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Abstract. Code generators are a crucial part of the model-driven devel-
opment (MDD) approach. They systematically transform abstract mod-
els to concrete executable source code. Typically, a generator developer
determines the code parts that should be generated and separates them
from handwritten code. Since performed manually, this task often is time-
consuming, labor-intensive, difficult to maintain and may produce more
code than necessary. This paper presents an iterative approach for iden-
tifying candidates for generated code by analyzing the dependencies of
categorized code parts. Dependency rules are automatically derived from
a predefined software category graph and serve as basis for the catego-
rization process. Generator developers can use this approach to system-
atically identify code generation candidates. The ideas and concepts of
this paper were introduced at the MODELSWARD conference [1] and
are extended in this contribution.

Keywords: Model-Driven Development · Generators · Software
categories

1 Introduction

Models are at the center of the model-driven development (MDD) [2] approach.
They abstract from technical details [3], facilitating a more problem-oriented
development of software. In contrast to conventional general-purpose languages
(GPL, such as Java or C), the language of models is limited to concepts of a spe-
cific domain, namely, a domain-specific language (DSL). To obtain an executable
software application, code generators systematically transform the abstract mod-
els to instances of a GPL [4] (e.g., classes of Java). However, code generators
are software themselves and need to be developed as well. There are different
development processes for code generators. One that is often suggested (e.g.,
[5,6]) is shown in Fig. 1.

The approach includes four steps. First, a reference model is created, which
ultimately serves as input for the generator. Depending on this reference model,
the generator developer (resp. tool developer [7]) creates the reference imple-
mentation. Next, it has to be determined which code parts need to be or can

c© Springer International Publishing Switzerland 2015
P. Desfray et al. (Eds.): MODELSWARD 2015, CCIS 580, pp. 356–372, 2015.
DOI: 10.1007/978-3-319-27869-8

[MSNR15] P. Mir Seyed Nazari, B. Rumpe:  
Identifying Code Generation Candidates Using Software Categories.  
In: Model-Driven Engineering and Software Development Conference (MODELSWARD’15), CCIS 580, 
pp. 356–372. Springer, 2015.
www.se-rwth.de/publications 



Identifying Code Generation Candidates Using Software Categories 357

Fig. 1. Typical development steps of a code generator.

be generated and which ones should remain handwritten. Finally, the trans-
formations are defined to transform the reference model to the aforementioned
generated code.

Often, the third step, i.e., ‘separation of hand-written and generated code’
is not explicitly mentioned in the literature. This separation is implicit part of
the last step, i.e., ‘creation of transformations’, since the transformations are
only created for code that ought to be generated. However, the separation of
handwritten and generated code ought to be distinguished as a step on its own,
since it is not always obvious which classes need to be generated.

In general, every class can be generated, especially when using template-
based generators. In an extreme case, a class can be fully copied into a tem-
plate containing only static template code (and, thus, is independent of the
input model). This is not desired, following the guideline that only as much
code should be generated as necessary [5,8,9]. Optimally, most code is put into
the domain framework (or domain platform), increasing the understandability
and maintainability of the software. The generated code then only configures
the domain framework for specific purposes [10] through mechanisms, e.g., as
described in [11].

One important criterion for a code generator to be reasonable is the existence
of similar code parts, either in the same software product or in different products
(e.g., software product lines [12,13]). Typically, generation candidates are similar
code parts that are also related to the domain. For example, in a domain about
cars, the classes Wheel and Brake would be more likely generation candidates
than the domain independent and thus unchanged class File. This, of course,
is the case, since the information for the generated code is obtained by the
input model which, in turn, is an instance of a DSL that by definition describes
elements of a specific domain. Of course, the logical relation to the domain
is not a necessary criterion, because if the DSL is not expressive enough, the
generated code is additionally integrated with handwritten code. Nevertheless,
the generated code often has some bearing on the domain.

In most cases, the generator developer manually separates handwritten code
from generated code. This process can be time-consuming, labor-intensive and
may impede maintenance. Furthermore, when using a domain framework, this
separation is insufficient, since the handwritten code needs to be separated into
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handwritten code for a specific project and handwritten code concerning the
whole domain. This separation also impacts the maintenance of the software [8].
To address this problem, software categories, as presented in [14], are suited.

