
Improving Model-Based Testing in Automotive Software
Engineering

Stefan Kriebel, Matthias
Markthaler, Karin Samira

Salman
Development Electric Drive

BMW Group

Germany

www.bmw.de

Timo Greifenberg, Steffen
Hillemacher, Bernhard Rumpe,
Christoph Schulze, Andreas

Wortmann
Software Engineering

RWTH Aachen University

Germany

www.se-rwth.de

Philipp Orth, Johannes
Richenhagen

FEV Europe GmbH

Germany

www.fev.com

ABSTRACT

Testing is crucial to successfully engineering reliable automotive

software. The manual derivation of test cases from ambiguous

textual requirements is costly and error-prone. Model-based de-

velopment can reduce the test case derivation effort by capturing

requirements in structured models from which test cases can be

generated with reduced effort. To facilitate the automated test case

derivation at BMW, we conducted an anonymous survey among its

testing practitioners and conceived a model-based improvement of

the testing activities. The new model-based test case derivation ex-

tends BMW’s SMArDT method with automated generation of tests,

which addresses many of the practitioners’ challenges uncovered

through our study. This ultimately can facilitate quality assurance

for automotive software.

CCS CONCEPTS

• Software and its engineering→ Empirical software valida-

tion; Unified Modeling Language (UML);

KEYWORDS

Model-Based Testing, Test Case Creation

ACM Reference Format:

Stefan Kriebel, Matthias Markthaler, Karin Samira Salman, Timo Greifen-

berg, Steffen Hillemacher, Bernhard Rumpe, Christoph Schulze, Andreas

Wortmann, and Philipp Orth, Johannes Richenhagen. 2018. Improving

Model-Based Testing in Automotive Software Engineering. In Proceedings

of 40th International Conference on Software Engineering: Software Engineer-

ing in Practice Track (ICSE-SEIP ’18). ACM, New York, NY, USA, 9 pages.

https://doi.org/10.1145/3183519.3183533

1 MOTIVATION

Modern vehicles are complex systems in which multiple compo-

nents interact over dozens of controllers to provide system-wide

software functions. Future challenges, such as autonomous driving

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ICSE-SEIP ’18, May 27-June 3 2018, Gothenburg, Sweden

© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5659-6/18/05. . . $15.00
https://doi.org/10.1145/3183519.3183533

or CAR2X communication, do not only increase the complexity

for one system, but introduce an additional layer of complexity by

requiring interactions between multiple systems in an open envi-

ronment. Fig. 1 illustrates this: In the past, automotive engineering

challenges mostly resided in mechanical engineering and electri-

cal engineering (e.g., transmission or power control), whereas an

increasing number of present and future challenges can be found

in software engineering (e.g., connectivity, autonomous driving or

gesture HMI).

���� �������� ���� ����

�	
���������
��
����������
���
��	����������	��
���	����
����������
�	�

� ���!�"#	���
��
��	�����������
����� �
�����
����$	��! ������
�%	�&	�� ��
����&
��	������'#	����		���&
(�	�)

�	
���������
��
����������
�������
*

��	�������'#	���
��
�!
'��$	������	������
+
�	�
�����
��
���%
������'�
�!���
��
�%	�&	�� ���
���&�
������
��	
�	
!,�'�!��'�

��	���������
�	������
)	%�	�!�
&������
-����	����#
�	��'!
�	�
�.�-/�)
� ���!�'#	���
��
��	�������
��
����� ������
����$	��! ������
*

0����� ��	�$��	�
����%���!��$��&
1�
�	,� ,#��	
/�		�,� ,#��	
���	���$��
���!��%'����&
���%���	��%%����
���
(�	���	����	�2��&
34�4��'�

�	����	��05
��2	��	�65"��
����	
��	������'#	���
��
�!
'��$	������	������
+
�	�
�����
��
���%
������'�
�!���
��
�%	�&	�� ���
���&�

�����
��	
�	
!,�'�!��'�

��	���������
���&������
)	%�	�!�
&������
�.�-/�)
*

�%'�	���

Figure 1: Complexity drivers in automotive [6].

Moreover, customers demand for a shorter time-to-market, drop-

ping from average values of five years in the 1980s to three years in

the 21st century [20], while at the same time requesting more func-

tionality at similar costs. Considering inflation, this requires a cost

reduction of 4% every year [17], which makes reducing the cost and

time of software development a prime concern, when mastering

growing complexity at the same time.

Considering these challenges, existing processes and business

models for component-oriented development reach an impasse. To

achieve shorter development cycles under high cost pressure, new

approaches are required to provide safe and affordable mobility

solutions.

172

2018 ACM/IEEE 40th International Conference on Software Engineering: Software Engineering in Practice

[KMS+18] S. Kriebel, M. Markthaler, K. S. Salman, T. Greifenberg, S. Hillemacher, B. Rumpe, C. Schulze, A. Wortmann, P. Orth, J. Richenhagen:
Improving Model-based Testing in Automotive Software Engineering.
In: International Conference on Software Engineering: Software Engineering in Practice (ICSE'18), 2018.
www.se-rwth.de/publications

Similar challenges are being addressed successfully in other do-

mains through model-based development [7] and model-based test-

ing [5] (MBT), which aims at leveraging more abstract, domain-

specific, and reusable models as primary development artifacts to

reduce the conceptual gap between the problem domains (e.g., auto-

mated driving) and the solution domains (e.g., software engineering).

For successful deployment to automotive software engineering,

these modeling techniques need to be adapted and extended to

specific requirements on safety and process standard compliance,

while retaining their agile efficiency.

We identified potentials for improving the test creation process

at BMW through a systematic survey. Based on these findings, we

conceived adaptions on the test creation process to enable increas-

ing the development quality upfront. This frontloading technique

enables function specifiers and test specifiers to cooperate much

earlier in the development process and work on the same artifacts,

which can be used to systematically derive test cases. The contribu-

tions of this paper, hence, are

• results from a survey on test case derivation at BMW,

• a methodology for automated, model-based automotive soft-

ware testing, and

• its implementation with the language workbench Monti-

Core [9].

