, δ ⊆ δ′ preserved chaos complete: adding error state ⊥, making
transition relation total using target state ⊥, and
allowing any output

δ ⊇ δ′ preserved compactify: transforming transitions with infinite
output to self-loops

Table 10. Operations preserving or refining semantics of automata

composition, that somehow retains the structure of the composed automata, such

that formal treatment using verification tools like Isabelle [NPW02] on the modeling

level is not very comfortable. A composition through mapping to PSPF and use of the

function composition is not very satisfying. Furthermore, the defined form of automata

does not deal with several input channels. Such an extension however needs some

additional assumptions, like e.g. timing. On the other hand, we do have a very useful

set of refinement techniques at hand (see [Rum96] and Table 10) that is compatible

with refinement in the semantics domain. Furthermore, I/Oω automata represent

some operational flavor, as each transition that has a reachable source state can

actually be taken and thus contributes to realizations. This is not necessarily the case

with relational specifications. As another advantage of I/Oω automata specifications,

properties like monotonicity or continuity and causality hold by construction.

Expressive power of I/Oω automata is, e.g., shown in [RK96, KPR97, BCR07]

where they are used to describe object behavior, regarding calls and returns as mes-

sages. This leads to an object refinement calculus as studied in [PR94]. The refinement

techniques from [Rum96] allow to model inheritance and subtyping and are quite sim-

ilar to [HK02] in handling nondeterminism, but take an opposite view on interpreting

underspecification. While [HK02] follows a constructive approach, [Rum96] favors a

specificational approach by allowing arbitrary reaction to message occurrences not

defined in the transition relation.

44 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

A bisimulation relation between I/Oω automata ensures equality of the resulting

semantics and a simulation relation results in a semantics refinement. As discussed

in [Rum96] this leads to a number of possible operations on I/Oω automata listed in

Table 10. Modifications from Table 10 that preserve semantics can be used for restruc-

turing the syntactical representation of an automaton and apply in both directions.

The operation chaos complete is used to create total automata from partial ones to

also define their semantics using Def. 4.1 and Def. 4.2.

4.2 Automata for Stream Processing - Timed Case

In Section 3.2 we have refined the domain of untimed SPF to event based timing by

introducing X as special message to denote progress of time. In the same way, we

can now use X as special message in I/Oω automata. We speak of event driven timed

IX/O
ω
X automata, when for δ holds (s,X, t, o) ∈ δ ⇒ shd(o) = X and no transition

has infinite output. With these restrictions we ensure that the semantics of IX/O
ω
X

automata is weakly causal and thus describes a nonempty set of well-formed timed

SPF ℘(M
ω
in → M

ω
out). This means that time progress in input is directly mapped to

the output, but the remainder of the reaction is free to handle time progress (e.g. as

a counter or a time out). Please note that a reasonable refinement would be to allow

transitions to emit one single X exactly when a X is processed, because emission

of additional Xs means introducing delay. This is how strong causality is ensured:

(s, out) ∈ Init⇒ #({X}sout) ≥ 1.

Therefore, the theory for I/Oω automata can easily be transferred to event driven

timed IX/O
ω
X automata, where the transitions are interpreted as event processing

transitions and X again is just a special form of event. Furthermore, refinement tech-

niques for I/Oω automata either apply directly or can slightly be adapted (e.g. when

new transitions are introduced or chaos completion is used, we see timing restrictions).

In contrast to other timed automata [AD94] event driven timed IX/O
ω
X automata have

no need for explicit timers but model time directly instead.

Like with SPF, there are alternative ways to use automata for timed speci-

fications. Interpreting a transition as a description of behavior in one time slice

leads to time pulsed automata (S, I,O, δ, Init)ta, where the transition relation δ ⊆
S × IΦ × S × OΦ, initial states Init ⊆ S × OΦ and BΦ denotes a single slice of a

stream bundle BΩ.

Such a pulse timed automaton consumes one time slice of finitely many input

messages (i ∈ IΦ) in every transition step and produces a time slice with finitely many

output messages (o ∈ OΦ) and is therefore closely related to the time slice based SPF

domain. In contrast to untimed I/Oω automata, this approach can handle multiple

input channels in parallel and is thus defined on stream bundles. The meaning of time

pulsed automata is defined by mapping them to the SPF domain in Def. 4.2.

