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Improving Reuse in Architecture Modeling with
Higher-Order Components

Kai Adam! Bernhard Rurnpe1 , Andreas Wortmann!

Abstract: Modern architecture description languages (ADLs) combine the benefits of component-
based software engineering and model-driven development. Conceiving software component models
as black-boxes entails challenges to their reuse when they must be customized to the new applica-
tion context. Thus, reuse in ADLs usually is limited to situations with perfect fit between software
architecture and already available components, requires fixing reuse options apriori, or entails the
generic complexities of, for instance, delta modeling [HKR™11]. We present a concept of higher-
order components for component and connector (C&C) ADLs that enables modeling components
with component-valued parameters to enable injecting customized subcomponents where necessary.
This concept relies on metamodel element adaptation and can be retrofitted into many C&C ADLs,
which is demonstrated with MontiArcAutomaton architecture modeling infrastructure. Higher-order
components are more flexible than 150% [GKPROS8|| models and less challenging than delta model-
ing. They enable to customize components prior to reuse easily and hence C&C architecture model-
ing with facilitate off-the-shelf components.

Keywords: Model-Driven Development; Architecture Description Languages; Component and Con-
nector Architectures; Component Reuse

1 Introduction

The ultimate vision of component-based software engineering (CBSE) is to compose
complex systems from off-the-shelf, black-box components. Yet customizing third-party
components can be necessary to prevent engineering slightly different components from
scratch, fixing reuse options apriori, or learning delta modeling languages [HKR™11].
Furthermore, many approaches to CBSE employ general programming languages (GPLs),
which confront developers with the “accidental complexities” [FR07] of their idiosyn-
crasies. Model-driven development (MDD) [VSB™ 13| lifts models to primary develop-
ment artifacts to abstract from both. These models conform to modeling languages and
can be translated into GPL artifacts automatically. Component and connector (C&C) ar-
chitecture description languages (ADLs) [MTOO| are modeling languages to describe soft-
ware architectures. Although the abstraction of C&C ADLs enables many useful features,
it usually is still expected to reuse complete components in a black-box fashion, which at
best can be parametrized with data-type-valued arguments.

We present an approach to parametrize hierarchical C&C models with component-type-
valued arguments to enable the injection of subcomponents into black-box components.
These higher-order component parameters are tied to component-types and enable a post-
poned customization for such models by passing instances of the (sub-)type without chang-
ing the component model (i.e., the choice of subtypes of a subcomponent is left open).
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This approach relies on introducing adapters to the ADLs’ metamodels and introducing
few well-formedness rules. Employing adaptation enables to reuse the remaining parts
of existing infrastructure (existing well-formedness rules, model transformations) without
modification and hence is a worthwhile extension to many C&C ADLs.

The contribution of this paper is a concept for higher-order components with component-
valued parameters. Specifically, we present the concept relative to metamodel elements
common to many C&C ADLs, show how it can be retrofitted into such languages, and
present its realization for the MontiArcAutomaton ADL. In the following, describes
necessary preliminaries before illustrates the benefits of this approach by a moti-
vating example. presents the concept on metamodel elements common to many
C&C ADLs and describes retrofitting it into MontiArcAutomaton ADL. After-
wards, highlights related work and discusses challenges. Finally, |Sec. 7|concludes.

2 Preliminaries

Architecture description languages combine the benefits of CBSE (encapsulation, reuse)
and MDD (abstraction, comprehensibility) to enable describing complex software systems
as topologies of interacting component models. Science and industry have produced over
120 ADLs [MLM™ 13| that employ various architectural styles and provide different fea-
tures. Component and connector ADLs [MTOQ] are a specific architectural style that fo-
cuses on describing component communication through explicitly modeled connectors be-
tween the interface elements (e.g., ports) of component models. Usually, the components
can be composed hierarchically by creating configurations of subcomponent topologies
and many C&C ADLs moreover support to configure subcomponents with data type ar-
guments (such as offsets, identifiers, etc.). Other popular architectural styles are multitier
architectures or client-server architectures. With C&C ADLs being modeling languages,
we follow [CvCR15] in assuming that these can be defined in terms of concrete syntax (the
ADL’s words), abstract syntax (the structure of its sentences), static semantics (its well-
formedness rules), and dynamic semantics (its behavior). We do not impose restrictions on
the language definition constituents, i.e., the concrete syntax may be graphical or textual,
the abstract syntax may be defined by grammars or metamodels, etc.

