979-8-3315-4910-7/25/$31.00 ©2025 IEEE
DOI 10.1109/MODELS67397.2025.00030

2025 ACM/IEEE 28th International Conference on Model Driven Engineering Languages and Systems (MODELS)

[BKM+25] D. Bork, S. Klikovitz, J. Michael, L. Netz, B. Rumpe:
Inclusive Model-Driven Engineering for Accessible Software.

In: 2025 ACM/IEEE 28th International Conference on Model Driven Engineering Languages and Systems (MODELS),
pp. 253-259, DOI 10.1109/MODELS67397.2025.00030, IEEE, Oct. 2025.

Inclusive Model-Driven Engineering
for Accessible Software

Dominik Bork* ®, Stefan Klikovits

, Judith Michael?

, Lukas Netz$ ©, Bernhard Rumpe®

*Business Informatics Group, TU Wien, Vienna, Austria, Email: dominik.bork@tuwien.ac.at
T Department of Business Informatics, JKU Linz, Linz, Austria, Email: stefan.klikovits@jku.at
tProgramming and Software Engineering, University of Regensburg, Regensburg, Germany, Email: judith.michael @ur.de
§Sqftware Engineering, RWTH Aachen University, Aachen, Germany, Email: netz@se-rwth.de, rumpe @se-rwth.de

Abstract—While model-driven engineering (MDE) claims to
be a good development approach for cross-cutting concerns, this
raises the question of why not every application created with
MDE is accessible. Moreover, why are the MDE development
processes and the tools themselves not more inclusive? In this
vision paper, we sketch an ideal picture of how inclusivity in MDE
— considered throughout tools, methods, artifacts, and processes
— would intrinsically lead to more accessible software systems.
We review the state-of-the-art, discuss current challenges, and
present a possible future of inclusive MDE.

Index Terms—Model-driven engineering, Software engineer-
ing, Inclusion, Accessibility

I. INTRODUCTION

“Accessibility is about making sure that barriers that may
prevent people with disabilities from taking part are removed.
Inclusion is about going a step further and ensuring that
people with disabilities are included as valuable members in
all aspects of society. This includes things like listening to
views and opinions and allowing people with disabilities to
contribute to planning, decisions and their futures.” [1]

Similarly to the overall societal and academic ambitions
toward becoming more inclusive, there is a growing need for
achieving inclusion in software engineering [2], especially in
model-driven engineering (MDE) where often domain-specific
solutions (languages, methods, and tools) are being used
that lack—compared to general software engineering with
powerful players and platforms—the economic possibilities
and human resources to realize inclusivity in the development
processes and accessibility in the resulting software.

As society strives for a more ‘inclusive world’, with this
vision paper, we aim to shed light on the diverse needs
of MDE developers [3]-[5] wishing to be involved in the
software development and the users for whom we are de-
veloping software for [6]-[8]. Consequently, we outline a
vision in which the future MDE processes, including all used
languages, methods, and tools, are inclusive, and, through such
an extended involvement of diverse stakeholders, the resulting
software intrinsically becomes more accessible [9], [10].

One important aspect is the inclusion of heterogeneous
software user needs. We can find ongoing discussions and
research in various areas, e.g., Al and diversity [11], bias in
data science [12], and diversity in development teams [13],
[14]. Traditionally, accessibility is often considered late in the
development cycle, leading to late or costly adaptations of

253

systems or exclusionary designs. A survey of existing MDE
languages, techniques, and tools that support the development
of accessible software is proposed in [15]. Notably, the authors
conclude that “...many of the studies focus on making the
final software product accessible, without considering the
accessibility of previously designed models ... " .

Inclusion is relevant not only for the technologies we create
as software engineers, but also the processes that lead to the
development of these technologies need to be inclusive to sup-
port developers with heterogeneous needs [16], [17]. Having
more diversity in development teams leads to more diversity in
technical solutions and more equitable technology [17], [18]
as development teams adopt accessibility practices in software
development. In the literature, we can find approaches that
discuss accessibility in software engineering processes [6],
[19], how to reduce barriers for people with disabilities to
become employed in software engineering [20], or the need
to still increase the accessibility of the tools used [21].

In this vision paper, we focus on MDE as a development
method, and analyze how it can become more inclusive toward
eventually facilitating the engineering of accessible software.
Liebel et al. suggest how to consider human factors in MDE
in general [22], e.g., the use of models and the design of
modeling languages. However, their work has no focus on
inclusion or accessibility. Our work zooms further in: We
consider the different steps in the MDE process, the different
roles (e.g., modeler, software developer, language engineer,
software user), and relevant artefacts and tools.

II. THE VISION

In our vision, software engineers treat inclusion and acces-
sibility as first-class citizens in MDE, leading towards more
inclusive software engineering processes and more accessible
systems. This covers two main areas: creating inclusive envi-
ronments for developers within MDE processes and engineer-
ing software that is accessible for end users.

Developer Inclusivity. Embedding inclusivity into MDE
practices and tools supports the participation of developers
with diverse backgrounds and disabilities in the MDE process,
e.g., by providing accessible modeling tools and platforms.
Such approaches promote diversity, equity, involvement, and
belonging within the software engineering community.

DEVELOPMENT ENVIRONMENT

C
IDE/
Modeling Tool

x

modeler

X

developer

language
engineer

Parameterized
Generator

=:j
.I feedback

SOFTWARE Legend:
artifact flow: m—p
dependency: 7=~
interaction: T——>,

<

<[>

hand-written

Frameworks

IR

user groups

Hardware, GUI,

©

Fig. 1: Inclusive Model-driven Software Engineering

Software Accessibility. By integrating accessibility concerns
into core modeling artifacts, e.g., requirements models, user
interface models, and behavioral specifications, engineers can
systematically address diverse user needs. This shift enables
the generation of accessible software by construction and
fosters a more inclusive design mindset.