Definition 4.2 (Semantics of time pulsed total I/O∗ automata) The behavior

realizing stream processing functions of the automaton (S, I, O, δ, Init)ta is

J(S, I,O, δ, Init)Kta = {g ∈ IΣ → OΣ|
∃h ∈ J(S, I,O, δ, Init)Ktap, (si, outi) ∈ Init.
∀in. g(in) = outîX̂h(si, in)}

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 45

where J.Ktap is the unique largest solution of the following recursive definition:

J(S, I,O, δ, Init)Ktap = {h ∈ S → IΣ → OΣ|
∀m ∈ IΦ, s ∈ S. ∃t ∈ S, out ∈ OΦ. (s,m, t, out) ∈ δ ∧
∃h′ ∈ J(S, I,O, δ, Init)Ktap.
∀in ∈ IΦ. h(s,m̂X̂in) = out̂X̂h′(t, in)}

As in Def. 4.1 the first part of the definition deals with the selection of an initial

state and an initial output. The X used (here representing a X on all channels of

the concatenated bundles) ensures strong causality of all resulting functions. This

also means that the output of a transition is emitted exactly one step after the input

is being consumed. The second part again is a recursive set-based definition with a

unique largest solution. The definition is in fact structurally equivalent to Def. 4.1,

when regarding IΦ as set of messages Min.

Refinement and other operations from I/Oω automata can again be easily adapted

to pulsed automata. In addition there is an important composition technique available

that uses the fact that the pulse synchronizes these automata [GR95]. This composi-

tion uses a cross product of the states of composed automata. This technique unfor-

tunately does not work for event driven timed IX/O
ω
X automata, as the concept of

state there denotes states of the object at the end of processing events, while in pulsed

timed automata state describes a situation at a specific point of time and computation

may still be in progress. This is also the reason why a mapping between event driven

timed automata and pulsed timed automata is intrinsically complex, although both

are equally expressive. Without any additional assumptions, mapping event driven

automata to pulsed automata leads to an explosion of transitions, whereas a mapping

of pulse driven automata to event driven automata leads to an explosion of states.

The above discussed automata are, e.g., used in [KPR97] to model features of

complex systems and their interaction. There the notion of adding a feature F is a

refinement of a system S
F
; S′. The notion of conflicting features corresponds to the

notion of consistency and independence of applying those refinements.

Further variants of automata are, e.g., HyCharts [GSB98] for the specification of

hybrid systems, based on the theory of dense streams [Bro97, MS97]. The architecture

of component networks is graphically represented in HyACharts, which are dataflow

graphs describing composition of hybrid components in a hierarchic and modular way.

HySCharts are hybrid state charts to describe the combinational and analog part of

a hybrid component. The combinational part describes discrete state changes while

the analog part is specified by differential (in)equations.

The AutoFocus tool [HSSS96, HS97, BHS99, Wil06] for the specification and

prototyping of distributed systems allows the behavioral specification of components

using state transition diagrams. These can be edited in a graphical representation and

translated to executable simulation code. Currently the timing model supported by

AutoFocus are time synchronous streams and strongly causal behavior of components.

5 Tool Support for Stream Processing Specifications

A good theory can only be put to practice, if there are practical tools supporting it.

Therefore, several implementations of aspects of the Focus methodology have been

46 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

created. These differ in their purpose and underlying technology. While some ap-

proaches offer interactive proof support for tasks that often repeat in similar ways dur-

ing development (see Sect. 5.1), others offer a tool infrastructure that covers amenable

modeling languages, partially as well as fully automated checks and code generation

from artifacts (see Sect. 5.2).

5.1 Interactive Theorem Proving

One of the first approaches to formalizing semantics of Kahn networks [Kah74], which

also inspired Focus to a great extent, using theorem prover support is [DS89]. The

authors interpret component networks as functional programs, which they verify using

an own implementation of the µ-calculus in the theorem prover Isabelle [NPW02]. The

implementation is, e.g., illustrated on a machine-checked verification of the correctness

of the alternating bit protocol.

There have been other approaches to use Isabelle for an implementation of the

Focus framework. One of the first embeddings of Focus in Isabelle/HOLCF has

been done by Schätz and Spies [SS95]. They present a theory for the specification

of agents (components) with functional and predicative specifications of behavior.