MontiArcAutomaton is an extensible architecture modeling infrastructure comprising the
MontiArcAutomaton ADL, exchangeable model-to-model transformations, and a power-
ful code generation framework [RRRW13]. It is built around the MontiArcAutomaton
C&C ADL and has been applied to teaching [RRW13] and industry [HMR™'15]. The
MontiArcAutomaton ADL describes software architectures as hierarchies of interacting
components. These components exchange messages through the unidirectional connectors
between their interfaces of directed, typed ports only. It distinguishes component types
from component instances and supports component configuration parameters to pass data
type arguments to components at their instantiation (similar to constructors in many object-
oriented languages). These component parameters may use generic type parameters sim-
ilar to Java. Component types are either atomic or composed. Atomic component types
are related to a behavior description, either in form of embedded automata or behavior
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Fig. 1: Top-level MontiArcAutomaton component type of an ABS implementation for motorcycles
with five subcomponents and the related UML/P class diagram data type PCMD.

implementations in the general purpose language (GPL) the components are translated
to. The behavior of composed components instead emerges from the behavior and in-
terconnection of their subcomponent instances. Moreover, MontiArcAutomaton supports
component type inheritance, where sub-types inherit the super-types ports and configura-
tion parameters. Retaining interface compatibility, this inheritance enables component in-
stances of a sub-type to be used where ever its super-type is required. MontiArcAutomaton
architectures operate in the context of UML/P class diagram [Rum16]] types, i.e., the data
types of ports are classes. [Fig. T|illustrates the modeling elements of MontiArcAutomaton
with an anti-lock braking system (ABS) for motorcycles. The top-level component ABS
contains a speed sensor and a hydraulic unit per wheel as well as a single electronic control
unit (ECU). Speed sensors are represented by the subcomponent instances front Speed
and backSpeed of component type SpeedSensor. Hydraulic units are represented by
instances frontHU and backHU of component type HydraulicUnit. Speed sensors
report the current speed of the front wheel (or back wheel) to the ECU via connectors
between their £1oat ports speed to ECU ports £Speed and bSpeed. The ECU also
receives the hydraulic pressures of both wheels. Based on these, it controls adapting the
hydraulic pressure by sending pressure commands (PCMDs) to the hydraulic units.

3 Example: Motorcycle ABS Architecture

The motorcycle ABS architecture depicted in[Fig. T|comprises two instances of component
type HydraulicUnit. The structure of this component type is as depicted in
It receives a pressure command, which its subcomponent instance ctrl of type Con—
troller translates into increasing pump pressure (via PumpActuator) and opening a
valve to decrease pressure (via ValveActuator) for a fixed amount of time. Both are
atomic components that interact with the environment. The PressureSensor also in-
teracts with the environment and emits the sensed hydraulic pressure via port pressure.
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Fig.2: The composed component type HydraulicUnit comprises four subcomponent instances
to adjust hydraulic pressure.

Following the vision of CBSE, the company implementing the ABS software architecture
for their line of sportbikes bought the component type HydraulicUnit off-the-shelf as
a black-box. When using the architecture for their line of choppers, they found that the
choppers’ weight imposes manipulating pump and valve differently. If the source of the
component types HydraulicUnit and Controller are provided, the company could
customize both manually to their requirements. This, however, usually is error-prone and
costly. Instead, they decide to replace the instances of HydraulicUnit by instances
of ExtensibleHydraulicUnit as depicted in This component type already
implements our concept of component-valued parameters and yields a single configura-
tion parameter of component type Controller and of name ctrl. Furthermore, Ex—
tensibleHydraulicUnit features only three static subcomponent instances pump,
sensor, and valve. The subcomponent instance ctrl of type Controller is de-
rived from the higher-order parameter of the same name. This flexibility enables the com-
pany to easily reuse the component type ExtensibleHydraulicUnit with both lines
of motorcycles: at the level of the ABS component type, only proper sub-types of Con—
troller for the different pump and valve manipulations must be instantiated and passed
to the two instances of ExtensibleHydraulicUnit. This omits the need for error-
prone and costly white-box reusing partial architectures with extensible components.