The aim of this paper is to show how software categories can be exploited to
categorize semi-automatically classes and interfaces of an object-oriented soft-
ware system. The resulting categorization can be used for determining candi-
dates for generated code, supporting the developer performing this separation
task. The ideas and concepts were introduced at the MODELSWARD conference
[1] and are extended in this contribution.

This paper is structured as follows: Sect. 2 introduces software categories
and the used terminology. In Sect. 3, these software categories are adjusted for
generative software. Section 4 presents the allowed dependencies derived by the
previously defined software categories. The general categorization approach is
explained in Sect. 5 and exemplified in Sect. 6. Section 7 outlines further possible
dependencies. Concepts related to our work are discussed in Sect. 8. Finally,
Sect. 9 concludes the paper.

2 Software Categories

Software systems, especially larger ones, consist of a number of components that
interact with each other. The components usually belong to different kinds of
categories, such as persistence, gui and application. Therefore, [14] suggests using
software categories for finding appropriate components. In the following this idea
is demonstrated by an example.1

Suppose that a software system for the card game Sheepshead2 should be
developed. The following categories then could be created (see Fig. 2):

– 0 (Zero): contains only global software that is well-tested, e.g., java.lang
and java.util of the JDK.

– CardGame: contains fundamental knowledge about card games in general.
Hence, it can be used for different card games.

– SheepsHead: Contains rules for the Sheepshead game, e.g., whether a card can
be drawn.

– CardGameGUI: determines the design of the card game, independent of the
used library, e.g., that the cards should be in the middle of the screen.

– CardGameGUISwing: extends Swing by illustration facilities for cards.
– Swing: contains fundamental knowledge about Java Swing.

1 The example is taken from [14] and reduced to only the aspects required to explain
our approach.

2 This game (in German called Schafkopf or Schaffkopf ) is a popular and com-
plex Bavarian card game with thirty-two cards where four players play in dynamic
alliances. The English translation Sheepshead is actually wrong as it comes from
ancient times where the game was played on top (kopf ) of a barrel (schaff ). It has
nothing to do with sheep.
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Fig. 2. Software categories for virtual SheepsHead [14] (shortened).

Fig. 3. Software categories (a) in general [14] and (b) adjusted for generative software.

An arrow in Fig. 2 represents a refinement relation between two categories.
Classes that are in a category C1 that refines another category C2 may use
classes of this category C2. The other way around is not allowed. Every category -
directly or indirectly - refines the category 0 (arrows in Fig. 2). Hence, software
in 0 can be used in every category without any problems. CardGame is refined by
SheepsHead and CardGameGUI which means that code in these categories can
also use code in CardGame. Note that a communication between CardGameGUI
and SheepsHead is not allowed directly, but rather by using CardGame or 0
interfaces. Since the category CardGameGUISwing refines both CardGameGUI
and Swing, it is a mixed form of these two categories.

Now, having these categories, appropriate components can be found.
For example, a component SheepsHeadRules in the category SheepsHead,
CardGameInfo and VirtualPlayer in CardGame, CardGameInfoPresentation
for CardGameGUI.

Considering this example, it can be seen that beside the 0 category, three
other categories can be identified that exist in most software systems (see
Fig. 3a):

– Application (A): containing only application software, i.e., CardGame,
SheepsHead and CardGameGUI.
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Fig. 4. Addition of software categories.

– Technical (T ): containing only technical software, e.g., Java Swing classes.3

– Combination of A and T (AT ): e.g., CardGameGUI-Swing since it refines
both an A (CardGameGUI ) and a T (Swing) category.4

[14] summarizes the characteristics and rules for the software categories as
follows: the categories are partially ordered, i.e., every category can refine one or
more categories. The emerging category graph is acyclic. The category 0 (Zero)
is the root category, containing global software. A category C is pure, if there
is only one path from C to 0. Otherwise, the category is impure. In Fig. 3a only
the category AT is impure, since it refines the two categories A and T. All other
categories are pure.