In the following, Sect. 2 introduces preliminaries on model-based

testing at BMW, before Sect. 3 describes design, execution, and

results of our survey at BMW. Sect. 4 outlines our concept for

improving model-based testing based on the survey results and

Sect. 5 describes an implementation of our concept. Sect. 6 reports

lessons learned from applying this concept at BMW and Sect. 7

discusses related work. Finally, Sect. 8 concludes.

2 PRELIMINARIES

The coming into effect of the ISO 26262 demanded a new speci-

fication method for safety-relevant automotive functions. There-

fore, the Specification Method for Requirements, Design and Test

(SMArDT)1 was conceived at BMW. Initially, the functional safety

departments used SMArDT to fulfill the ISO 26262. Later themethod

was adopted for non-safety driving assistance functions as well.

Nowadays, SMArDT is used in further departments for automotive

software quality assurance in the development of vehicle dynamics,

electrical powertrain, and autonomous driving functions. For imple-

menting the method, the System Modeling Language (SysML) [8]

was chosen due its prevalence and support through professional

software tools.

SMArDT describes a semi-formal specification for requirement,

design, and testing of systems engineering artifacts according to

the ISO 26262 specifications. Four abstraction layers structure the

method:

(1) The first layer contains a first description of the function un-

der consideration and shows its boundaries from a customers

point of view.

(2) The second layer contains functional specifications without

details of their technical realizations.

1The abbreviation SMArDT is related to the German term “ Spezifikations-Methode
für Anforderung, Design und Test“ (specification method for requirements, design,
and test)

4

4��� / �0+�!�
&�
%����� �
 	�
4��! / �0+�!�
&�
%����! �
 	�
)	7 �	���
��)	7���	%	���

��� ����	

�� ����	

)	7

)	7

)	7

�	��

�	��

��
�	�����

��	�������������	��

44���

444��!

Figure 2: SMArDT artifacts of the first two layers.

(3) The third layer details technical concepts with its logical

signals for the implementation including software architec-

ture, architecture of the on-board power network, and a

deployment mapping between these.

(4) The fourth layer represents the software and hardware arti-

facts present in the system’s implementation.

The first two abstraction layers are conceptual in the sense that

their diagrams lack a direct counterpart in the implementation. The

behavior modeled within the diagrams can later be implemented

across several components. Moreover, signals used in these dia-

grams are logical, i.e., they abstract signals of the implementation.

Consequently, corresponding values comprise a range of values

present in the implementation. In contrast, the elements of the

third and fourth layers have a direct representation within the

implementation.

Our work focuses on the first two layers of SMArDT. In addition

to the preexisting textual requirements and test artifacts, further

artifacts are introduced by SMArDT as shown in Fig. 2. The input

for the first abstraction layer are textual-conceptual requirements

in natural language (short: textual requirements). These require-

ments can be further specified and refined by SysML structure and

behavior diagrams, e.g., use case diagrams and composite struc-

ture diagrams. Output of this layer are the modeled diagrams. In

the second abstraction layer, a functional concept is developed.

Based on the output requirement artifacts of the first layer, the

functional-conceptual requirements are represented by more speci-

fied structure and behavior diagrams, i.e., activity diagrams (ADs).

These diagrams are the output of the second layer.

SMArDT facilitates clarifying vague customer requirements as

well as functional, subsystem and system specifications. The nat-

ural language-based requirements, which are often complex and

incomprehensible on their own, are complemented by diagrams.

Moreover, SMArDT facilitates tracing across all and within single

abstraction layers from textual requirements to derived tests. This

helps finding missing specifications in the textual requirements by

identifying model elements that are unrelated to textual require-

ments.

As SMArDT entails that requirement models are present, the

basis for model based testing is given. Even though SMArDT de-

scribes the artifacts to be engineered and linked to each other, a

fine grained methodology for engineering test cases from diagrams

173

�����������������������
�	�����������	������������ �����

)	7
��
��

���
��

01
)	7

���
��

������ ���%
�	!��	����
�	
01�)	7 0!	�,�
�	!�)	7���	%	���

)	7)	7���	%	���
����� �	����
�	����	'�

Figure 3: Textual vs. model-based test case creation.

is not yet a part of SMArDT. In the next section the potential of

model-based testing from the test engineers’ point of view at BMW

is investigated.

3 INVESTIGATING THE STATE OF TESTING

SMArDT aims, among others, to address challenges in require-

ments engineering by introducing requirements models on several

abstraction levels. Despite the benefits traditionally claimed by

model-based development (e.g., better comprehension, analysis,

transformation), its potentials in model-based test case creation

(MBTCC) in automotive software engineering are yet to be discov-

ered. To this end, we conducted a systematic survey on MBTCC at

BMW. This section describes our research questions, the survey’s

design, and its results.

3.1 Research questions

To discover the potential for MBTCC based on SMArDT, we aim to

probe who would benefit from employing this method at BMW as

mandating model-based technologies top-down has proven futile

in the past [27]. Similarly, we try to identify whether MBTCC could

improve the test coverage and quality of the individual test cases.

Moreover, we want to understand which environments are most

suitable for MBTCC, the test bed, subsystems of the vehicle or the

complete vehicle. Besides natural language-based and model-based

test cases, the related processes can be compared (see Fig. 3).

The starting point for natural language-based test case creation

in the BMW context are textual requirements. A test engineer

develops a test case concept based on these (Fig. 3). The test case

concept includes the test objective and the required basic test steps.

Based on the test case concept an automated test case is implemented.

AutomatedMBTCC can directly generate executable automated test

cases. Consequently, the research questions our survey investigates:

R1 What are the test engineers’ backgrounds?Who can benefit

from the (semi-)automatic MBTCC?

R2 Is it possible to enhance the test quality and the test cover-

age by MBT? (from the test engineers’ point of view)

R3 Which environments are the most promising for model-

based testing in the BMW context?