Timing of streams is not taken into account. A translation of network descriptions

given in ANDL [BDD+92, SS95] syntax to HOLCF is also shown. This work focuses

mainly on a syntactic translation and does not discuss further proof support.

Later works focus on the implementation of stream processing functions linked

to Focus in terms of methodological usage of the framework. A work by Sandner

and Müller [SM97] is on proving refinements based on the Assumption/Commitment

style [SDW93]. It also covers rules for structural refinement (sequential and parallel

composition, introduction of feedback loops and refinement of specifications). The

approach is evaluated on a case study of a production cell.

Several implementations of stream processing functions are based on the logic

HOLCF [Slo97, MNvOS99] with adds concepts of domain theory to Isabelle’s im-

plementation of higher order logic HOL. General refinement rules for interactive

systems with an application to Focus are studied by Slotosch [Slo97] creating Is-

abelle/HOLCF.

A less interactive approach of using formal methods on Focus specifications is

evaluated in [SB99]. Specification refinement is checked using two automated proof

tools: the first order logic theorem prover SETHEO [LSBB92] and the model checker

SMV [BCM+92]. Because of the limited expressiveness of first order logic the reasoning

task on stream processing functions is translated to induction cases by hand that can

then be automatically solved using SETHEO. Reasoning over finite domains is carried

out using SMV.

More recent works [GR06, GR07] are focused on the implementation of the Focus

streams system model in Isabelle/HOLCF. The theory ALICE formalizes discrete fi-

nite and infinite streams as well as infinite timed (event) streams. Further work focuses

on the specification of stream processing functions and stream bundle processing func-

tions to represent components and component networks using Isabelle/ALICE [GR07].

Another recent contribution to a formalization of Focus in Isabelle has been

made by Spichkova [Spi07]. System specifications can either be translated manually

or developed directly in Isabelle/HOL. The methodology proposed follows the Focus

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 47

idea of specification and continuous refinement until the desired level of detail is

reached. The Isabelle/HOL implementation covers timed streams and proposes also

ways to handle time synchronous streams. For the description of larger systems sheaves

of channels are introduced to specify arbitrary but finite numbers of components. A

scheme for translating specifications to Isabelle/HOL with manual simplifications like

removing mutual recursion is proposed.

The behavioral specification of automotive embedded systems is investigated

in [Tra09]. Part of the semantics of the IDE AutoFocus are verified in Isabelle/HOL.

A framework for temporal and other declarative specifications of functional proper-

ties is developed. The work aims at supporting the development process from design

phase to an executable specification. As an industrial case study an adaptive cruise

control system is formalized.

5.2 AutoFocus

The distributed systems specification tool AutoFocus [HSSS96, BHS99, Wil06] is

based on the Focus method and offers graphical representations of modeling and

specification artifacts. Supported specification documents for artifacts are: system

structure diagrams (SSD), data type definitions (DTD), state transitions diagrams

(STD), and extended event traces (EET). SSDs describe the logical architecture of

the developed system as component dataflow networks. STDs represent automata

where each transition consumes and produces one message on each incoming and out-

going port and interaction is time synchronous. EETs are similar to UML sequence

charts [OMG07] and used for exemplary interaction of components.

AutoFocus allows Java code generation [HS97] and simulation. Consistency be-

tween exemplary runs from EET and STD specifications as well as behavioral refine-

ments of specifications can be checked using the SMV [BCM+92] or µ-cke [Bie97]

model checkers directly from AutoFocus [HSE97]. Multiple case studies have been

conducted, which include: a traffic lights case study [HMS+98], a home shopping sys-

tem [Hin98], a tamagotchi [KvKPS99], and the specification of an electronic purse

in e-commerce [JW01]. A prominent application of AutoFocus is in the area of au-

tomotive software within the AutoMoDe (Automotive Model-based Development)

project [BRS05, ZBF+05, BBR+07] and related quality assurance tasks [JRT08,

Tra09].

While the AutoFocus tool suite is a very enhanced and innovative tooling infras-

tructure, we see quite a number of open practical issues both on the verification side

as well as on the model management side. While the theory is rather well elaborated,

its practical use is still limited, as comfortable tools are not easy to develop. This,

however, is a generally visible situation, as it remains a considerable effort to develop

convenient tooling infrastructure for defining, analyzing and managing models and

specifications, even though they are based on a sound and stable theory.

6 Conclusion

Specification and modeling of interactive distributed systems is an ongoing challenge.