Together, these approaches promote equity for end-users
and within the software engineering community. For realizing
our vision, we highlight, based on the state-of-the-art, the
challenges and potential future in the subsequent sections.

I1I. MDE DEVELOPER INCLUSIVITY

A core principle of MDE is the acknowledgement that
domain experts and practitioners should be more actively
involved [23] and obtain the capacity to design, modify, and
update the software according to their needs. Yet, despite
decades of development in the field of MDE, the current state
of MDE software could be described as “inadequate”. Main-
stream IDEs (e.g., Eclipse, VSCode, PyCharm) increasingly
provide support for visually impaired developers in the form of
high-contrast modes, zoom, font size flexibility, partial support
for screen readers, or shortcuts/global command execution.
Although such features represent incremental progress, they
often do not support the full workflow of visually or motor-
impaired developers across the entire MDE process (cf. Fig. 1),
and still lack many accessibility features [24]. VSCode re-
cently added a VoiceSupport-plugin, which enables speech-
based command and menu interaction [25] for keyboard- and
mouse-less interaction. Nonetheless, most IDEs and modeling
platforms still lack a systematic approach to inclusive and
accessible development processes [26].

A. MDE Editor and Artefacts Accessibility

MBDE editor and artefact (e.g., models, templates, grammars,
code) inclusivity (see Fig. 1) is an important prerequisite for
technical inclusion that needs to be considered in a twofold
manner: 1. artefact-external (e.g., adapting MDE tools to offer
inclusive artefact interactions), and 2. artefact-internal, where
inclusivity is built into the artefact itself using, e.g., syntac-
tic/semantic constructs. These approaches are complementary
and can be viewed as two sides of the same coin.

254

As an example, consider graphical modeling languages
where positioning typically carries implicit meaning, and
elements that are logically and/or semantically related are
placed nearby. On the one hand, model editors could be
enhanced to calculate and articulate (relative) element dis-
tances (e.g., for visually impaired people). On the other hand,
the model itself could be enhanced to contain descriptive
knowledge using explicit properties (e.g., as logical groupings,
related elements, etc.), instead of mere x/y coordinates. This
duality—supporting perceptual interfaces while enriching in-
ternal model semantics—is crucial toward realizing inclusive
MDE practices and, eventually, accessible software.

B1. State-of-the-Art, Challenges, and Vision

Clearly, many of the techniques and requirements for end-
user software (see Sec. IV) equally apply to developer tools.
For instance, color contrast analysis, keyboard operability,
and multimodal outputs benefit both software users and those
developing the software itself. Nonetheless, it is evident that,
given its frequent use of visual and/or graph-based modeling
languages, inclusivity and accessibility in the MDE domain
require dedicated attention. We review related work that could
be applied to foster a more inclusive MDE landscape, struc-
tured along the WCAG’s core principles for web content, i.e.,
perceivable, operable, understandable, and robust [27].

1) Perceivable: Inclusive MDE tools must enable all users
to perceive the model information (| in Fig. 1), regardless
of sensory abilities. Visual modeling languages, however, use
shapes, colors, and spatial layouts to convey relationships,
creating barriers for users with visual impairments, including
color blindness. In the past, several alternative perception
techniques have been explored, in addition to screen readers:
Sonification/audification translates visual information to audi-
tory cues. Existing works on the audification of graphs [28],
diagrams [29], [30], algebra [31], [32], and molecules [33]
could be applied to models to enable users to “hear” their
models. Tactile output devices [34] offer yet another di-
mension of model perception, such as UML diagrams [35].
Hybrid DSLs [36] offer live switching between graphical and
textual model representations.This has been used for UML

diagrams [37] and brainstorming models (‘mind maps’) [38]
for visually impaired people.

Challenges & Vision: Current MDE tools and techniques
target able-bodied developers. We develop our software with
intuitive graphical representations, icons, and relations that
can be distinguished by color, shape, and positioning. Sim-
ilarly, textual editors often primarily rely on text highlighting
of (sometimes even unintuitive) keywords. This requires a)
more research into accessible forms of model perception,
including truly comprehensible tactile model representations,
and audification/sonification of various forms of data, and
b) research into hybrid, configurable languages that treat all
syntax versions as first-class citizens on an industrial scale.

2) Operable: The second WCAG core principle caters to
the interaction with models and the use of modeling tools [39].
This means that alternatives to the traditional mouse-and-
keyboard interaction paradigm must be provided. An evident
approach is the support of touch interfaces [40] and styluses,
which allow the dragging and pointing [41], and drawing of
diagrams [42]. Alternatively, modern Al techniques allow the
parsing of actual drawings into diagrams [43].

Orthogonally, natural language processing (NLP) and Al
(in the form of, e.g., LLMs) were explored to enable novel
specification capabilities. Recently, these approaches were
extended to support the generation of UML diagrams [44]-
[46], Ecore models [47] as a basis for DSLs from natural
language, and web applications from natural languages [48].

Challenges & Vision: The primary challenge is the sup-
port for alternative forms of interaction and devices, includ-
ing touch, tactile, keyboard, natural language, and speech
commands for a broad set of popular and domain-specific
languages. This includes enhancing editors/IDEs to translate
various forms of model editing/interaction commands, as well
as designing models that are built for accessible editors.

3) Understandable: Third, the understandability of models,
modeling languages, and tools must be tackled. As of now,
modeling typically requires expert knowledge and/or formal
training [49]. Automated explanations might help novice de-
velopers to comprehend the intent behind complex model
structures, while automatically generated summaries can help
onboard new colleagues. Mussbacher et al. [5], e.g., investi-
gated opportunities in intelligent modeling assistance.

Early approaches such as OntoVerbal [50] investigated the
verbalization of ontologies in Protegé, while other techniques
helped users without ontology-expertise navigate medical on-
tologies [S1]. Alternatively, [52] showed the description of
UML models in natural language.

Orthogonally, we know that most modeling and program-
ming languages require some understanding of English, which
may also pose difficulties to non-English speakers [53].