4 Higher-Order Component Parameters

As illustrated in the example, we aim to improve component reuse with C&C ADLs by en-
abling the parametrization of component types with component instances. To this effect,
we aim to enable passing subcomponent instances as configuration arguments to other
subcomponent instances and have the latter interpret these as 'normal’, i.e., statically de-
clared, subcomponent instances. Exploiting component type inheritance, this enables to
create appropriate component types that inherit from the types mentioned in the potential
containing components’ parameters and pass their instances as arguments. To enable such
interpretation, we must enable interpretation of component types as data types and enable
interpretation of configuration parameters as subcomponent instances.
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Fig.3: An extensible variant of HydraulicUnit featuring a higher-order parameter that accepts
component type arguments and interprets these as subcomponent instances.

We propose to augment the metamodel of C&C ADLs with adapters between component
types and data types and between parameters and subcomponent instances as depicted in
The figure depicts an excerpt of a typical C&C ADL metamodel, where the classes
ComponentType, Connector, Port, DataType, and SCInstance represent ele-
ments common to many C&C ADLs (whether component types require and provide inter-
faces or yield interfaces of typed ports is irrelevant to the proposed extension). The new
metamodel elements are adapters between Component Type and DataType (to enable
interpretation of component types as data types) and between Parameter and SCIn-
stance (to enable interpretation of parameters as subcomponent instances).

The new classes are introduced on the metamodel level solely and, hence, do not yield rep-
resentations in the concrete syntax, i.e., it is impossible to create instances of the elements
with models. Both adapters must be instantiated whenever a component configuration pa-
rameter that is of a component type is found. This enables using the arguments passed to a
composed component type expecting higher-order arguments as subcomponent instances
for all purposes. It furthermore enables to pass higher-order arguments (i.e., the subcom-
ponent instances to be) down through multiple levels of the architectures hierarchy.

While this extension is minimally invasive to the metamodel at hand, it enables using
higher-order parameters in unintended ways. For instance, this would also enable to use
higher-order parameters as the data types of ports, which could be interpreted as sending
component instances between components, and should be prevented for now. Moreover,
it should be prevented to pass higher-order arguments to atomic subcomponent instances
(which cannot use these as intended) and to define higher-order arguments with dimensions
(i.e., passing arrays of subcomponent instances). Although more elaborate changes to the
underlying metamodel might prevent such behavior (i.e., introducing a new parameter type
with a specific concrete syntax keyword and adapting to this type), we propose to formu-
late such restrictions as part of the static semantics (i.e., the well-formedness) rules. This
prevents introducing more technical concepts into the metamodel. Consequently, we pro-
pose to add the following well-formedness rules to the ADL under extension: (1) Prevent
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superType 1
componentType
[T ; -> ComponentType ] P i
name
[ subcomponents
*i connectors * l ports parameters i * i *
Connector Port DataType Parameter SClnstance
from type type
to name name name name
direction dimension arguments arguments
A
"'} adapter for
fffffffff adapterfor | ComponentType2DataType Parameter2SClnstance
Adapter Adapter

Fig.4: An excerpt of a metamodel of common C&C modeling elements augmented with adapters to
enable interpretation of component types as data types and of parameters as subcomponent instances.

higher-order component parameters from being used as port data types. (2) Prevent cycles
of nested higher-order component parameters. (3) Prevent passing higher-order compo-
nent parameters atomic subcomponents. (4) Prevent defining higher-order arguments with
dimensions.