Terminology. We call a class that has the category C a C -class. Following
from the category graph in Fig. 2 there are: AT -classes, A-classes, T -classes and
0 -classes. For the sake of readability, we do not explicitly mention interfaces,
albeit what applies to classes applies to interfaces as well.

3 Categories for Generative Software

While [14] aims for finding components from the defined software categories, the
goal of this paper is to determine whether a specific class should be generated
or not by analyzing its dependencies to other classes.

To illustrate this, consider the following example. When having a class Book
and a class Jupiter, which of these classes are generation candidates? Of course,
it depends on the domain. If the domain is about planets, probably Jupiter is a
candidate. In a carrier media domain, Book would be a candidate. So, we can say,
3 Note that Swing classes are global (belonging to the JDK) and well-tested; hence

meet the criteria of the category 0. But –as usually the user-interface should be
exchangeable– Swing classes are not necessarily global in a specific software system.

4 In [14] also the Representation (R) category is presented. This category contains
only software for transforming A category software to T and vice versa. It is a
kind of cleaner version of AT. To demonstrate our approach, the R category can be
neglected.
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Fig. 5. Allowed dependencies between categories.

that a generation candidate somehow relates to the domain. But this condition
is not enough. In a library domain where different books exist, Book would
rather be general for the whole domain and should probably not be generated
at all. Hence, additionally to the domain affiliation, a generation candidate is
not general for the whole domain. Technically speaking, the class or interface
should depend on a specific model (or model element). Consequently, a change
in the model can imply the change of the generated class. Usually, classes that
are global for the whole domain are not affected by changes in a model.

We adjusted the category model in Fig. 3a to better fit in with the domain.
Figure 3b shows the modified category model.

The category A from Fig. 3a is renamed to D (Domain), to emphasize the
domain. Consequently, the mixed form AT (Application and Technical) becomes
DT (Domain and Technical). Category T remains unchanged. The new category
DG (domain global) indicates software that is global for the whole domain and
helps to differentiate from D-classes that are specific to the domain (a particular
book, e.g., CookBook).

Resulting from the introduction of DG, the characteristic of the 0 category
changes somewhat. It contains only global software that is well-tested and inde-
pendent of the domain, e.g., java.lang and java.util of the JDK. To highlight
the difference to the initial 0 definition, 0’ is used.

With the above objective in mind and upon searching for generation candi-
dates, in particular, classes of the category D are interesting, i.e., D itself and
DT, refining the category of both D and T (see Fig. 3b).

The matrix in Fig. 4 underscores which software category results if two cate-
gories are combined. A usage of 0’ has no effect, e.g., D + 0’ =D. The same is true
for DG, as we defined it to be like 0’ (global for the whole domain). Hence, D +
DG = D, e.g., if the D-class CookBook extends the DG-class Book it still remains
a D-class. Only the combination of D and T leads to an (impure) mixed form,
concretely DT. Any combination with DT results in DT, i.e., * + DT = DT.

The aim of this paper is not to define an architecture for generative software,
but rather to use both the semantics of the software categories and the depen-
dencies between the classes to find candidates for generated code. Nevertheless,
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this kind of categorization conforms to the concepts of the architecture reference
model suggested by [8]. D, T and DT are what [8] call Application, consisting
of generated and handwritten code. DG represents the Business and Technical
Platform. Here, we do not distinguish between technical and domain platform,
since this would not improve the final candidate list, but only complicate the
category graph. 0’ corresponds to standard libraries of the programming lan-
guage mentioned in [8]. However, the categories need not be as abstract as the
architecture. They could be further divided if this improved finding generation
candidates.

4 Dependency Rules for Categories

A total of four categories (plus the mixed form DT ) have been suggested for a
general classification of code in generative software (Fig. 3b). Classes of a par-
ticular category are only allowed to depend on classes of the same category and
classes that are on the same path to 0’. Consequently, based on these categories,
the dependency matrix in Fig. 5 can be derived automatically.