Challenges & Vision: The understandability of models and
tools can be split into various challenges. From a linguistic
viewpoint, the internationalization of DSLs and models must
be extended beyond the mere translation of keywords, but
support true polyglot interactions. This includes various as-
pects, including model syntax, editing commands, and training

255

materials, that all need to support a truly native-language in-
teraction. As for comprehension, we argue for the inclusion of
descriptions straight into the models themselves, alongside au-
tomatically generated explanations and conversational/chatbot-
like model interaction possibilities. Al and LLMs, for instance,
appear to be ideal candidates to include such functionality, as
recently introduced by tools such as NotebookLM [54].

4) Robust: Robustness denotes the ambition to increase
compatibility, such that models can be shared across tool
vendors. While MDE as a domain has in the past gathered
around popular formats such as XMI and Ecore, the com-
munity’s current move toward web-based platforms results in
a landscape of heterogeneous and complementary tools for
which interoperability and reuse become crucial.

Challenges & Vision: As widespread standards enable tool
vendors to build upon, it is also evident that this standardiza-
tion must not hinder innovation. Tool builders often require
custom extensions, which should be developed in a traceable,
shareable, and extensible way. Balancing the diverging ambi-
tions of standardization and innovation is the main challenge
to robustness. We argue that we have to learn from the
web development community, where consortia are formed
to compromise on opposing views to establish a common
foundation upon which creativity and innovation can unfold.

B2. Inclusive Methods & Processes

Concerning inclusivity, we must not forget the processes
in which the developers engage in MDE. To realize a truly
inclusive MDE, not only the used tools but also the develop-
ment methods need to become inclusive to remove barriers
and enable participation of developers with heterogeneous
needs [16], [17]. Notably, this vision goes beyond gender
balance but acknowledges, among others, social, racial, eth-
nic, and underrepresented groups. Furthermore, we need to
strive for an actively positive environment for neurodivergent
modelers. Research showed that such an increase in developer
diversity leads to greater diversity in technical solutions,
increased creativity, and more equitable technology [17], [18].

Challenges & Vision: Active participation of developers
with heterogeneous backgrounds raises the challenge of fol-
lowing a streamlined development process. Naturally, the more
heterogeneous a group of humans is, the more challenging it
is to find norms for structuring communication and collabo-
ration [55]. In collaborative software engineering, there needs
to be a means of open communication, critical feedback, peer
review, and deadline-driven delivery. Such an environment,
often characterized also by stress and pressure to deliver the
software in adequate quality at a pre-defined time, establishes
challenges for e.g., introverted developers or neurodiverse
developers coping with ADHD, autism, and dyslexia.

IV. MDE OF ACCESSIBLE SOFTWARE

Software engineering research proposes ways to integrate
accessibility in the software development process, as this is a
reliable way to obtain accessible software [6]. However, it is
important to see the creation of accessible systems not as a

limitation on creativity and design of software [56], but crucial
within the entire MDE process (cf. A, B, D-G in Fig. 1).
In the following, we describe related works regarding the
accessibility support in the MDE process. We further discuss
remaining challenges toward realizing our vision.

@ Requirements. To consider accessibility already in the
requirements engineering phase, there exist different guide-
lines, e.g., WCAG [27], [57], ISO 9241-171 [58], Acces-
sibility development documentation for Android [59] and a
guide for iOS [60], as well as the Material Design guideline
for accessibility [59]. We can find approaches that consider
these specifications in the requirements engineering phase,
e.g., [61]-[64], however, they apply the mappings from the
guidelines to requirements in a manual way.

Challenges & Vision: An automated mechanism to help map
concrete requirements to accessibility guidelines is needed.
In the future, we envision the provision of reusable models
and domain-specific languages (DSLs) that describe relevant
aspects from accessibility guidelines to foster and automate
their incorporation in MDE processes.

Models and Grammar. Existing approaches use different
modeling languages and techniques to model various aspects
related to accessibility coming from these guidelines, e.g., the
user interface [65]-[67], interaction with the software [68]—
[70], navigation in the software [71]-[73], capabilities of
users [74]-[76], accessibility requirements [77], [78], context
information [75], [79], or adaptation rules to consider acces-
sibility needs [80], [81]. However, it is hard to learn from
existing approaches and transfer them to other MDE projects
as the descriptions are often on a high abstraction level and the
developed models are not made available as reusable artifacts.

Challenges & Vision: While accessibility is strongly re-
lated to user interfaces, there is a notable lack of research
on explicitly modeling accessibility requirements and their
traceable mapping to concrete system functionality, as well as
modeling context information and user capabilities. Moreover,
accessibility in general is hardly achievable, as different user
groups have different and even conflicting requirements. Thus,
we need to develop modeling and generative methods that
could handle sets of requirements variants for different user
groups. Furthermore, research should investigate if existing
modeling languages are sufficient to cover all aspects relevant
for considering different kinds of accessibility needs, or if
language extensions or even newly developed domain-specific
languages are needed to describe accessibility requirements
and software adaptation options. In addition, this work has to
be documented in a reusable way for other developers.

Transformation Rules and Templates. There are only a
few approaches that use adapted templates to accommodate
individual accessibility needs [73]. Some approaches [66],
[80], [82] implement transformation rules to adapt the cor-
responding models, resulting in a custom-accessible software.

Challenges & Vision: Enabling reusability in MDE remains
a challenge because many approaches rely on high-level
descriptions without providing replication packages, making it

256

difficult for others to reproduce or build upon existing work.
Future work should place greater emphasis on developing
generic transformation rules and templates that are more
reusable and adaptable, enabling their integration into arbitrary
model-driven engineering projects.

Hardware, GUI & Frameworks. Other works focus
specifically on user interfaces, e.g., Abrahdo et al. [83] summa-
rize work on model-based user interface adaptation. Bouraoui
and Gharbi [84] propose a method for generating accessible
Uls. Gerasimov et al. [85] propose a GUI component library
to better handle accessibility needs. Few studies focus on the
impact of device usage in MDE for GUI generation [75] and
mainly focus on mobile devices.