We have presented some background of approaches based on dataflow networks and

stream processing. Streams can be of many kinds ranging from discrete untimed

streams to super dense timed streams up to continuous functions. On examples we

48 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

have shown that some of these kinds of streams although of different structure and

intuition can be related by abstraction and refinement or even be embedded one into

the other.

A larger part of the Focus method uses stream processing functions to de-

scribe behavior. We have introduced a basic set of manipulator operations for streams,

stream bundles, stream processing functions, state-based functions (automata) and

finally specifications. We believe that this set of concepts together with their opera-

tors, e.g., for composition and refinement, is suited well for the implementation of a

proof theory in Isabelle/HOL and HOLCF.

There are quite a number of implementations of assisting and automating parts of

the Focus method in the context of formal verification. As stated, a good theory needs

a practical tooling infrastructure to become amenable. Tooling however is generally

a big issue, why the software engineering community is still waiting for broadly used,

comfortable modeling tools that allow to specify, analyze and manage models (beyond

mere code generation). The most elaborated stream-based tool currently is AutoFocus.

In summary, the Focus theory and method is well elaborated, has a variety of

theoretical sidelines for several domains as well as many applications in case studies

and industrial evaluations. This can to a large extent be credited to its intellectual

father Manfred Broy, his many own research papers on this theme and his great

supervision to numerous PhD members of his group. Which is reason enough, for the

following.

7 Laudation for Manfred Broy (by the second author)

Manfred is legendary. I did have the chance to be a member of his group almost from

his come-back to Munich in 1989 to my leave in 2003, so I think I know him a little.

The first time I met Manfred, I was still a student. I worked on my diploma thesis

using the newly explored Spectrum approach on algebraic specification, with loose

semantics, quite an elaborated type system and some other nice extras. It was a great

project with lots of interesting results. At least in those days, there was a rumor that

one had to be able to play Schaffkopf, a pretty complex Bavarian game, to be hired in

his group. But I made it and while we still play occasionally, this rule seems to have

been relaxed a while ago.

Manfred has a vision: Streams are the optimal technology to model the world.

We have explored their abilities and how the various versions of streams fit together in

the Focus approach, that Manfred invented and together with many of his members

brought to a handsome, well explored and sound theory. While there are still many

things to explore, e.g., how to bring streams to the cloud or to the sky and how to

model ad hoc, mobile embedded systems best, this theory is well settled and has a

major impact among the formal community.

Manfred has a second vision: let the Focus theory and method become practical.

For this purpose, he started tool development projects, AutoFocus 1, 2 and 3 being

the most prominent. These tooling infrastructures are on their way, but as we now

know, development of comfortable tools is generally very labor intensive. So Manfred

and his group as well as former members of his group still work hard to elaborate this

second vision. That is why, Manfred and his group in parallel also inject Focus ideas

into other commercial tooling infrastructures, such as Automotive or UML tools. For

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 49

that purpose he is quite active in publishing, giving presentations around the world

and acquiring projects.

Manfred has a very integrative ability to bring people together and let them

explore new, innovative and typically brilliant ideas, while at the same time he inspires

people with ideas towards his visions. That is why many research results come from

his group and why many of these results quite nicely fit together or complement each

other.

He and his group have a lot of strong links to the international and national

community, which allow them to further explore and discuss the practicality of re-

search issues – let they be in formal methods, their application, or methodical issues

of Software Engineering in general.

Manfred is successful in almost anything that he starts. Let it be innovative

projects, development of a new standard method for Germany’s software development

projects, or deep theoretical issues. And he is a very successful Schaffkopf player too.

So we wish him a seamless stream of practical and research questions to solve,

disseminate and teach to his students, but most of all we wish his vision on the use

of the stream-based approach, known as Focus to become widely used.

Acknowledgments We thank Christian Langauer and Shahar Maoz for proofreading

a draft of this paper.

References

[Abr83] Samson Abramsky. On Semantic Foundations for Applicative Multiprogram-
ming. In Proceedings of the 10th Colloquium on Automata, Languages and Pro-
gramming, pages 1–14, London, UK, 1983. Springer-Verlag.

[AD90] Rajeev Alur and David L. Dill. Automata for modeling real-time systems. Pro-
ceedings of the seventeenth international colloquium on Automata, languages and
programming, pages 322–335, 1990.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183–235, 1994.