Other well-formedness rules might apply depending on the constraints of the ADL to be
extended. For MontiArcAutomaton, this for instance includes preventing use of higher-
order parameters as generic type arguments and that (in contrast to existing MontiArc-
Automaton well-formedness rules) the subcomponent instances derived from higher-order
parameters must not be connected when they are passed down to another subcomponent
instance. The dynamic semantics of derived subcomponents follows from the dynamic
semantics of subcomponent instances, i.e., as they appear to be subcomponent instances
to the operational or translational dynamic semantics of the ADL, they will be treated as
such by interpreters or code generators.

5 Retrofitting Higher-Order Components into MontiArcAutomaton

MontiArcAutomaton is a C&C ADL built on top of the language workbench Monti-
Core [KRV10, HLM™15]|. As such, its textual concrete syntax and its abstract syntax are
defined as context-free grammars (CFGs) from which MontiCore generates model pro-
cessing infrastructure (e.g., parser, abstract syntax classes), a well-formedness checking
framework for Java context conditions, and a template-based code generation framework
for implementation of translational dynamic semantics. From the abstract syntax, Monti-
Core partially derives the metamodel of a language in form of the so-called symbols. These
are abstractions of the technical abstract syntax and are used for further model processing
after the textual models have been parsed into the abstract syntax tree. MontiCore’s symbol
table infrastructure also enables resolving names with model elements kinds to symbols
for lazy calculation of model properties. Well-formedness checking and code generation
process are based on symbols. Consequently, all classes of the MontiArcAutomaton meta-
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Fig. 5: Excerpt of MontiArcAutomaton metamodel extended with adapters required to use higher-
order parameters.

model are subclasses of MontiCore’s Symbol class, which yields a name and a kind. The
latter is used for resolving and inheriting symbols must override this properly (e.g., by
introducing a component type kind).

Extending Abstract Syntax: The MontiArcAutomaton metamodel comprises the ele-
ments depicted in (there are further elements, such as embedded component be-
havior models which are irrelevant to higher-order parameters and, hence, omitted). This
includes a symbol for UML/P class diagram types with its own kind. For the new adapters
to be resolved as data types (i.e., TypeSymbol) or subcomponent instances (i.e., SCRe f—-
Symbol), the adapters KINDs must equal their respective superclasses’ KINDs. Monti-
ArcAutomaton automatically creates instances these adapters when a name of the respec-
tive kind is resolved. For well-formedness checking and code generation, these adapters
act as data types and subcomponent instances, respectively.

Extending Static Semantics: However, this metamodel extension does not ensure well-
formedness of the models. To this effect, we extend MontiArcAutomaton’s context condi-
tions. Context conditions are Java classes that check well-formedness of specific model
elements and MontiCore’s context condition framework enables creating new context
conditions via subclassing easily. These new classes must be registered with MontiArc-
Automaton and are automatically applied to the parsed models afterwards. One of these
new context conditions is depicted in (left). The context condition PortDoesNo—
tUseComponent Type extends from the abstract MontiCore base class ContextCon-
dition and overrides its getKind () method to return the Port Symbol .KIND as
well as the check () method to perform the eponymous check. An excerpt of its imple-
mentation is depicted in [Fig. 6] (right). The condition processes Port Symbols and first
looks up the passed port symbols’ type via the MontiCore’s symbol table (1l. 5-7). Then it
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" 01 | class PortDoesNotUseComponentType
Symbol ContextCondition 02 extends ContextCondition {
3 o3
KIND getKind() o4 public boolean check(PortSymbol symbol) {
name check(Symbol) o5 String name = symbol.name;
06 String kind = PortSymbol.KIND;
o7 TypeSymbol type = SymbolTable.resolve(name,kind);
08
Port PortDoesNotUse 09 name = type.name;
S 10 kind = TypeSymbol.KIND;
Symb0| ComponentType 11 CDTypeSymbol cdType = SymbolTable.resolve(name,kind);
KIND getKind() 12 return cdType != null;
name check(PortSymbol) 13 }
direction 14|}