The main subject of the survey is to investigate the potential

of MBTCC in comparison to the textual requirements-based test

case creation prevalent in automotive software engineering. To

this end, on R1, the questionnaire requests the participants’ main

function, working background, years in the automotive industry,

years of experiences in test case creation, the focus of testing, and

the opinion on MBT. This data enables us to conclude from the

89

3�9

3:9

�39

:9 01�������$	� ���	���;�<�=

01���������	���;�<>=

01��������	��2	�����	��������	�	��;�<3=

01�������
!!����
��	�'	��	����% �#��;�<�=

01�����%'	!	�% �#��;�<�=

4� ���2����%!	�,�
�	!��	����
�	���	
����2	�'�� �?

#��2���� � ���	
 ���� � ��	
 ��� � ��

Figure 4: Expected benefits from MBTCC.

participant’s profiles to their indications. To clarify R2 and R3,

we interrogate regarding artifact sources, starting point, degree of

automatization, test environment,i.e., test bed, subsystem or the

complete vehicle, purpose of testing, test case creation method,

current and possible estimated test case coverage.

3.2 Study design and conduction

To estimate the potentials for MBTCC in the automotive industry,

we created an online survey at BMW. The anonymous survey con-

sists of 27 questions divided into three sections. The first section

inquires the participants background information, e.g., professional

education. The second section inquires about the main test case

artifacts and proceedings. The third section contains all further

questions, inquiring, for instance, capabilities for automation, test

case coverage, as well as quality assurance and estimations. Out

of 27 questions, 14 are closed questions and 13 are open questions.

To answer the closed questions, either multiple choices or Likert-

rating scales were provided. The survey was executed from 23rd of

August to 22nd of September 2017. An external department of BMW

implemented and hosted the survey. The complete survey can be

accessed online2. The raw survey data results are not published

online, because of the company’s confidentiality.

We contacted 196 professional test engineers and test managers

of BMW. In the invitation mail, we asked personally to forward our

questionnaire to directly accompanying service providers involved

in the test case creation at BMW. For a statistically significant result,

we calculated a necessary sample size of 65 out of 196 contacted

test engineers. According to this sample size, we are 95% confident

that the proportion of all contacted test engineers, with an error

margin of 10% (approximately 20 participants), correspond similar

to the ascertained survey findings [21]. We ultimately received 70

answers, with 69 valid questionnaires.

3.3 Results

One important aspect is a potential correlation between the per-

sonal background and the expected benefits of model-based testing.

For this reason, the last question of the survey examines the profile

with regard to the participants opinion on MBTCC (Fig. 4). A por-

tion of 45% answered that they consider MBTCC as useful or very

useful, 36% a neutral opinion towards MBTCC, and 19% consider it

as a hindrance. For statistically data analysis we labeled a ordinal

numerical scale with the Likert-scale, e.g., from one with MBTCC

2www.se-rwth.de/materials/mbtcc

174

interferes with my work. to five with MBTCC is very useful. (Tbl. 1).

On the basis of a mean (x) of 3.29, a standard derivation (s) of 0.98,

and a sample size (n) of 55 we conclude on a generally positive

expectation from MBTCC. The sample size (n = 55) varies to the

sample size of 69 valid questionnaires because of invalid or unde-

clared indications. On the impact of the test engineers’ backgrounds

(R1), we assumed that their opinion about the “benefit“ of model-

based test case creation is independent from their background. For

statistical verification we use Pearson correlation, with correlation

coefficient (r), p-value and the sample size (n) [21] (Tbl. 1).

Table 1: Correlation between background with expectation

on model based testing.

Background r p n

What is your main function? -0.05 0.371 53

What did you study? 0.03 0.421 55

Experience in automotive industry 0.19 0.088 55

Experience in test case creation 0.10 0.240 55

The correlation coefficients of the questions “What did you

study?“ and “What is your main function?“ are lower than the

r of the questions “For how many years you have been working

in the automotive industry?“ and “For how many years you have

been working in the sector of test case creation?“. In contrast the

p-values are higher for the functional and studying background

questions. The correlation coefficients lower than |± 0.20| support

our hypothesis about only a small connection between the partici-

pant’s opinion (see Fig. 4) and the background (Tbl. 1). Nevertheless,

the p-values indicate statistically insignificant results.

Besides the expected model-based development for test engi-

neers, we compare the test case creation based on textual require-

ments to MBTCC (Fig. 3). Therefore, we ask for the starting point

and the result of the participants’ step in the test case creation

process (Tbl. 2).

Table 2: Input for test case creation and its results.

Initial situation % Produced result %

Requirements 76.5 Concept of a TC 51.7

Concept of a TC 14.1 Draft of a TC 11.7

Draft of a TC 9.4 Automated TC 36.6

Three out of four test engineers start test case creation with

requirements, whereas the other test engineers start with concepts

or drafts of test cases (Tbl. 2). We directly linked the participants’

indications on the initial situation with the produced result. The out-

come reveals that one third of the processes start with requirements

and end in automatically executable test cases.

On the basic environment for testing, the test engineers indi-

cated that their test cases focus is generally the complete system

with about 42.0%. The component tests are the second most indi-

cated focus with 24.6% followed by the focus on subsystem (17.4%)

and software (16%). For automatically performed test cases, the

system environment association Vehicle in the Loop with 11.7% is

less important. In contrast, the Hardware in the Loop (HiL) test

cases are 81.6%. Software in the Loop (SiL) with about 5% and Model

in the Loop (MiL) with 1.7% are less targeted with automatically

performed tests. We also considered the sources for test case cre-

�9 ��9 >�9 :�9 ��9 ���9

@-�!@��	����
�	�

"	���
��	�'	��	��	

�����!	����'����

.0+���/ �0+�%!	��

�
���
���
�&�
&	
�	7���	%	���

$	� ��%'��
���<�= �%'��
���<>=
�
��� ��%'��
���<3= ���&2�� ��%'��
���<�=

"�	
�	���!��
�	��2	��%'��
��	����2	����#��&��	����	�A

#��2���� � ���	
 ���� � ����
 ��� � ��

#��2���� � ���
 ���� � ��	�
 ��� � �

#��2���� � ����
 ���� � ����
 ��� � ��

#��2���� � ����
 ���� � ����
 ��� � ��

#��2���� � ����
 ���� � ����
 ��� � ��

Figure 5: Sources used for test case creation.

ation (Fig. 5). For 78% the most important source for test cases are

natural language requirements, followed by - in this order - volatile

personal experience, existing test cases, error descriptions and UML

or SysML models.