Challenges & Vision: Runtime environment components are
often tightly coupled to specific platforms and frameworks,
limiting their flexibility to address diverse accessibility re-
quirements in a generic manner. Future research should focus
on improving the adaptability of selected components, for
example, by using component libraries or generic APIs, to bet-
ter accommodate individual accessibility needs. Model-driven
approaches should also be leveraged to develop accessible
software for a wider variety of devices.

@ Code and Functional Tests. Software that is developed
in generative software engineering environments often con-
tains both generated and handwritten code. MDE approaches
can be used not only to generate software, but also to generate
the corresponding test environments and tests [86], [87],
however, these are often mostly functional tests that are not
optimized to ensure accessibility or inclusion guidelines. In
addition, there are several frameworks that can be used to
evaluate the accessibility of web applications [88].

Challenges & Vision: There is a need for methodologies and
MBDE approaches that focus on semantic tests [89] for specific
user needs. This ensures compliance with requirements while
remaining accessible for targeted user groups. Upcoming MDE
research should include accessibility and inclusion-focused
tests within the generated test frameworks.

@ Evaluation with users. The W3C WAL highlights the
importance of including users in evaluating accessibility [90]
besides checking the conformance to accessibility standards.
One has to evaluate the software with the respective user
groups, e.g., with users with visual impairments [74], blind
users [75], [91], or users with cognitive disabilities [92] to
avoid creating superficial or marginally useful solutions [93].
This involvement can range from brief consultations in infor-
mal settings to large-scale usability studies in formal settings.

Challenges & Vision: Getting representatives from target
user groups to evaluate the created software is not easy,
and such an evaluation is not part of many publications
presenting research on accessible software systems [94]. While
this applies to software created with MDE just as much as to
those developed conventionally, MDE research should work
on developing methods to include relevant user groups and
their feedback throughout the MDE process.

V. THE FUTURE OF INCLUSIVE MDE

Next to web technologies and Al, MDE is one of the core
techniques to enable inclusive software design and push for
accessible software. Given the widespread use of model-driven
design in industry, our community can create a lasting impact
that tears down current barriers.

To reach this goal, the MDE community must realize that
the status quo offers much room for improvement. To address
the challenges stressed at the outset, we need a holistic per-
spective that accounts for all parts of the MDE process through
inclusive design from the inception. This means that our tools
need to be created with accessibility-by-design, such that de-
velopers, regardless of their abilities, can fully participate. For
physically impaired users, this means the creation of keyboard-
first modeling processes, while in parallel enabling voice-
driven commands and speech interfaces. Graphical editors
have to be accessible and should enable touch, draw, and also
game controller-like input devices, similar to tactile outputs.
We further envision the design of WCAG-compliant modeling
editors that support standardized interfaces for accessibility
tools and assistive technology, which could be driven through
inclusion into standards such as LSP/GLSP. Additionally, past
studies have shown a (disproportionately) high fraction of
neurodiverse developers in tech and software engineering [95],
which includes, i.e., colleagues with ADHD, autism, and
dyslexia. Our tools, methods, and processes must be designed
in such a way that enables developers with these and simi-
lar characteristics a distraction-minimizing development, that
enables them to fully engage during the entire MDE process.

Models and modeling languages should be extended and
designed in such a way that switching between graphical
and textual syntax (i.e., blended modeling) is possible, while
at the same time natively enabling semantically accessible
annotations and language extensions such as element grouping
in spatial layouts and descriptive metadata. Languages with
graphical concrete syntax should focus on perceptive redun-
dancy (element identification through shape, color, and text),
while keywords and element names should be chosen with
speech capabilities in mind.

To create more accessible software, the MDE community
can rely on many helpful techniques: We can either generate
software that is adaptable for users to tailor it to their specific
needs, or we can generate different software variants that
address different accessibility needs. Other options are self-
adaptive systems that configure themselves according to partic-
ular user profiles that specific user groups carry. E.g., Savidis
et al. [96] stress the need for new interaction metaphors, ma-
nipulating diverse collections of interaction objects, automatic
interface adaptation, and ambient interactions. One possible
solution can be provided through GenAl, serving as a mediator
to facilitate individually customized user interactions. Users
with diverse individual needs can collaboratively develop the
same software through inclusive Al agents, which transform
varying input modalities into unified software models [48],
[97]. Similarly, software can be generated directly to support

257

standards such as MCP [98], thereby natively enabling agent-
based, inclusive interactions with the generated software.
Users could simply ‘tell’ the software what to do and ask
questions using their preferred input modality.

‘When moving to the model representation, models no longer
need to be represented solely in predefined syntaxes, such as
textual artifacts or simple box-and-line diagrams. In the future,
inclusive MDE should generate customized representations
involving icons, storyboards, or video sequences [99], [100]
to inclusively, semantically transparent, and comprehensibly
illustrate models in the most appropriate formalism for specific
user groups and purposes. Here, the adoption of AR/VR
techniques for MDE can realize inclusion [101], [102].

From a research community point of view, we must establish
an environment that promotes inclusion. Dedicated tracks and
workshops at MDE conferences can be used as platforms for
experience reports and exchange of ideas, while at the same
time raising awareness. Moreover, our courses and teaching
materials should teach accessibility and inclusive practices
as a core principle. Furthermore, modeling tool tracks could
include accessibility evaluations in their tool assessment

VI. CONCLUSION

In this paper, we outlined our vision of inclusive model-
driven engineering as a foundation for developing accessible
software. Following the stages of the MDE process, we
examined the current state of inclusion and accessibility,
identifying key limitations and gaps in existing tools and
practices. Building on this analysis, we proposed a future
direction for inclusive MDE—one that embeds accessibility as a
first-class concern and supports the collaboration of both abled
and disabled engineers in the realisation of accessible software
systems. This paper aims to spark innovation and creativity,
fostering a more open, inclusive, and equal MDE landscape.