Fig. 6: Relations of the new PortDoesNotUseComponent Type context condition (left) and an
excerpt of its implementation (right).

checks whether this type exists as class diagram type (11. 9-11). In this case — and as Monti-
ArcAutomaton already prohibits ambiguous types — the context condition can assume that
the type is defined as a class diagram and passes (i.e., returns t rue). Otherwise, Monti-
ArcAutomaton raises an error and ultimately aborts architectures processing. Similarly,
the context conditions to prevent (1) cycles of nested higher-order component parame-
ters, (2) passing higher-order component parameters to atomic subcomponents, (3) defin-
ing higher-order arguments with dimensions, and (4) using higher-order arguments for
generic type parameters, are added to MontiArcAutomaton. Other context conditions, for
instance ensuring the uniqueness of subcomponent names in a composed component type,
adjust to the new source of subcomponents due to automatically resolving and including
the adapters.

Extending Dynamic Semantics: MontiArcAutomaton uses MontiCore’s template-based
code generation framework to translate software architectures into executable systems. To
this effect, it processes Component TypeSymbol instances and related symbols and
translates these into Java artifacts or Python artifacts. In the extended metamodel, the
Field2SCRefAdapter acts as a subcomponent instance (represented by SCRefSym—
bol). Hence, whenever the code generator looks up subcomponent instances, the adapted
higher-order parameters are returned as well. Thus, integrating these into code generation
requires is effortless.

6 Related Work and Discussion

Many ADLs, such as AADL [FG12|] or KOALA [VVKMOO], support reusing complete
components via importing as subcomponents only. Other foster reuse via abstract compo-
nent types [MTOO]]. This enables reusing partly underspecified architectures, but requires
introducing and connecting concrete components manually. Acme [GMWO0OQ] supports
templates, which are syntactic constructs enabling parametrizing components with ports.
While useful to connect a component according to its new operation context, changing the
type of a port using templates might require a new component implementation to deal with
the new message kinds, i.e., it complicates reusing component behavior. KADL [PRO6]
supports component inheritance and generic parameters in component type definitions for
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data types, port types, and component types. This enables to define and reuse architectural
patterns in different contexts. Generic port types and generic component types introduce
complexity similar to Acme templates. Compared to the powerful mechanisms of Acme,
KADL, and ROOM [SGW94], our approach is more restricted on component type inher-
itance. This is a less powerful but an easy to use approach that prevents jeopardizing the
communication integrity of the architecture model and reduces the complexity in reuse.

Our approach to improving reuse in ADLs with higher-order components parameters re-
lies on adapting the ADL’s metamodel and adding well-formedness rules to prevent side
effects. This is less powerful than delta modeling [HKR™11], which enables compre-
hensive changes to components by adding or removing models parts. This can result in
broken architectures, which higher-order components prevent. Also, this is more expres-
sive than 150% modeling [GKPROS|] (where every possible option is in the model), as
it supports a postponed customization of higher-order components without introducing
new modeling primitives. Although MontiArcAutomaton supports specifying components
with generic type parameters (i.e., design-time underspecification of configuration param-
eter types or port types), we explicitly prevent higher-order components with generic type
parameters. While adaptation of component types to data types generally supports this,
generic type parameters can be used as port types. Using component type valued ports
also poses challenges on their integration into the type system (e.g., the members a com-
ponent type exposes) and the semantics of MontiArcAutomaton (component-typed ports
could mean sending components throughout the architecture). These challenges are under
investigation.

7 Conclusion

We presented a small extension for C&C ADLs to improve reuse with component-valued
parameters. These parameters facilitate customizing black-box components by enabling to
inject subcomponent instances. This approach is more flexible than 150% models but less
challenging than delta modeling. The concept relies on adapting ADL metamodel elements
and adding few new well-formedness rules, hence it requires only minor changes to the
abstract syntax of ADLs to be retrofitted. Through adaptation, existing rules as well as
model transformations (including code generation) can be applied without modification.
We believe, this approach to component reuse is beneficial to model-driven development
with ADLs and future extension will improve this further.
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