�9 ��9 >�9 :�9 ��9 ���9

(������
���
�	�

)�����	��

)	��
�����

(������
���

$	� ��%'��
���<>= �%'��
���<3=
���&2�� ���%'��
���<�= ����%'��
���<�=

B2
����� ����������7�
��� �
����
��	?

#��2���� � ����
 ���� � ����
 ��� � �

#��2���� � ����
 ���� � ��	�
 ��� � ��

#��2���� � ����
 ���� � ��	�
 ��� � ��

#��2���� � ����
 ���� � ����
 ��� � ��

Figure 6: Focus in quality assurance.3

To investigate the quality focus R2, the questionnaire requests

the focused quality assurance (Fig. 6). The data reveals that three

out of four test engineers identify functionality as most important.

The indicated “importance“ measured by the mean of robustness is

followed by reliability and functional safety, efficiency, reusability,

integrability, and maintainability.

We also inquired to estimate the current and the potentially

possible coverage (Fig. 7), to further identify potentials of coverage

improvements. The current estimation mean (x) is 64.7% with a

standard derivation (s) of 25.3%, which is about 20% lower than the

mean of the possible estimated coverage being 81.6% with standard

derivation of 14.2%.

3The figure’s visibility is compressed. The quality assurances, efficiency
(x=2.70;s=0.91;n=60), effectiveness (x=2.16;s=0.83;n=63), integrability
(x=2.62;s=0.87;n=63), maintainability (x=2.14;s=0.88;n=65) and reusability
(x=2.67;s=1.02;n=63) are not considered in the bar graph.

175

�
�

��
��
��
��
3�

�,��� ��,�� ��,3� 3�,>� >�,�� ��,:� :�,8� 8�,�� ��,�� ��,���

�%
�

��

�	���6��	7���	%	�� �$	�
&	 	���%
��� ���9
����	��
"�����	

"�	
�	�	���%
�	��2	�����	���
�!�'�����	��	��6�	7���	%	����$	�
&	A

#��2���� � �����
 ���� � �����
 ��� � ��

#��2 �� � ����
 ���� � �����
 ��� � �

Figure 7: Estimated current and possible test coverage.

3.4 Conclusions

Regarding the perceived benefits of MBTCC for engineers of dif-

ferent backgrounds (R1), we conclude a positive attitude towards

MBTCC (cf. Tbl. 1). This positive attitude is largely independent

of experience level, professional background, and focus of testing.

Furthermore, the evaluation reveals that more than one third of

the participants expect to benefit from MBTCC, despite a widely-

adopted model-based approach is not in place (cf. Fig. 5).

A considerable portion of test engineers use old test cases, per-

sonal experience, and error descriptions as basis for test case cre-

ation (cf. Fig. 5). Creating new test cases from old ones suggests that

new or changed requirements usually entail only small adoptions

for new test cases especially for test cases in upcoming projects.

With MBTCC, requirements or system adjustments could di-

rectly create new exact model-based test cases instead of adjusting

old test cases. Furthermore, MBT enables to check if the test cases

are relevant for testing regarding to the model changes. The func-

tional behavior in case of error is integrated in the early functional

requirements, and can be included in test cases with MBTCC. The

clear specification in SMArDT supports the test engineers and facili-

tates the automated test case creation. Moreover, the test engineer’s

experience is a fleeting knowledge. With SMArDT the implicit

knowledge of experts becomes explicit knowledge in the diagrams.

This hardens the test case creation and the whole process against

personal changes and supports hypothesis (R2).

The main focus of testing in quality assurance is on functionality,

functional safety, robustness and reliability (cf. Fig. 6). All these

quality criteria are addressed by the second abstraction layer of

SMArDT (cf. Sect. 2). The revealed potential for test case coverage

improvement further strengthens hypothesis R2 that MBTCC can

enhance the test case quality. Referring to the most promising

environments for model-based testing in the BMWcontext (R3), the

participating test case engineers found system tests, subsystem tests,

and component tests most useful. The low portion of SiL indication

in the survey is probably related to the group of participants. SiL

and MiL tests are performed by software developers and not by test

engineers. The evaluation also reveals that automatically executable

tests are mainly performed on HiL (cf. Sect. 3.3). Moreover, the

focus of testing often is the complete vehicle or its subsystems.

Nevertheless, the results indicate a gap in the context of MiL and

SiL.

�	����
�	
4	��$
���

/ ��	%�)	7;
/'	�����
���

(�������)	7;
/'	�����
���

�������	�
������

���������� 	���������
	�!�	������ ������

������

����������

�����
	������

�������
����	�����

C	�����
���

/ ��	%
/�&�,-�����"��

Figure 8: Overview of test case derivation.

4 A METHODOLOGY FOR SYSTEMATIC

MBTCC IN AUTOMOTIVE SOFTWARE

ENGINEERING

The models created by the requirements engineers were rarely used

by test engineers so far. Instead, the textual requirements were used

as input for verification. However, as indicated by the survey re-

sults, a high percentage of the survey participants assume to benefit

from MBTCC. Moreover, with SMArDT now used in an increasing

number of departments at BMW, we expect the amount of available

high quality SysML diagrams to increase. To fully exploit the poten-

tial of these diagrams, we developed a methodology that enables

systematically deriving test cases from these diagrams. This section

presents the methodology for automotive MBTCC. The approach

utilizes ADs representing the function models of the second layer of

SMArDT to automatically derive test cases for verifying functional

properties. The derived test cases can be executed automatically.