The matrix can be read in two ways: line-by-line or column-by-column. The
former shows the allowed dependencies of a category, whereas the latter shows
the categories that may depend on a category. The first row in Fig. 5 shows
that a DT -class may depend on classes of any of the categories. A D-class can
only depend on D-, DG- and 0’ -classes5 (Fig. 5, second row). A D-class must
not depend on a DT -class. Only the other direction is allowed. Analogous to
D-classes, a T - class may only depend on T -, DG- and 0’ -classes. A class from
category DG cannot depend on any of the categories but DG and 0’ ; otherwise
it would contradict the definition of DG being global for the whole domain. For
example, in the library domain, the (abstract) class Book (DG) would not know
anything about the single books (such as CookBook (D) or MDDBook (D)). Of
course, 0’ -classes can only communicate among each other. For instance, classes
in the java.lang package (0’ ) do not have any dependencies to a class of any
of the other categories.

As mentioned before, the columns in Fig. 5 show those categories that can
depend on a specific category. It can be seen that this is somehow antisymmetric
to the previously described allowed dependencies of a category.

In the following, we briefly describe the categorization in a formal way. C is a
set containing the categories illustrated in Fig. 3b, i.e., C = {DT,D, T,DG, 0′}.
A pair (a, b) with a, b ∈ C means category a directly refines category
b. Consequently, possible pairings are � = {(DT,DT ), (DT,D), (DT, T ),
(D,D), (D,DG), (T, T ), (T,DG), (DG,DG), (DG, 0′), (0′, 0′)}. For every cate-
gory c, ϕ(c) returns a set of categories which are directly refined by c. ϕ(c)
is defined as: ϕ(c) = {b|(c, b) ∈ �} with ϕ : C → P (C), where P (C) is the power
set of C. ϕ∗(c) is the corresponding transitive closure. The following listing shows
the resulting set of ϕ∗(c) for every category c ∈ C:

5 Note that a D-class that depends on a T -class is rather a DT -class.

mueller@se-rwth.de



Identifying Code Generation Candidates Using Software Categories 363

Fig. 6. (a) Uncategorized class depends on two categorized classes. (b) Uncategorized
class in-between two categorized classes.

(1) ϕ∗(DT ) = {DT,D, T,DG, 0′}
(2) ϕ∗(D) = {D,DG, 0′}
(3) ϕ∗(T ) = {T,DG, 0′}
(4) ϕ∗(DG) = {DG, 0′}
(5) ϕ∗(0′) = {0′}.

Analogously, ϕ−1 : C → P (C),ϕ−1(c) = {a|(a, c) ∈ �} represents the set of
categories that directly refine c, with ψ∗ = (ϕ−1)∗ being its transitive closure:

(1) ψ∗(DT ) = {DT}
(2) ψ∗(D) = {DT,D}
(3) ψ∗(T ) = {DT, T}
(4) ψ∗(DG) = {DT,D, T,DG}
(5) ψ∗(0′) = {DT,D, T,DG, 0′}.

With the help of these sets classes can be categorized. Figure 6a shows an
example. The uncategorized class U depends on both theD-class Y and theT -class
Z. Formally, the category of U is ψ∗(D) ∩ ψ∗(T ) = {DT,D} ∩ {DT, T} = {DT}.

In Fig. 6b the uncategorized class U depends on a T -class. Additionally, a
T -class depends on U. From this it follows that ϕ∗(T ) ∩ ψ∗(T ) = {T,DG, 0′} ∩
{DT, T} = {T}.

If two classes depend on each other, and thus, a circular dependency exists,
they always have the same category. The reason is that ϕ∗(c)∩ψ∗(c) = {c} holds
true for every category c ∈ C, since the software category graph is acyclic.

In the above cases, the classes can be categorized unambiguously. Figure 7a
demonstrates an example where the categorization is ambiguous. A DT -class
depends on the uncategorized class which itself depends on a T -class: ϕ∗(DT )∩
ψ∗(T ) = {DT, T}. Consequently, the category of U is either DT or T. In such
a case, the class must be categorized manually. In general, the more classes are
categorized, the better the categorization. For instance, if the class U additionally
depends on a D-class (see Fig. 7b), its category will be determined unambigu-
ously, since ϕ∗(DT ) ∩ ψ∗(T ) ∩ ψ∗(D) = {DT}.