[AL91] Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. In REX
Workshop, pages 1–27, 1991.

[AR02] Farhad Arbab and Jan J. M. M. Rutten. A coinductive calculus of component
connectors. In WADT, pages 34–55, 2002.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component compo-
sition. Mathematical Structures in Computer Science, 14(3):329–366, 2004.

[BA81] J. Dean Brock and William B. Ackerman. Scenarios: A model of non-determinate
computation. In Proceedings of the International Colloquium on Formalization
of Programming Concepts, pages 252–259, London, UK, 1981. Springer-Verlag.

[BBR+07] Andreas Bauer, Manfred Broy, Jan Romberg, Bernhard Schätz, Peter Braun,
Ulrich Freund, Nuria Mata, Robert Sandner, Pierre Mai, and Dirk Ziegenbein.
Das automode-projekt. Computer Science - Research and Development, 22(1):45–
57, 2007.

[BCM+92] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and
L. J. Hwang. Symbolic model checking: 1020 States and beyond. Information
and Computation, 98(2):142 – 170, 1992.

[BCR07] Manfred Broy, Maŕıa Victoria Cengarle, and Bernhard Rumpe. Semantics of
UML – Towards a System Model for UML: The State Machine Model. Technical
Report TUM-I0711, Institut für Informatik, Technische Universität München,
February 2007.

50 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

[BDD+92] Manfred Broy, Frank Dederich, Claus Dendorfer, Max Fuchs, Thomas Gritzner,
and Rainer Weber. The Design of Distributed Systems - An Introduction to
FOCUS. Technical report, TUM-I9202, SFB-Bericht Nr. 342/2-2/92 A, 1992.

[BDDW91] Manfred Broy, Frank Dederichs, Claus Dendorfer, and Rainer Weber. Character-
izing the Behaviour of Reactive Systems by Trace Sets. SFB-Bericht 324/2/91,
Technische Universität München, jan 1991.

[BHS99] Manfred Broy, Franz Huber, and Bernhard Schätz. AutoFocus – Ein Werkzeug-
prototyp zur Entwicklung eingebetteter Systeme. Informatik Forschung und En-
twicklung, 14(3):121–134, 1999.

[Bie97] Armin Biere. µcke - Efficient µ-Calculus Model Checking. In CAV, pages 468–
471, 1997.

[Bro81] Manfred Broy. A Fixed Point Approach to Applicative Multiprogramming. In
Lecture notes for the International Summer School on Theoretical Foundations
of Programming Methodology, 1981.

[Bro86] Manfred Broy. A theory for nondeterminism, parallelism, communication, and
concurrency. Theoretical Computer Science, 45:1 – 61, 1986.

[Bro88] Manfred Broy. Nondeterministic data flow programs: How to avoid the merge
anomaly. Science of Computer Programming, 10(1):65 – 85, 1988.

[Bro93] Manfred Broy. (Inter-)Action Refinement: The Easy Way, volume 118 of Series
F: Computer and System Sciences. Springer NATO ASI Series, 1993.

[Bro95] Manfred Broy. Mathematical system models as a basis of software engineering.
In Jan van Leeuwen, editor, Computer Science Today, volume 1000 of Lecture
Notes in Computer Science, pages 292–306. Springer Berlin / Heidelberg, 1995.

[Bro97] Manfred Broy. Refinement of time. Transformation-Based Reactive Systems
Development, Volume 1231/1997:44–63, 1997.

[Bro03] Manfred Broy. Multi-view Modeling of Software Systems. In Formal Methods at
the Crossroads: From Panacea to Foundational Support (LNCS 2757), 2003.

[Bro05] Manfred Broy. Service-oriented Systems Engineering: Specification and Design of
Services and Layered Architectures–The Janus-Approach, pages 47–81. Springer,
2005.

[BRS05] Andreas Bauer, Jan Romberg, and Bernhard Schätz. Integrierte Entwicklung von
Automotive-Software mit AutoFocus. Informatik - Forschung und Entwicklung,
19:194–205, 2005. 10.1007/s00450-005-0187-7.

[BRSS97] Manfred Broy, Franz Regensburger, Bernhard Schätz, and Katharina Spies. The
Steamboiler Specification - A Case Study in Focus. Technical Report TUM-I9714,
Technische Universität München, 1997.