4.1 Systematically deriving test cases

With our extension to SMArDT, the systems engineers first develop

function models (ADs) from requirements provided in natural lan-

guage, use case diagrams, and composite structure diagrams. The

ADs then are used as input for automated, systematic test case

derivation. They still reference logical information flow entities.

Output of MBTCC is a set of test cases fulfilling the path coverage

criteria C2c [16] as much as possible with each loop iterated exactly

once. Paths of the AD are identified invalid if no input values exist

leading to the specific paths. Test cases are created for valid paths

through the AD only. Corresponding input values for each test

case are derived by evaluating all guards and assignments on the

corresponding path. The relevant part for MBTCC of the adapted

systems engineering process is illustrated in Fig. 8.

Fig. 9 shows an excerpt of an AD that can be used to derive test

cases. For simplicity we allow to omit object flow within diagrams,

which is possible as only unique object names are allowed, i.e., the

actual object flow can be derived.

The possible input and output information of each function is

determined by the AD’s interface. For a given path, guard conditions

restrict the possible values of input information while assignments

determine the output for the function. To derive the corresponding

test for the left path, the input value for headlightsSwitch

must be set to on, otherwise the path would not be taken. Then

the expected values for lightsIndicator and headlights

can be derived by inspecting the assignments within the actions.

176

2	
!��&2�� D���
��&2��5�!��
�� D�
���$	

E	��	FE2	
!��&2�/#���2 DD��F

*
 ����������#��

*

 ��������#��

2	
!��&2�/#���2

2	
!��&2��

��&2��5�!��
��

�4

���������

���	�

Figure 9: Excerpt of an AD describing requirements on the

activation of headlights controls.

In general, we limit the amount of iterations per loop to one to

minimize the number of resulting test cases. Applying this MBTCC

method in practice has shown that multiple iterations do not con-

tribute important content to test cases at function level. For com-

plex scenarios, i.e., where behavior for multiple iterations of a loop

should be tested, manual test case creation still is necessary.

4.2 Structuring test cases

We structure test cases into three blocks: preconditions, actions, and

postconditions. The preconditions define the initial situation prior

to the test execution. If a precondition does not hold, i.e., the initial

situation cannot be precipitated, the corresponding test case cannot

be executed. Action blocks comprise the actual execution of a test

as derived from the platform-specific AD. Postconditions define the

final situation after the execution. Each of the three blocks contains

a list of atomic test steps. A test step comprises (1) the type of access

action: setting or reading an information; (2) the name of the logical

information; and (3) the value to which an information is set or

which is expected when reading the information.

For the exemplary test of headlights requirements illustrated

in Fig. 9 that should check the headlight controls of a car, Tbl. 3

illustrates the action block of a derived test case. The test case

describes that, when using the switch to turn on the headlights,

the actual headlights should turn on and the headlight indicator in

the cockpit should be active. The test case derived for this scenario

consists of three test steps. Each step is either setting (Set) the

value or checking (Check) the value of a logical information. For

the input information, aSet step and for each assignment, aCheck

step is calculated. In general, this might include Check steps for

internal variables. The information names used in the test case refer

to the switch for the headlights (headlightsSwitch) and the

indicator light (lightsIndicator) in the cockpit as well as the

actual headlights (headlights). Finally, the test case illustrates

how the information values are used in the test case, i.e., once the

headlights are switched on, it is checked if the actual headlights

are turned on and the indicator is active. This corresponds to the

left path through the diagram of Fig. 9.

Table 3: Exemplary action block of a derived test case.

Action Parameter Expectation

Set:headlightsSwitch on

Check:headlights on

Check:lightsIndicator active

Since test cases correspond to valid paths through the AD, the

order of test steps is defined by the occurrences of the informa-

tion names on the respective path. Timing information (e.g., be-

tween test step 1 and 2) are added later in the process as they de-

pend on the implementation. Thus, the generated test cases remain

implementation-independent.

4.3 Executing derived test cases

The ADs reference logical information names and values instead of

software and hardware signals (e.g., bus signals) and correspond-

ing values. To execute the derived test cases automatically, this

requires applying a mapping from logical information to concrete

software and hardware signals prior to their execution (cf. Fig. 8).

The mapping describes how to perform a test step for each pair of

action and information and adds timing information where needed.

A single test step at the logical level might result in several concrete

test steps at the actual test bed. To ensure the derived test case

is automatically executable, all test steps must be automatically

executable on their own. Having such a mapping in place, the gen-

erated test cases can be executed automatically without any need

for customization. Thus, the functionality modeled within the AD

can be verified. The required mapping depends on product and test

bed and currently must be developed manually. This potential for

automating mapping creation is under investigation.

4.4 Configuring test case derivation

To ensure that all relevant use cases are covered, our methodology

also provides a possibility to configure theway test cases are derived.

This is due to the applied C2c coverage criterion, which results in

exactly one test case per valid path through an AD. Hence, relevant

use cases might not be covered by the derived test cases because

there can be multiple input combinations that eventually result in

the tested path. However, only one of the combinations is covered

by a test case. Hence, to ensure that all relevant requirements as

modeled by an AD are covered, it is possible to prioritize the atomic

condition within guard decisions. With this, we can guarantee that

certain atomic conditions of a decision node are covered by test

cases. Using this extension to configure the process, all relevant

use cases can be covered by the derived test cases. Moreover, test

cases that do not relate to any use case, can be omitted.

5 A MONTICORE-BASED IMPLEMENTATION

We realized the generator creating test cases from ADs using the

MontiCore [9] workbench for the efficient development of com-

positional modeling languages based on context-free grammars

(CFGs). Using a modeling language’s CFG, MontiCore generates

the infrastructure to process models, check their well-formedness,

and translate these into other artifacts. It has been applied to create

177

languages for various domains, including automotive [23], cloud

systems [18], and robotics [2].

We export the diagrams modeled using the SysML modeling tool

used at BMW to XML and transform these into UML/P [22] ADs.