REFERENCES
[1

Sign Solutions, “What’s the difference between accessibility and inclu-
sion?” https://www.signsolutions.uk.com/whats-the-difference-betwe
en-accessibility-and-inclusion/, 2022.

P. Teixeira, C. Eusébio, and L. Teixeira, “Understanding the integration
of accessibility requirements in the development process of information
systems: a systematic literature review,” Requirements Engineering,
vol. 29, no. 2, pp. 143-176, 2024.

P. Calais and L. Franzini, “Test-Driven Development Benefits beyond
Design Quality: Flow State and Developer Experience,” in 45th Int.
Conf. on Software Engineering: New Ideas and Emerging Results, ser.
ICSE-NIER °23. IEEE Press, 2023, p. 106-111.

A. Bouraffa and W. Maalej, “Two Decades of Empirical Research on
Developers’ Information Needs: A Preliminary Analysis,” in Int. Conf.
on Software Engineering Workshops, 2020, p. 71-77.

G. Mussbacher et al., “Opportunities in intelligent modeling assis-
tance,” Software & Systems Modeling, vol. 19, no. 5, 2020.

D. M. B. Paiva, A. P. Freire, and R. P. de Mattos Fortes, “Accessibility
and Software Engineering Processes: A Systematic Literature Review,”
Journal of Systems and Software, vol. 171, p. 110819, 2021.

M. Brhel, H. Meth, A. Maedche, and K. Werder, “Exploring principles
of user-centered agile software development: A literature review,”
Information and Software Technology, vol. 61, pp. 163-181, 2015.

L. L. Constantine and L. A. D. Lockwood, “Usage-centered software
engineering: an agile approach to integrating users, user interfaces,
and usability into software engineering practice,” in 25th Int. Conf. on
Software Engineering, ser. ICSE °03. IEEE, 2003, p. 746-747.

[2

3

[4]

[5]
[6]

[7

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

L1e]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]
[28]
[29]

[30]

D. E. Damian, K. Blincoe, D. Ford, A. Serebrenik, and Z. Masood,
Eds., Equity, Diversity, and Inclusion in Software Engineering: Best
Practices and Insights. Apress, 2024.

G. Rodriguez-Pérez, R. Nadri, and M. Nagappan, ‘“Perceived diversity
in software engineering: a systematic literature review,” Empir. Softw.
Eng., vol. 26, no. 5, p. 102, 2021.

P. Daugherty, H. Wilson, and R. Chowdhury, “Using Atrtificial Intelli-
gence to Promote Diversity,” MIT Sloan Management Review, 2018.
M. O. Prates, P. H. Avelar, and L. C. Lamb, “Assessing gender bias
in machine translation: a case study with google translate,” Neural
Computing and Applications, vol. 32, pp. 6363-6381, 2020.

G. A. A. Prana, D. Ford, A. Rastogi, D. Lo, R. Purandare, and
N. Nagappan, “Including Everyone, Everywhere: Understanding Op-
portunities and Challenges of Geographic Gender-Inclusion in OSS,”
IEEE Trans. Software Eng., vol. 48, no. 9, pp. 3394-3409, 2022.

W. Hussain, H. Perera, J. Whittle, A. Nurwidyantoro, R. Hoda, R. A.
Shams, and G. C. Oliver, “Human Values in Software Engineering:
Contrasting Case Studies of Practice,” IEEE Trans. Software Eng.,
vol. 48, no. 5, pp. 1818-1833, 2022.

K. Ordoiiez, J. Hilera, and S. Cueva, “Model-driven development of
accessible software: a systematic literature review,” Universal Access
in the Information Society, vol. 21, no. 1, pp. 295-324, 2022.

E. Dagan, A. Sarma, A. Chang, S. D’ Angelo, J. Dicker, and E. Murphy-
Hill, “Building and Sustaining Ethnically, Racially, and Gender Diverse
Software Engineering Teams: A Study at Google,” in 31st ACM Joint
Europ. Software Engineering Conf. and Symposium on the Foundations
of Software Engineering, ser. ESEC/FSE 2023. ACM, 2023.

I. Cardoso-Pereira, G. Gomes, D. M. Ribeiro, A. d. Souza, D. Lucena,
and G. Pinto, “Supporting the Careers of Developers With Disabilities:
Lessons From Zup Innovation,” IEEE Software, vol. 40, no. 5, 2023.
S. M. Hyrynsalmi, S. Baltes, C. Brown, R. Prikladnicki, G. Rodriguez-
Perez, A. Serebrenik, J. Simmonds, B. Trinkenreich, Y. Wang, and
G. Liebel, “Making Software Development More Diverse and Inclusive:
Key Themes, Challenges, and Future Directions,” ACM Trans. Softw.
Eng. Methodol., vol. 34, no. 5, 2025.

N. Rajh, K. Miesenberger, and R. Koutny, “Accessibility in the
Software Engineering (SE) Process and in Integrated Development
Environments (IDEs): A Systematic Literature Review,” in Computers
Helping People with Special Needs, ICCHP’24. Springer, 2024.

T. Rocha, N. Davila, R. Vaccari, N. Menezes, M. Mota, E. Monteiro,
C. R. B. de Souza, and G. Pinto, “Affirmative Hackathon for Software
Developers with Disabilities: An Industry Initiative,” in Cooperative
and Human Aspects of Software Engineering, 2025, pp. 39-50.

T. A. da Rocha, C. de Souza, L. Teran, and M. Mota, “Effective
Inclusion of People with Disabilities in Software Development Teams,”
in 18th ACM/IEEE Int. Symp. on Empirical Software Engineering and
Measurement, ser. ESEM "24. ACM, 2024, p. 447-453.

G. Liebel et al., “Human factors in model-driven engineering: future
research goals and initiatives for mde,” Software & Systems Modeling,
vol. 23, no. 4, pp. 801-819, 2024.