[BS01] Manfred Broy and Ketil Stølen. Specification and Development of Interactive
Systems. Focus on Streams, Interfaces and Refinement. Springer Verlag Heidel-
berg, 2001.

[Bur75] William H. Burge. Stream processing functions. IBM journal of research and
development, 19(1):12–25, 1975.

[dAH01] Luca de Alfaro and Thomas A. Henzinger. Interface Automata. SIGSOFT Softw.
Eng. Notes, 26(5):109–120, 2001.

[Den95] Claus Dendorfer. Methodik funktionaler Systementwicklung. PhD thesis, Tech-
nische Universität München, 1995.

[Die95] Volker Diekert. The Book of Traces. World Scientific Publishing Co., Inc., River
Edge, NJ, USA, 1995.

[DS89] Peter Dybjer and Herbert P. Sander. A Functional Programming Approach to
the Specification and Verification of Concurrent Systems. Formal Asp. Comput.,
1(4):303–319, 1989.

[FP95] Max Fuchs and Jan Philipps. Formal Development of a Production Cell in Focus
– A Case Study. Formal Development of Reactive Systems, (LNCS 891), 1995.

[Fuc94] Maximilian Fuchs. Technologieabhängigkeit von Spezifikationen digitaler Hard-
ware. PhD thesis, Technische Universität München, 1994.

[GGR06] Boris Gajanovic, Hans Grönniger, and Bernhard Rumpe. From MDD Concepts

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 51

to Experiments and Illustrations, chapter Model Driven Testing of Time Sensitive
Distributed Systems, pages 131–148. ISTE Ltd., 2006.

[GKRB96] Radu Grosu, Cornel Klein, Bernhard Rumpe, and Manfred Broy. State Transition
Diagrams. Technical Report TUM-I9630, Technische Univerität München, 1996.

[GR95] Radu Grosu and Bernhard Rumpe. Concurrent timed port automata. Technical
Report TUM-I9533, Technische Univerität München, 1995.

[GR06] Boris Gajanovic and Bernhard Rumpe. Isabelle/HOL-Umsetzung strombasierter
Definitionen zur Verifikation von verteilten, asynchron kommunizierenden Sys-
temen. Informatik-Bericht 2006-03, Technische Universität Braunschweig, Carl-
Friedrich-Gauss-Fakultät für Mathematik und Informatik, 2006.

[GR07] Borislav Gajanovic and Bernhard Rumpe. Alice: An advanced logic for interac-
tive component engineering. In 4th International Verification Workshop (Ver-
ify’07), Bremen, 2007.

[GSB98] Radu Grosu, Thomas Stauner, and Manfred Broy. A Modular Visual Model
for Hybrid Systems. In Anders Ravn and Hans Rischel, editors, Formal Tech-
niques in Real-Time and Fault-Tolerant Systems, volume 1486 of Lecture Notes
in Computer Science, pages 471–471. Springer Berlin / Heidelberg, 1998.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Science of
computer programming, 8(3):231–274, 1987.

[Hin98] Ursula Hinkel. Home Shopping - Die Spezifikation einer Kommunikationsanwen-
dung in Focus. Technical Report TUM-I9808, Technische Universität München,
1998.

[HK02] David Harel and Orna Kupferman. On object systems and behavioral inheri-
tance. IEEE Trans. Softw. Eng., 28(9):889–903, 2002.

[HMS+98] Franz Huber, Sascha Molterer, Bernhard Schätz, Oscar Slotosch, and Alexander
Vilbig. Traffic Lights - An AutoFocus Case Study. pages 282 – 294, 1998.

[HP85] David Harel and Amir Pnueli. On the development of reactive systems, pages
477–498. Springer-Verlag New York, Inc., New York, NY, USA, 1985.

[HS97] Franz Huber and Bernhard Schätz. Rapid Prototyping with AutoFocus. In
A. Wolisz, I. Schieferdecker, and A. Rennoch, editors, Formale Beschreibung-
stechniken für verteilte Systeme, GI/ITG Fachgespräch, pages 343 – 352. GMD
Verlag (St. Augustin), 1997.

[HSE97] Franz Huber, Bernhard Schätz, and Geralf Einert. Consistent graphical specifi-
cation of distributed systems. FME’97: Industrial Applications and Strengthened
Foundations of Formal Methods, pages 122–141, 1997.