Based on the ADs, test cases are created and afterwards exported

to a file format that is used as input by the tool responsible for

executing the tests. The corresponding tool chain comprises three

components: (1) a converter transforms the ADs exported from

the SysML modeling tool to UML/P ADs; (2) a test case creator

transforms the ADs into an intermediate test case representation.

To this end, the configuration (cf. Sect. 4.4) is processed influencing

the resulting test cases; and (3) an exporter transforms the resulting

test cases to input formats specific to the tool used with product

and test bed.

�4
��$	��	�

��
��	
��.0+6"��4

�	�	�
��

������	��
�����

����$
������������

����&;�4;�%� �	���

��
��'��	�

#	������

#	������� ����

�	����&���
���������
��������

%�$��	
&����

0!	�	�

Figure 10: Generating test cases from ADsmodeled with the

SysML modeling tool used at BMW.

The overall tool chain is illustrated in Fig. 10. The component

ADConverter processes the XML ADs and creates UML/P ADs.

The TCCreator component processes the UML/P ADs together

with a configuration model for the test case generation, as described

in Sect. 4. The TCExporter component is used to export the de-

rived test cases. Finally, the exported test cases are used as input

for the actual testing tool. Its modular infrastructure enables em-

ploying MBTCC with changing input and output tools, i.e., if the

requirements ADs are not specified by the current modeling tool

anymore, exchanging the ADConverter suffices to adjust it ac-

cordingly. A similar argument holds for changing the test tool we

produce the outputs for.

The generation of actual test cases from the exported XML doc-

ument as performed by the Generator component consists of

four steps:

1.) The set of input and output information is determined by

investigating the input AD’s interface. In addition, intermediate

variables are taken into account by inspecting the guards and as-

signments of the AD.

2.) All paths through the AD are calculated. To this end, the ADs

are normalized, i.e., hierarchies and parallel control flows of an

AD are resolved using model transformations. Resolving parallel

control flows is done by transforming parallelism into a sequen-

tial control flow in a defined order. This transformation can be

performed under the assumption that the parallel flows are inde-

pendent of each other. For each path, expected output values as

well as values of intermediate results can be determined by taking

into account the assignments of the given path.

3.) Each calculated path is transformed into a logical formula. The
expression is created corresponding to the guards and assignments
that are part of the respective path. Under the assumption that the
values of information flows do not change during activity execution,
the conjunction of all guards and assignments must hold on each
valid path. For the left path of the exemplary activity diagram
shown in Fig. 9 the calculated formula is:

headliдhtSwich = on∧headliдhts = on∧l iдhtsIndicator = active

For paths where all information within guards and assignments are

distinct, input values can be easily determined without calculation

of a logical formula. However, our approach is also capable to find

input values or declare a path as invalid in more complex situations.

4.) Finally, the logic expression for each path is solved using Z3

Theorem Prover [4], which can be used to check the satisfiability

of logical formulas. For valid paths Z3 creates a witness for a solu-

tion of the formula. This witness can be transformed back to value

assignments for input information fulfilling the given path of the di-

agram. If no witness exists, the path is invalid (due to contradictory

guard conditions) and is discarded.

In the end, the generation process as shown in Fig. 10 comprises

the final step of exporting the actual test cases. For each validated

path the test actions are exported into the format supported by the

tool responsible for the test execution. The implemented generator

also allows for an easy extension of the many coverage criteria. As

for now only the structured path coverage is available. Additionally,

this criterion can be adapted by the configuration as presented

earlier. The implementation of other coverage criteria is already

planned for the future.

6 DISCUSSION

The survey results are subject to various threats typical to empiri-

cal research. This section, reports on these threats and highlights

lessons learned from deploying our method at BMW.

6.1 Threats to study validity

We cannot eliminate duplicated submissions and wrong interpreta-

tions. Threats to the internal validity arise from the distribution of

the survey by email and forwarding. We carefully selected our par-

ticipants by their specialization in the context of test case creation.

With the forwarding, we intend to additionally reach external test

engineers involved in the process of test case creation. We can nei-

ther ensure to have all external companies included nor to have in-

terrogated all external test engineers, because both weren’t invited

directly or might not have all permissions needed to participate in

the survey.

For instance, the portions of the produced result (cf. Tbl. 2) could

be distributed differently with all the external test engineers in-

cluded. In particular, the automation of test cases is assigned to

external service providers.

Moreover, test engineers are often of external companies. Espe-

cially the estimation of the current and the possible test case/require-

ment coverage (cf. Fig. 7) could be influenced if more internal test

engineers existed. Although, we added imaginary circumstances

“all resources and time you need“ for the possible coverage, it could

be perceived as a performance review and lead to adjusted estima-

tions.

178

Threats to construct validity arise from employing an online sur-

vey. The style of question and answer optionsmight have influenced

the actual answers. For instance, the question about the focus on

quality assurance has no alternative for a neutral statement, except

“don’t know“ (cf. Fig. 6).

Besides the survey execution, there are threats to statistical va-

lidity. Based on the total sample of 70 participants in the mentioned

survey (see Sect. 3.3), we are 95% confident that the margin of er-

ror for our sampling procedure and its results is no more than ±

20 participants. Furthermore, we mentioned that our results are

statistically insignificant, i.e., the p-values of Tbl. 1 indicate such

results. Because of the margin error, the possibility of not every par-

ticipant responding to every question and results being statistical

insignificant, we can only assume trends.

In addition to the feedback from the survey, we learned from

experience in the current project.

6.2 Lessons learned from applying MBTCC at

BMW

Successfully introducing new methodologies requires identifying

and convincing all involved stakeholders. Therefore, different in-

terests and necessary organizational changes need to be more than

accepted: They have to be understood by all affected persons.

Despite the benefits of MBTCC being understood by all partners,

we underestimated the effort required to convince all involved

stakeholders. The term automated test case creation was the main

issue inflicted by a wrong communication. This term could be

interpreted as a full automation and thereby classifying the testers’

work as replaceable by a more or less simple algorithm.

In consequence, instead of achieving a cooperation between

specifier and tester, which would decrease the workload of both

and improve the overall model quality, the new approach was mis-

interpreted as an additional workload for the specifier while the

created test cases could not replace manually created tests - as the

intellectual input of the tester cannot be replaced.