Dependencies in Java. Up to now, we included the term dependency, but we
did not define it so far. This is mainly because what a dependency ultimately
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Fig. 7. (a) Ambiguous categorization. (b) Categorization becomes unambiguous by
adding new classes.

is, depends on the (target) programming language. Java, for example, provides
different kinds of dependencies between classes and interfaces. The following
shows one possible classification, where the class A depends on the class B and
the interface I, respectively:

– Inheritance: class A extends B
– Implementation: A implements I
– Import: import B
– Instantiation: new B()
– ExceptionThrowing: throws B
– Usage: field access (e.g., b.fieldOfB), method call (e.g., b.methodOfB()),

declaration (e.g., B b), use as method parameter (e.g., void meth(B b)), etc.

These are dependencies in Java that are mostly manifested in keywords (e.g.,
extends and throws), and hence, hold for any Java software project. However,
not all of these dependencies are always desired. It is important to determine
first of all what a dependency ultimately is. For example, an unused import,
i.e., a class that imports another class without using it, is not necessarily a
dependency.

5 Categorization Approach

The suggested approach for the categorization of the source code is demonstrated
in Fig. 8. Three inputs are needed for the categorization: the source code to be
categorized (from which a dependency graph is derived), the category graph
(such as in Fig. 3b) and an initial categorization of some of the classes and inter-
faces (usually done by hand). Using these inputs, a categorization tool analyzes
the dependencies of the uncategorized classes and interfaces to the already cat-
egorized ones. With the information obtained from the category graph some of
the uncategorized classes and interfaces can be categorized automatically. For
example, if a class C depends on a D- and a T -class and the category graph in
Fig. 3b is given, the category of class C is definitively DT, since only this category
refines both D and T.
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Fig. 8. Overview of the categorization approach.

In some cases the order of the categorization process matters. For example,
if a class A only depends on a class B (and no categorized class depends on A), A
will not be categorized until B is categorized. To prevent that the order has an
effect on the final categorization, the categorization is performed iteratively. The
output of iteration i serves as input for the next iteration i+1. This is repeated
until a fixpoint is reached, that means, no further classes and interfaces could be
categorized. These iteration steps can be conducted fully automatically. If there
are still uncategorized classes left, some of them can be categorized by hand
(Sect. 6 illustrates this case by an example). This updated categorization, again
can serve as input. The process can be repeated until the whole source code is
categorized or no further categorization is needed. Finally, classes and interfaces
with a specific categorization serve as candidates for code to be generated. Here,
this applies to the categories D and DT. The user now can decide which of these
candidates will become generated code.

Concept Realization. The categorization tool consists of two domain-specific
languages developed with the MontiCore language workbench [15–17]. The first
DSL allows to specify a software category graph. The restrictions defined in
Sect. 2 (e.g., acyclic graph) are checked by intra-model context conditions [6].
With the second DSL the source code can be categorized by mapping the
defined categories to Java classes. The DSLs are composed through mechanisms
described in [18–20].

As described in Sect. 6, the categories are iteratively extended. Technically,
this means, the mapping model is extended after each iteration. Using an explicit
DSL to categorize the classes has several advantages. First, when the developer
initially categorizes the classes by hand, static checks can be performed to sup-
port the user, for example, that a class cannot be categorized with more than one
category. Second, the developer can use the same tools and user-friendly syntax
for the initial categorization of the classes as well as the manual categorization
after each iteration.
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Fig. 9. Initially categorized classes.

6 Analyzing Usefulness on an Illustrative Example

Now, with the help of the allowed dependencies defined in Sect. 4, given some
classes, the category of each of the classes can be derived semi-automatically,
following the approach presented in the previous section.

Consider the case in Fig. 9. The figure depicts overall ten classes, whereby four
are pre-categorized (CookBook, AbstractPanel, Book and JPanel) and six are
not. The category is in parentheses beside the class name. Uncategorized classes
are marked with a question mark (?). Let us assume that the four categorized
classes already exist and are categorized (e.g., manually by an expert) and the
six other classes are newly created. This situation can arise, for instance, when
software evolves. In the following, the categorization process is illustrated.