G. Fischer, S. Lindstaedt, J. Ostwald, M. Stolze, T. Sumner, and
B. Zimmermann, “From domain modeling to collaborative domain
construction,” in /st Conf. on Designing interactive systems: processes,
practices, methods, & techniques, 1995, pp. 75-85.

K. Albusays et al., “Interviews and Observation of Blind Software
Developers at Work to Understand Code Navigation Challenges,” in
19th Int. Conf. on Computers and Accessibility. ACM, 2017.
Microsoft Inc., “VS Code Speech ,” https://code.visualstudio.com/do
cs/configure/accessibility/voice, 2025.

A. Sarioglu, H. Metin, and D. Bork, “Accessibility in conceptual
modeling - A systematic literature review, a keyboard-only UML
modeling tool, and a research roadmap,” Data Knowl. Eng., vol. 158,
2025.

W3C, “Web content accessibility guidelines (wcag) 2.2,” https://www.
w3.0org/TR/IWCAG22/, 2023.

A. Brown, R. Stevens, and S. Pettifer, “Audio representation of graphs:
A quick look,” in Int. Conf. on Auditory Displays. Citeseer, 2006.
A. R. Kennel, “Audiograf: A diagram-reader for the blind,” in 2nd
annual ACM Conf. on Assistive technologies, 1996, pp. 51-56.

T. Murillo-Morales and K. Miesenberger, “AUDiaL: A Natural Lan-
guage Interface to Make Statistical Charts Accessible to Blind Per-
sons,” in 17th Int. Conf. Computers Helping People with Special
Needs(ICCHP), P. I, ser. LNCS, vol. 12376. Springer, 2020.

258

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]
[50]
[51]

[52]

(53]

[54]
[55]

R. Stevens, S. Brewster, P. Wright, A. Edwards, and G. Kramer,
“Design and Evaluation of an Auditory Glance at Algebra for Blind
Readers,” in 2nd Int. Conf. on Auditory Display. Addison-Wesley,
1994.

R. Stevens, A. Edwards, G. Allen, J. Wilkinson, and P. Wright,
“Strategy and prosody in listening to algebra,” in Adjunct Proceedings
of HCI'95: People and Computers. British Computer Society, 1995.
A. Brown, S. Pettifer, and R. Stevens, “Evaluation of a non-visual
molecule browser,” ACM SIGACCESS Accessibility And Computing,
no. 77-78, pp. 4047, 2003.

J. C. Bliss, M. H. Katcher, C. H. Rogers, and R. P. Shepard, “Optical-
to-Tactile Image Conversion for the Blind,” IEEE Transactions on Man-
Machine Systems, vol. 11, no. 1, pp. 58-65, 1970.

C. Loitsch and G. Weber, “Viable haptic UML for blind people,” in
Int. Conf. on Computers for Handicapped Persons, 2012, pp. 509-516.
1. Predoaia, D. Kolovos, and A. Garcia-Dominguez, “Hybrid Graphical-
Textual DSL Editors: Vision, Requirements and Challenges,” in
ACM/IEEE 27th Int. Conf. on Model Driven Engineering Languages
and Systems, ser. MODELS Companion "24. ACM, 2024.

A. King, P. Blenkhorn, D. Crombie, S. Dijkstra, G. Evans, and
J. Wood, “Presenting UML software engineering diagrams to blind
people,” in 9th Int. Conf. Computers Helping People with Special Needs
(ICCHP’04). Proc. 9. Springer, 2004, pp. 522-529.

S. Polzer, D. Schnelle-Walka, D. Poll, P. Heumader, and K. Miesen-
berger, “Making brainstorming meetings accessible for blind users,” in
Assistive Technology: From Research to Practice, 2013, pp. 653-658.
D. Bork and G. D. Carlo, “An extended taxonomy of advanced
information visualization and interaction in conceptual modeling,” Data
Knowl. Eng., vol. 147, p. 102209, 2023.

F. Wildhaber, N. Salloum, M. Gygli, and A. Kennel, “Self-Directed
Creation and Editing of UML Class Diagrams on Mobile Devices for
Visually Impaired People,” in IEEE 10th Int. Model-Driven Require-
ments Engineering (MoDRE), 2020, pp. 49-57.

J. Stark, M. Burwitz, R. Braun, and W. Esswein, “Cognitive efficient
modelling using tablets,” in Enterprise Modelling and Information
Systems Architectures (EMISA 2013). GI, 2013, pp. 57-70.

B. Tenbergen, R. Buck, and L. Lazarro, “Sketch UML: A Tablet PC-
based e-Learning Tool for UML Syntax using a Minimalistic Interface,”
2008.

A. Conrardy and J. Cabot, “From image to UML: first results of
image based UML diagram generation using LLMS,” in STAF 2024
Workshops - LLMAMDE. CEUR, 2024.

S. Yang and H. Sahraoui, “Towards automatically extracting UML
class diagrams from natural language specifications,” in Model Driven
Engineering Languages and Systems: Companion Proc., 2022.

A. Ferrari, S. Abualhaija, and C. Arora, “Model Generation with LLMs:
From Requirements to UML Sequence Diagrams,” in IEEE 32nd Int.
Requirements Engineering Conf. Workshops (REW), 2024.

D. K. Deeptimahanti and M. A. Babar, “An automated tool for gener-
ating UML models from natural language requirements,” in [EEE/ACM
Int. Conf. on Automated Software Engineering, 2009.

A. Alaoui Mdaghri, M. Ouederni, and L. Chaari, “MDE in the Era
of Generative Al in /7th Int. Conf. Verification and Evaluation of
Computer and Communication Systems. Springer, 2025.

L. Netz, J. Michael, and B. Rumpe, “From Natural Language to
Web Applications: Using Large Language Models for Model-Driven
Software Engineering,” in Modellierung 2024, ser. LNI. GI, 2024.
S. Friedenthal, “SysML: Lessons from early applications and future
directions,” Insight, vol. 12, no. 4, pp. 10-12, 2009.