The first perception of the test engineers was that the test cases

are created without their knowledge. On the contrary, the defined

approach suggest to include the test engineers’ expertise into the

model. Once this general misunderstanding was clarified, it was pos-

sible to convince the team members of MBTCC based on SMArDT.

During a pilot phase, test engineers adapt six functions related to

e-drive and created over 272 test cases with an additional effort of

only 55 hours as shown in Fig. 11.

>�
� � � > 3

��3

�> � � �� �8
�

��

���

���

���

���

(�������� (�������1 (�������� (�������4 (�������� (�������(

�%
�

��

�!!����
��	�����<2= �	����
�	��<
%���=

Figure 11: First results on MBTCC for six e-drive functions.

Despite that learning MBTCC requires additional effort, all in-

volved parties agreed that these efforts will be reduced significantly

with further tasks and ultimately will pay off for all parties. More-

over, additional effort was necessary to adapt already existing mod-

els. Conducting MBTCC from scratch would reduce the additional

effort. The amount of created test cases relates to the amount of

decision logic defined in the model. Function A already includes

diagnosis related functionality, which results in a more complex de-

cision logic. In consequence, this function has a significantly higher

potential for automated test case creation. The measured effort is

lower in comparison to the current manual approach, especially

considering further iterations of each function.

Altogether, based on the current experience, the feedback is very

positive. Based on first statements, the cooperation between tester

and specifier seems to improve the model quality and the overall

effort for test case creation could be reduced. Further feedback has

been collected to identify additional potentials of improvement

on test case creation regarding coverage criteria and use case or

requirements related test case creation.

7 RELATEDWORK

The presented work relates to surveys on model-based testing in

automotive, as well as to other MBTCC approaches.

While there are, for instance, surveys on employing formal meth-

ods to automate design and specification in industry (cf. [28]), re-

ports from automotive software engineering are rare. Where these

surveys have been reported, such as in [3], they focus on tool use

during requirements engineering and testing instead of the poten-

tial benefits of MBTCC. With this focus, the findings presented

in [3] did not address our research questions.

Model-based test case creation is subject to active research [5].

Several approaches to (partially or fully) automated derivation of

executable test cases from various input modeling languages have

been brought forth. The most prominent approaches focus on UML

or SysML. These approaches generally can be distinguished based

on their support of concurrency in the input models. This includes

various approaches to MBTCC that employ UML Statecharts or

sequence diagrams as input models [12, 24, 26]. Approaches employ-

ing ADs as input prohibit concurrency in themodels (cf. [10, 14, 15]).

Moreover, various tools to support and facilitate model-based test-

ing have been presented as well. These include, for instance, MBT-

suite [1] and UMLTest [19]. MBTsuite translates ADs into test cases

and can export these into a variety of different outputs, but does

not support concurrency in its input models. UMLTest processes

Statecharts, yet it’s subject to the same restrictions. UMLTGF [11]

processes ADs and, similar to our approach, supports ADs featuring

concurrency, but cannot be extended to produce the output format

required at BMW.

With the presented extension to SMArDT addressing the trans-

formation from originally natural-language requirements to exe-

cutable function tests, it relates to approaches translating natural-

language requirements to test cases directly. Such transformations

are, for instance, supported by the aToucan4Test framework pre-

sented in [29]. With aToucan4Test, input is restricted to a subset

of structured English that does not support the precision and com-

plexity achieved through manual function test modeling by domain

experts. Despite applying MBTCC to various domains, such as web

services [13], automated test case creation in automotive software

179

engineering with its established development and testing processes

is rarely documented. Where it is, it focuses on specific tooling, or

proposes general, abstract overviews only [25, 30].

8 CONCLUSION

Shortened development processes and frequently modified require-

ments affect the balance between time to market and high quality

standards. To maintain high quality standards comprehensive test-

ing is crucial to automotive software engineering, yet test case

creation is still largely manual. We have conducted a survey to

investigate if test engineers in the automotive sector could reap

the benefits claimed by model-based testing. The study was sent

to 196 participants at BMW of whom 69 valid questionnaires were

returned. The study has shown that the participants expect to ben-

efit from automated test case creation independent of their back-

grounds, that they expect the test quality to increase, and that

MBTCC is considered most useful for system, subsystem, and com-

ponent tests. Based on this survey and the experiences from work-

ing with the automotive industry, we conceived a method to extend

an existing specification method for requirements and testing.

We created an adjustable tool chain that can transform func-

tional requirements modeled as ADs from various input formats

into executable test cases for various output formats. Overall, af-

ter underestimating the persuasion efforts required to implement

our methodology due to ambiguous terminology on our side, the

feedback is very positive. Our methodology seems to improve the

model quality and the overall effort for test case creation as hinted

by the survey. In addition, the method improves the cooperation

between specifier and tester and reduces redundancies as function

and test model can be combined.

REFERENCES
[1] 2017. MBTsuite - the Testing Framework. (2017). http://www.mbtsuite.com/

Accessed: 2017-06-11.
[2] Kai Adam, Katrin Hölldobler, Bernhard Rumpe, and Andreas Wortmann. 2017.

Engineering Robotics Software Architectures with Exchangeable Model Trans-
formations. In International Conference on Robotic Computing (IRC’17). IEEE,
172–179.

[3] Harald Altinger, Franz Wotawa, and Markus Schurius. 2014. Testing methods
used in the automotive industry: Results from a survey. In Proceedings of the 2014
Workshop on Joining AcadeMiA and Industry Contributions to Test Automation and
Model-Based Testing - JAMAICA 2014, Christof Budnik, Gabriella Carrozza, David
Faragó, Baris Güldali, Barath Kumar, Vittorio Manetti, Roberto Pietrantuono, and
Stephan Weißleder (Eds.). ACM Press, New York, New York, USA, 1–6.

[4] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. Tools
and Algorithms for the Construction and Analysis of Systems (2008), 337–340.