The class CookBookPanel communicates with both a D-class (CookBook) and
a T -class (AbstractPanel). Following Fig. 5, only a DT -class may communicate
with a D as well as with a T class (marked by a check mark in the D and T
column). Thus, CookBookPanel is definitively a DT -class. Moreover, any other
class depending on CookBookPanel (represented by the three dots), is also a
DT -class. In the column DT in Fig. 5 there is only a check mark for DT.

Next, CookBookReader depends on the D-class CookBook and the not yet
categorized class Reader. If Reader is a DT - or T -class, CookBookReader will
be definitive a DT -class, for it would depend on a D-class and either a DT -
or T -class. With regard to Fig. 5, this only fits for DT -classes. If Reader is of
any of the other categories, CookBookReader will be a D-class. However, when
trying to categorize Reader, we encounter a problem. Reader only depends on
Book, a DG-class. According to Fig. 5 this can apply to any category except 0’.
So, in this iteration, Reader cannot be categorized automatically. Consequently,
the exact categorization of CookBookReader cannot be determined.

Analogous to the class Reader, the class Author only depends on the DG-
class Book. So, except 0’, it can be of any category. Unlike the previous case,
Book also has a dependency to Author, which means that Author is either DG or
0’. We have already excluded 0’ ; hence, only DG remains as a possible category
for Author. Figure 10 shows the extended categorization after this iteration.
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Fig. 10. Categorized classes after the first iteration.

Two classes could not be categorized exactly after the first iteration: Reader
and CookBookReader. Recalling that our goal is to find generation candidates,
we are above all interested in classes of the category D. So, the approximate
categorization of CookBookReader (D or DT ) is sufficient, since both D and
DT are of the category D. In contrast, Reader is still completely uncategorized
which hampers the categorization of classes depending on it. There are two
options to categorize Reader in the next iteration: either manually by the expert
or automatically by adding new classes and dependencies limiting the possible
categories of Reader.

Note that the order of the categorization of CookBookPanel and the classes
depending on it (marked by “. . . ”) is important for the first iteration. The “. . . ”
classes could not be categorized if they were considered before CookBookPanel.
However, the order has no impact on the final result, since after the first iter-
ation CookBookPanel is surely categorized, and thus, the “. . . ” classes can be
categorized in the next iteration.

Finally, three candidates (plus the “. . . ” classes) for generated code are iden-
tified: CookBook (D), CookBookReader (D/DT ) and CookBookPanel (DT ). All
of these classes belong to the category D directly or indirectly (i.e., DT ), and
hence, are somehow related to the domain. Having these candidates, the genera-
tor developer has to decide which of these classes in the end need to be generated
and which remain handwritten. Of course, this decision is restricted above all
by the information content of the input model. The generator developer must
be aware of this restriction.

Please note that without knowing anything about the intrinsic properties of
the uncategorized classes, the classes can be categorized by only analyzing the
dependency graph. Of course, this is not always possible. Yet the more classes are
already categorized, the better the proposed categorization of the uncategorized
classes will be.

Detecting Wrong Categorization. A wrong initial categorization, e.g., if
CookBook was categorized as 0’, can lead or at least hamper the final catego-
rization. One reason for wrong categorization is the evolution of software where
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classes can change and with them their categories. Another source of error is the
manual categorization done initially or after each iteration. To tackle this issue,
consistency checks as described, for instance, in [21–23] are suitable. From the
dependency matrix in Fig. 5 rules can be derived to check the consistency of the
source code and the category graph.