S. F. Liang, R. Stevens, D. Scott, and A. L. Rector, “OntoVerbal: a
Protégé plugin for verbalising ontology classes,” in ICBO, 2012.

S. F. Liang, D. Scott, R. Stevens, and A. Rector, “Unlocking medical
ontologies for non-ontology experts,” in BioNLP 2011 workshop, 2011.
F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating natural
language specifications from UML class diagrams,” Requirements
Engineering, vol. 13, pp. 1-18, 2008.

B. A. Becker, “Parlez-vous Java? Bonjour La Monde != Hello World:
Barriers to Programming Language Acquisition for Non-Native English
Speakers,” in Annual WS of the Psychology of Prog. IG, 2019.
Alphabet Inc., “NotebookLLM,” https://notebooklm.google/, 2025.

G. Mirquez, M. Pacheco, H. Astudillo, C. Taramasco, and E. Calvo,
“Inclusion of individuals with autism spectrum disorder in Software
Engineering,” Inf. Softw. Technol., vol. 170, p. 107434, 2024.

[56]

[57]

[58]

[59]
[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

B. Regan, “Accessibility and design: a failure of the imagination,”
in Int. Cross-Disciplinary Workshop on Web Accessibility (W4A), ser.
W4A ’04. ACM, 2004, p. 29-37.

W3C, “Guidance on applying wcag 2.2 to mobile (wcag2mobile),”
https://w3c.github.io/matf/, 2025.

I. O. for Standardization, Ergonomics of Human System Interaction -
Part 171: Guidance on software accessibility, iso 9241-171:2008 ed.
International Organization for Standardization, 2008.

Google LLC, “Accessibility & Material Design,” https://developer.an
droid.com/guide/topics/ui/accessibility/apps, 2024.

Apple Inc., “Accessibility,” https://www.apple.com/accessibility/,
2025.

F. Dias, L. Duarte, and R. Fortes, “Accessmdd: An mdd approach for
generating accessible mobile applications,” in 39th ACM Int. Conf.on
Design of Communication, ser. SIGDOC "21. ACM, 2021, p. 85-95.
C. Rieger, D. Lucrédio, R. P. M. Fortes, H. Kuchen, F. Dias, and
L. Duarte, A Model-Driven Approach to Cross-Platform Development
of Accessible Business Apps. ACM, 2020, p. 984-993.

E. Krainz and K. Miesenberger, “Accapto, a generic design and
development toolkit for accessible mobile apps,” in Harnessing the
Power of Technology to Improve Lives. 10S Press, 2017.

A. Martin, G. Rossi, A. Cechich, and S. Gordillo, “Engineering
accessible web applications. an aspect-oriented approach,” World Wide
Web, vol. 13, no. 4, pp. 419-440, 2010.

L. Zouhaier, Y. B. Hlaoui, and L. J. B. Ayed, “A MDA-based Approach
for Enabling Accessibility Adaptation of User Interface for Disabled
People,” in 16th Int. Conf. on Enterprise Information Systems (ICEIS),
V.2. SciTePress, 2014, pp. 120-127.

R. Miiién, L. Moreno, and J. Abascal, “A graphical tool to create
user interface models for ubiquitous interaction satisfying accessibility
requirements,” Univers. Access Inf. Soc., vol. 12, no. 4, 2013.

P. Gohner, S. Kunz, S. Jeschke, H. Vieritz, and O. Pfeiffer, “Integrated
accessibility models of user interfaces for it and automation systems,”
in 21st Int. Conf.on Computer Applications in Industry and Engineer-
ing, CAINE’08. ISCA, 2008, pp. 280-285.

R. Miiién, F. Paternd, M. Arrue, and J. Abascal, “Integrating adaptation
rules for people with special needs in model-based UI development
process,” Universal Access in the Information Society, 2016.

M. Gonzilez-Garcfa, L. Moreno, P. Martinez, R. Mifion, and J. Abascal,
“A model-based graphical editor to design accessible media players,”
Journal of Universal Computer Science, vol. 19, no. 18, 2013.

K. Van Hees and J. Engelen, “Equivalent representations of multimodal
user interfaces: Runtime reification of abstract user interface descrip-
tions,” Universal Access in the Information Society, vol. 12, 2013.

E. Krainz, J. Feiner, and M. Fruhmann, “Accelerated development for
accessible apps — model driven development of transportation apps
for visually impaired people,” in Human-Centered and Error-Resilient
Systems Development. Springer, 2016, pp. 374-381.

T. J. Bittar, L. L. Lobato, R. P. M. Fortes, and D. F. Neto, “Accessible
organizational elements in wikis with model-driven development,” in
28th Int. Conf. on Design of Communication. ACM, 2010.

W. M. Watanabe, D. F. Neto, T. J. Bittar, and R. P. M. Fortes, “WCAG
Conformance Approach Based on Model-Driven Development and
WebML,” in 28th ACM Int. Conf. on Design of Com. ACM, 2010.
Y. Bendaly Hlaoui, L. Zouhaier, and L. Ben Ayed, “Model driven ap-
proach for adapting user interfaces to the context of accessibility: case
of visually impaired users,” Journal on Multimodal User Interfaces,
vol. 13, no. 4, pp. 293-320, 2019.

A. Khan and S. Khusro, “Blind-friendly user interfaces — a pilot study
on improving the accessibility of touchscreen interfaces,” Multimedia
Tools and Applications, vol. 78, no. 13, pp. 17495-17519, 2019.

F. Yazdi, H. Vieritz et al., “A concept for user-centered development
of accessible user interfaces for industrial automation systems and web
applications,” in Universal Access in Human-Computer Interaction.
Applications and Services. Springer, 2011.