[HSSS96] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies. Aut-
ofocus — a tool for distributed systems specification. In Bengt Jonsson and
Joachim Parrow, editors, Formal Techniques in Real-Time and Fault-Tolerant
Systems, volume 1135 of Lecture Notes in Computer Science, pages 467–470.
Springer Berlin / Heidelberg, 1996.

[JRT08] Jan Jürjens, Daniel Reiss, and David Trachtenherz. Model-Based Quality Assur-
ance of Automotive Software. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel
Bruel, Axel Uhl, and Markus Völter, editors, Model Driven Engineering Lan-
guages and Systems, 11th International Conference, MoDELS 2008, Toulouse,
France, September 28 - October 3, 2008. Proceedings, volume 5301 of LNCS,
pages 858–873. Springer, 2008.

[JW01] Jan Jürjens and Guido Wimmel. Security Modelling for Electronic Com-
merce: The Common Electronic Purse Specifications. In Beat Schmid, Kata-
rina Stanoevska-Slabeva, and Volker Tschammer, editors, Towards the E-Society.
Proceedings of 1st IFIP International Conference on E-Commerce, E-Business
and E-Government, pages 489 – 506. Kluwer Academic Publishers, 2001.

[Kah74] Gilles Kahn. The Semantics of a Simple Language for Parallel Programming.
In J. L. Rosenfeld, editor, Information Processing ’74: Proceedings of the IFIP
Congress, pages 471–475, New York, NY, 1974. North-Holland.

[Kel78] R.M. Keller. Denotational models for parallel programs with indeterminate op-

52 International Journal of Software and Informatics, Volume 5, Issue 1-2 (2011), Part I

erators. Proc. Formal Description of Programming Concepts, pages 337–366,
1978.

[KM77] Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel pro-
cesses. Proceedings of IFIP Congress, 77(7):993–998, 1977.

[KP85] Robert M. Keller and Prakash Panangaden. Semantics of networks containing
indeterminate operators. In Seminar on Concurrency, Carnegie-Mellon Univer-
sity, pages 479–496, London, UK, 1985. Springer-Verlag.

[KPR97] Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature specification
and refinement with state transition diagrams. In Petre Dini, Raouf Boutaba, and
Luigi Logrippo, editors, Feature Interactions in Telecommunications Networks
IV, June 17-19, 1997, Montréal, Canada, pages 284–297. IOS Press, 1997.

[KvKPS99] Erik Kamsties, Antje von Knethen, Jan Philipps, and Bernhard Schätz. Eine
vergleichende fallstudie von acht case-werkzeugen für formale und semi-formale
beschreibungstechniken. In FBT, pages 103–112, 1999.

[Lee09] Edward A. Lee. Computing needs time. Communications of the ACM, 52(5):70–
79, May 2009.

[LML06] Xiaojun Liu, Eleftherios Matsikoudis, and Edward A. Lee. Modeling timed con-
current systems. In CONCUR, pages 1–15, 2006.

[Lot96] Volkmar Lotz. Threat scenarios as a means to formally develop secure systems.
pages 242–265, 1996.

[LSBB92] Reinhold Letz, Johann Schumann, Stefan Bayerl, and Wolfgang Bibel. Setheo:
A high-performance theorem prover. In Journal of Automated Reasoning (JAR),
volume 8, pages 183–212. Springer, 1992.

[LT89] Nancy A. Lynch and Mark R. Tuttle. An Introduction to Input/Output Au-
tomata. CWI Quarterly, 2:219 – 246, 1989.

[MMP91] Oded Maler, Zohar Manna, and Amir Pnueli. From timed to hybrid systems. In
REX Workshop, pages 447–484, 1991.

[MNvOS99]Olaf Müller, Tobias Nipkow, David von Oheimb, and Oscar Slotosch. Holcf =
hol + lcf. Journal of Functional Programming, 9(02):191–223, 1999.

[MP93] Zohar Manna and Amir Pnueli. Verifying Hybrid Systems. In Robert Gross-
man, Anil Nerode, Anders Ravn, and Hans Rischel, editors, Hybrid Systems,
volume 736 of Lecture Notes in Computer Science, pages 4–35. Springer Berlin /
Heidelberg, 1993.

[MS96] Olaf Müller and Peter Scholz. Specification of Real-Time and Hybrid Systems in
FOCUS. Technical Report TUM-I9627, Technische Univerität München, 1996.