7 Further Dependencies

Up to now, only the technical dependencies of the code are considered for finding
generation candidate classes (see Sect. 4). So, for example, if a class A extends a
class B, it depends on that class B. But dependencies are not necessarily mani-
fested technically. There can be further dependencies, such as naming dependen-
cies. Figure 11 shows an example. The class CookBookWindow does not have any
technical dependencies on CookBook, that means, it neither extends CookBook
nor does it have any associations to it. It extends AbstractWindow, a T -class,
hence, it is probably a T -class, too. However, CookBookWindow contains the name
of CookBook as prefix in its class name. Of course, this can be purely coinciden-
tal. But, if there are specific conventions dictating that the name of a window
for a class is composed of the name of that class and the suffix “Window”, the
naming dependency in Fig. 11 is very likely no coincidence. Considering this
naming dependency, CookBookWindow has both a dependency to the T -class
AbstractWindow and the D-class CookBook. Consequently, CookBookWindow is
a DT -class and a generation candidate. Please note that from the architecture’s
point of view a (technical) dependency between CookBookWindow and CookBook
might be forbidden. Hence, deriving the dependency rules from the architec-
ture (and not from software category graph) would limit the kinds of possible
dependencies.

In Fig. 11 there is a further clue that CookBookWindow refers to the CookBook
class: its constructor has the same types as the attributes in CookBook. Hence,
the dependencies between classes can be atomic (such as extension) or more
complex, matching a specific pattern (for example similarity [24] and design
patterns [25]). In sum, what a dependency finally is, depends on the software
system and its conventions. This affects the emerging dependency graph of the
source code and can also lead to a different candidate list. In any case, the
procedure as described in Sects. 5 and 6 remains unchanged.

Fig. 11. Naming dependency between classes.
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8 Related Work

[26] introduce class-level micro-patterns for common Java programming prac-
tices, such as immutability. Each pattern is assigned to a main category and
optionally to an additional category. The categories in the approach are similar
to our software categories such as they (logically) group together classes based on
specific patterns and dependencies, respectively. TaxTOOL [27] and TaxTOOLJ
[28] use a comprehensive taxonomy of OO characteristics (e.g., polymorphism)
to classify classes. [29] present an approach to find so called key classes of a
software project, based on dynamic coupling and webmining. Key classes are
identified by their dependencies to other classes, since they “are tightly coupled
with other parts of the system”.

In [30–32] an approach is presented for finding stereotypes of methods and
classes of a software system. Method stereotypes describe characteristics of a
method, such as accessor (e.g., getter), mutator (e.g., setter), and creational (e.g.,
factory). A class stereotype categorizes a class, e.g., DataClass. The stereotype
of a class depends on the stereotype of its methods. Rules exist for each kind of
stereotype. Based on these rules, the concrete stereotypes of methods and classes
are determined. Our approach has a lot in common with the one presented in
[30–32]. Both approaches conduct static code analysis in order to categorize
code (elements). Predefined rules serve as basis. However, the main difference
is that in our approach dependencies between (un-)categorized classes are ana-
lyzed in order to determine the categorization. Consequently, a higher amount
of categorized classes can improve the result. In contrast, method stereotypes,
for example, rely on a method’s characteristics independent of how it relates to
other methods.

Some visualization approaches are presented by [33,34] which enrich classes
and methods, respectively, with semantic information in order to improve code
understanding.

All approaches have in common that they categorize or classify code using
specific rules or patterns. These rules and patterns can be combined with our
approach in order to categorize classes.

9 Conclusion

Code generators are crucial to MDD, transforming abstract models to executable
source code. The generated source code often depends on handwritten code, e.g.,
code from the domain framework. When a code generator is developed or evolved,
the generator developer manually decides which classes need to be generated and
which remain handwritten. This task can be time-consuming, labor-intensive and
may generate more code than is necessary, hampering the maintenance of the
software.

This paper has introduced an approach that can aid the generator developer
in finding candidates for generated code. First, a software category graph is
defined. From this graph the allowed dependencies between the corresponding
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classes (and interfaces) are derived automatically. After an initial categorization
of some classes, further classes can be categorized automatically, by analyzing
their dependencies. This procedure is conducted iteratively until all classes are
categorized or no more categorization is needed. Finally, generation candidates
are all classes belonging to the domain categories.
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13. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

14. Siedersleben, J.: Moderne Software-Architektur: Umsichtig Planen, Robust Bauen
mit Quasar. Dpunkt.Verlag GmbH, Heidelberg (2004)

mueller@se-rwth.de



Identifying Code Generation Candidates Using Software Categories 371
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