[5] Arilo C. Dias Neto, Rajesh Subramanyan,Marlon Vieira, and GuilhermeH. Travas-
sos. 2007. A survey on model-based testing approaches. In Proceedings of the 1st
ACM international workshop on Empirical assessment of software engineering lan-
guages and technologies held in conjunction with the 22nd IEEEACM International
Conference on Automated Software Engineering (ASE) 2007, Eileen Kraemer and
Jonathan I. Maletic (Eds.). ACM, New York, NY, 31–36.

[6] Christof Ebert and John Favaro. 2017. Automotive Software. IEEE Software 34, 3
(2017), 33–39.

[7] Robert France and Bernhard Rumpe. 2007. Model-driven Development of Com-
plex Software: A Research Roadmap. Future of Software Engineering (FOSE ’07) 2
(may 2007), 37–54.

[8] Object Management Group. 2006. SysML Specification Version 1.0 (2006-05-03).
(aug 2006).

[9] Arne Haber, Markus Look, Pedram Mir Seyed Nazari, Antonio Navarro Perez,
Bernhard Rumpe, Steven Völkel, and Andreas Wortmann. 2015. Integration of
Heterogeneous Modeling Languages via Extensible and Composable Language
Components. In Model-Driven Engineering and Software Development Conference
(MODELSWARD’15). SciTePress, 19–31.

[10] Abdelkamel Hettab, Elhillali Kerkouche, and Allaoua Chaoui. 2015. A Graph
Transformation Approach for Automatic Test Cases Generation from UML Activ-
ity Diagrams. In Proceedings of the Eighth International C* Conference on Computer
Science & Software Engineering. ACM, 88–97.

[11] Yuan Jiesong,Wang Linzhang, Li Xuandong, and Zheng Guoliang. 2006. UMLTGF:
A Tool for Generating Test Cases from UML Activity Diagrams Based on Grey-
Box Method. Journal of Computer Research and Development 1 (2006), 008.

[12] Supaporn Kansomkeat and Wanchai Rivepiboon. 2003. Automated-generating
Test Case Using UML Statechart Diagrams. In Proceedings of the 2003 Annual
Research Conference of the South African Institute of Computer Scientists and
Information Technologists on Enablement Through Technology (SAICSIT ’03). South
African Institute for Computer Scientists and Information Technologists, Republic
of South Africa, 296–300.

[13] ChangSup Keum, Sungwon Kang, In-Young Ko, Jongmoon Baik, and Young-Il
Choi. 2006. Generating test cases for web services using extended finite state
machine. In IFIP International Conference on Testing of Communicating Systems.
Springer, 103–117.

[14] Monalisha Khandai, Arup Abhinna Acharya, and Durga Prasad Mohapatra. 2011.
Test Case Generation for Concurrent System using UML Combinational Diagram.
International Journal of Computer Science and Information Technologies, IJCSIT 2
(2011).

[15] Jonathan Lasalle, Fabien Peureux, and Jérôme Guillet. 2011. Automatic test con-
cretization to supply end-to-end MBT for automotive mechatronic systems. In
Proceedings of the First International Workshop on End-to-End Test Script Engineer-
ing. ACM, 16–23.

[16] Peter Liggesmeyer. 2009. Software-Qualität: Testen, Analysieren und Verifizieren
von Software. Springer Science & Business Media.

[17] Detlev Mohr, N Müller, A Krieg, P Gao, HW Kaas, A Krieger, and R Hensley. 2013.
The road to 2020 and beyond: What’s driving the global automotive industry?
(2013), 2014 pages.

[18] AntonioNavarro Pérez and Bernhard Rumpe. 2013. Modeling CloudArchitectures
as Interactive Systems.. In MDHPCL@ MoDELS. 15–24.

[19] Jeff Offutt and Aynur Abdurazik. 1999. Generating Tests from UML Specifications.
Springer Berlin Heidelberg, Berlin, Heidelberg, 416–429.

[20] Biren Prasad. 1997. Analysis of pricing strategies for new product introduction.
Pricing Strategy and Practice 5, 4 (1997), 132–141.

[21] Irene Rößler and Albrecht Ungerer. 2008. Statistik für Wirtschaftswissenschaftler.
Physica-Verlag Heidelberg, Heidelberg.

[22] Bernhard Rumpe. 2016. Modeling with UML: Language, Concepts, Methods.
Springer International. http://www.se-rwth.de/mbse/

[23] Bernhard Rumpe, Christoph Schulze, Michael vonWenckstern, Jan Oliver Ringert,
and Peter Manhart. 2015. Behavioral Compatibility of Simulink Models for
Product Line Maintenance and Evolution. In Software Product Line Conference
(SPLC’15). ACM, 141–150.

[24] Mahesh Shirole, Amit Suthar, and Rajeev Kumar. 2011. Generation of improved
test cases from UML state diagram using genetic algorithm. In Proceedings of the
4th India Software Engineering Conference. ACM, 125–134.

[25] Mark Utting and Bruno Legeard. 2010. Practical model-based testing: a tools
approach. Morgan Kaufmann.

[26] Thi-Dao Vu, Pham Ngoc Hung, and Viet-Ha Nguyen. 2015. A method for au-
tomated test data generation from sequence diagrams and object constraint
language. In Proceedings of the Sixth International Symposium on Information and
Communication Technology. ACM, 335–341.

[27] Jon Whittle, John Hutchinson, and Mark Rouncefield. 2014. The State of Practice
in Model-Driven Engineering. Software, IEEE 31, 3 (2014), 79–85.

[28] Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John Fitzgerald. 2009.
Formal methods. Comput. Surveys 41, 4 (2009), 1–36.

[29] Tao Yue, Shaukat Ali, and Man Zhang. 2015. RTCM: a natural language based,
automated, and practical test case generation framework. In Proceedings of the
2015 International Symposium on Software Testing and Analysis. ACM, 397–408.

[30] Justyna Zander, Ina Schieferdecker, and Pieter J Mosterman. 2011. Model-based
testing for embedded systems. CRC press.

180