[MS97] Olaf Müller and Peter Scholz. Functional specification of real-time and hybrid
systems. In HART ’97: Proceedings of the International Workshop on Hybrid
and Real-Time Systems, pages 273–285, London, UK, 1997. Springer-Verlag.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL - A
Proof Assistant for Higher-Order Logic. Springer, 2002.

[OMG07] Object Management Group. Unified Modeling Language: Superstructure Version
2.1.2 (07-11-02), 2007. http://www.omg.org/docs/formal/07-11-02.pdf.

[PR94] Barbara Paech and Bernhard Rumpe. A new Concept of Refinement used for
Behaviour Modelling with Automata. In FME’94, Formal Methods Europe, Sym-
posium ’94, LNCS 873. Springer-Verlag, Berlin, October 1994.

[PR97] Jan Philipps and Bernhard Rumpe. Refinement of Information Flow Architec-
tures. In Proceedings of Formal Engineering Methods, 1997.

[PR99] Jan Philipps and Bernhard Rumpe. Refinement of Pipe And Filter Architectures.
In FM’99, LNCS 1708, pages 96–115, 1999.

[RK96] Bernhard Rumpe and Cornel Klein. Automata Describing Object Behavior. In
Object-Oriented Behavioral Specifications, pages 265–286, 1996.

[Rum96] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter
Systeme. Doktorarbeit, Technische Universität München, 1996.

[Rum97] Bernhard Rumpe. Formale Methodik des Entwurfs verteilter objektorientierter

Jan Oliver Ringert, et al.: A little synopsis on streams, stream processing functions, ... 53

Systeme. In Ausgezeichnete Informatikdissertationen 1997, pages 118–134. Teub-
ner Stuttgart, 1997.

[SB99] Johann Schumann and Max Breitling. Formalisierung und Beweis einer Ver-
feinerung aus FOCUS mit automatischen Theorembeweisern - Fallstudie -. Tech-
nical Report TUM-I9904, Technische Univerität München, 1999.

[Sch98] Peter Scholz. Design of reactive systems and their distributed implementation
with statecharts. PhD thesis, Technische Universität München, 1998.

[SDW93] Ketil Stølen, Frank Dederichs, and Rainer Weber. Assumption/Commitment
Rules for Networks of Asynchronously Communicating Agents. Technical Report
TUM-I9303, Technische Univerität München, 1993.

[Slo97] Oscar Slotosch. Refinements in HOLCF: Implementation of interactive systems.
PhD thesis, Technische Universität München, 1997.

[SM97] Robert Sandner and Olaf Müller. Theorem prover support for the refinement
of stream processing functions. Tools and Algorithms for the Construction and
Analysis of Systems, pages 351–365, 1997.

[Spi07] Maria Spichkova. Specification and Seamless Verification of Embedded Real-Time
Systems: FOCUS on Isabelle. PhD thesis, Technische Universität München, 2007.

[SRS99] Thomas Stauner, Bernhard Rumpe, and Peter Scholz. Hybrid System Model.
Technical Report TUM-I9903, Technische Univerität München, 1999.

[SS95] Bernhard Schätz and Katharina Spies. Formale Syntax zur logischen Kernsprache
der FOCUS-Entwicklungsmethodik. Technical Report TUM-I9529, Technische
Univerität München, 1995.

[Ste97] Robert Stephens. A survey of stream processing. Acta Informatica, 34(7):491–
541, 1997.

[Stø96] Ketil Stølen. Using relations on streams to solve the RPC-memory specification
problem. Formal Systems Specification, pages 477–520, 1996.

[Tra09] David Trachtenherz. Eigenschaftsorientierte Beschreibung der logischen Ar-
chitektur eingebetteter Systeme. PhD thesis, Institut für Informatik, Technische
Universität München, 2009.

[Wil06] Doris Wild. AutoFocus 2 - Das Bilderbuch. Technische Universität München,
2006.

[ZBF+05] Dirk Ziegenbein, Peter Braun, Ulrich Freund, Andreas Bauer, Jan Romberg,
and Bernhard Schätz. AutoMoDe - Model-Based Development of Automotive
Software. In DATE ’05: Proceedings of the conference on Design, Automation and
Test in Europe, pages 171–177, Washington, DC, USA, 2005. IEEE Computer
Society.