W. T. Andrade, R. G. d. Branco, M. I. Cagnin, D. M. B. Paiva, and
H. Nakanishi, “Incorporating accessibility elements to the software
engineering process,” Advances in Human-Computer Interaction, 2018.
H. Vieritz, O. Pfeiffer, and S. Jeschke, “BELEARNING: Designing
accessible eLearning applications,” in 37th Annual Front. in Education
Conf., 2007.

S. Jeschke and H. Vieritz, “Accessibility and model-based web ap-
plication development for elearning environments,” in Innovations

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

259

in E-learning, Instruction Technology, Assessment, and Engineering
Education. Springer Netherlands, 2007, pp. 439-444.

B. Gamecho, R. Mifién, A. Aizpurua, I. Cearreta, M. Arrue, N. Garay-
Vitoria, and J. Abascal, “Automatic generation of tailored accessible
user interfaces for ubiquitous services,” IEEE Transactions on Human-
Machine Systems, vol. 45, no. 5, pp. 612-623, 2015.

M. Gonzilez-Garcia, L. Moreno, and P. Martinez, “Adaptation rules for
accessible media player interface,” in XV Int. Conf.on Human Computer
Interaction, ser. Interaccién "14. ACM, 2014.

H. Vieritz, F. Yazdi, D. Schilberg, P. Gohner, and S. Jeschke, “User-
centered design of accessible web and automation systems,” in Infor-
mation Quality in e-Health. Springer, 2011, pp. 367-378.

S. Abrahio, E. Insfran, A. Slujters, and J. Vanderdonckt, “Model-based
intelligent user interface adaptation: challenges and future directions,”
Software & Systems Modeling, vol. 20, no. 5, pp. 1335-1349, 2021.
A. Bouraoui and I. Gharbi, “Model driven engineering of accessible
and multi-platform graphical user interfaces by parameterized model
transformations,” Science of Computer Programming, vol. 172, 2019.
A. Gerasimov, N. Jansen, J. Michael, B. Rumpe, and S. Will, “A
model-driven approach to design, generation, and deployment of gui
component libraries,” in I18th ACM SIGPLAN Int. Conf. on Software
Language Engineering, 2025, pp. 57-70.

B. Rumpe, Agile Modeling with UML: Code Generation, Testing,
Refactoring. Springer International, May 2017.

I. Drave, T. Greifenberg, S. Hillemacher, S. Kriebel, M. Markthaler,
B. Rumpe, and A. Wortmann, “Model-Based Testing of Software-
Based System Functions,” in Conf. on Software Engineering and
Advanced Applications (SEAA), 2018, pp. 146-153.

A. Alsaeedi, “Comparing Web Accessibility Evaluation Tools and
Evaluating the Accessibility of Webpages: Proposed Frameworks,”
Information, vol. 11, no. 1, 2020.

M. Bajammal and A. Mesbah, “Semantic web accessibility testing
via hierarchical visual analysis,” in IEEE/ACM 43rd International
Conference on Software Engineering (ICSE), 2021, pp. 1610-1621.
W3C WAL “Involving Users in Evaluating Web Accessibility,” https:
/Iwww.w3.0org/W Al/test-evaluate/involving-users/, 2024.

J. Abascal, A. Aizpurua, 1. Cearreta, B. Gamecho, N. Garay-Vitoria,
and R. Mifién, “Automatically Generating Tailored Accessible User
Interfaces for Ubiquitous Services,” in 13th Int. ACM SIGACCESS
Conf. on Computers and Accessibility (ASSETS). ACM, 2011.

L. Moreno, R. Alarcon, and P. Martinez, “Designing and Evaluating
a User Interface for People with Cognitive Disabilities,” in 2/st Int.
Conf. on Human Computer Interaction. ACM, 2021.

A. Lundgard, C. Lee, and A. Satyanarayan, “Sociotechnical consider-
ations for accessible visualization design,” in IEEE Visualization Conf.
(VIS), 2019, pp. 16-20.

R. Angelini, K. Spiel, and M. de Meulder, “Speculating deaf tech:
Reimagining technologies centering deaf people,” in 2025 CHI Confer-
ence on Human Factors in Computing Systems, 2025, pp. 66:1-66:18.
A. El-Deeb, “Neurodiversity: What Can the Software Industry Gain
from It?” SIGSOFT Softw. Eng. Notes, vol. 48, no. 4, p. 19, Oct. 2023.
A. Savidis and C. Stephanidis, “Inclusive development: Software engi-
neering requirements for universally accessible interactions,” Interact.
Comput., vol. 18, no. 1, pp. 71-116, 2006.

N. Baumann, J. S. Diaz, J. Michael, L. Netz, H. Nqiri, J. Reimer,
and B. Rumpe, “Combining Retrieval-Augmented Generation and
Few-Shot Learning for Model Synthesis of Uncommon DSLs,” in
Modellierung 2024 - Workshopband. GI, March 2024.

Anthropic, “Model Context Protocol,” https://modelcontextprotocol.io/,
2024, accessed: 2025-07-09.

A. Gavric, D. Bork, and H. A. Proper, “How Does UML Look and
Sound? Using Al to Interpret UML Diagrams Through Multimodal
Evidence,” in Advances in Conceptual Modeling, 2024, pp. 187-197.
A. Gavric, D. Bork, and H. Proper, “Turning process models into
videos,” in 27th International Conference on Business Informatics
(CBI), 2025. [Online]. Available: https://model-engineering.info/publ
ications/papers/CBI25- Video-Generation.pdf

R. Campos-Lépez, E. Guerra, J. de Lara, A. Colantoni, and A. Gar-
mendia, “Model-Driven Engineering for Augmented Reality,” J. Object
Technol., vol. 22, no. 2, pp. 1-15, 2023.

R. Reuter, F. Hauser, D. Muckelbauer, T. Stark, E. Antoni, J. Mottok,
and C. Wolff, “Using Augmented Reality in Software Engineering
Education? First insights to a comparative study of 2D and AR UML
modeling,” in Hawaii Int. Conf. on System Sciences, HICSS 2019, 2019.

