
Hierarchical Variability Modeling for Software Architectures

Arne Haber∗, Holger Rendel∗, Bernhard Rumpe∗, Ina Schaefer† and Frank van der Linden‡
∗Software Engineering

RWTH Aachen University, Germany
http://www.se-rwth.de/

† Institute for Software Systems Engineering
TU Braunschweig, Germany

http://www.tu-braunschweig.de/sse
‡CTO Office, Philips Healthcare

Best, The Netherlands
frank.van.der.linden@philips.com

Abstract—Hierarchically decomposed component-based sys-
tem development reduces design complexity by supporting
distribution of work and component reuse. For product line
development, the variability of the components to be deployed
in different products has to be represented by appropriate
means. In this paper, we propose hierarchical variability mod-
eling which allows specifying component variability integrated
with the component hierarchy and locally to the components.
Components can contain variation points determining where
components may vary. Associated variants define how this
variability can be realized in different component configura-
tions. We present a meta model for hierarchical variability
modeling to formalize the conceptual ideas. In order to obtain
an implementation of the proposed approach together with
tool support, we extend the existing architectural description
language MontiArc with hierarchical variability modeling. We
illustrate the presented approach using an example from the
automotive systems domain.

Keywords-Component-based System Development; Diverse
Systems; Variability Modeling

I. INTRODUCTION

Component-based system development [1] supports the
development of large and complex systems. By decom-
posing a complex system into a set of components in a
hierarchy, design complexity can be reduced. The overall
functionality of the system becomes more comprehensible
by considering the functionality of the components. The
component-based decomposition supports the division of
work and increases the reuse potential as new applications
can be constructed from existing components. A component-
based system structure can be exploited for distributed
development and component reuse between different product
members of the product line.

An important ingredient of product line engineering is
a variability model, capturing the diversity of the prod-
ucts contained in the product line. Variability modeling
approaches can be classified whether they are concerned
with the problem space or with the solution space [2] of

the systems under development. The problem space defines
the scope of the product line and its member products.
Usually, problem space variability is captured in terms of
product features. The valid feature combinations can be
described by feature models [3] and correspond to the
valid member products. The solution space focusses on
the reusable artifacts that are customized and composed
to realize the actual products. Most approaches represent-
ing solution space variability, e.g. [4], [5], [6], deliver a
monolithic variability model that specifies the variability
of the whole system. Variability specifications are scattered
over the entire system architecture and across different
hierarchical layers such that for distributed development
the variability model has to be kept synchronized for all
developers which is time consuming and error-prone. The
orthogonal variability model (OVM) [7] provides a low-
level decomposed variability model, but is kept separate
from the component hierarchy. However, in order to facilitate
the development of variable components in a distributed
way, component variability has to be represented inline with
the component hierarchy. Furthermore, it has to be defined
locally to the components. Locality in this context means
that the variability of a component is defined either on the
hierarchical level of the component or at most one level
above or below. Thus, by only considering the component
itself all necessary information on the component variability
and configuration is available such that each component can
be developed independently of the others.

In this paper, we propose hierarchical variability model-
ing as a variability modeling approach for solution space
variability that supports the component-based development
of diverse systems, such as product lines. Hierarchical
variability integrates the description of component vari-
ability and the representation of the component hierarchy
in one model. The variability of components is specified
by considering only the components themselves. A vari-
able component contains variation points representing what

[HRR+11] A. Haber, H. Rendel, B. Rumpe, I. Schaefer, F. van der Linden
Hierarchical Variability Modeling for Software Architectures
In: Proceedings of International Software Product Lines Conference (SPLC 2011), IEEE Computer Society, August 2011.
se-rwth.de/publications

can vary in the component. A variation point has a set
of associated variants that describe how the component
varies [7]. The variants can be described again by variable
components or selected variants of variable components such
that component variability is specified together with the
component hierarchy.

In order to provide a concrete language for hierarchical
variability modeling of software architectures, we extend
the existing architecture description language (ADL) Mon-
tiArc [8], [9] by variation points as specific architectural
modeling elements to represent variable components. Varia-
tion points can be realized by associated variants that contain
a set of architectural modeling elements to be added to
the component if the respective variant is selected. The
resulting language for hierarchical variability MontiArcHV

supports the modular modeling of architectural variability
within the component hierarchy. Component variability is
encapsulated in the single components such that system
evolution can be handled by local component modifications.
In particular, hierarchical variability modeling supports evo-
lution by adding or removing variants. The compositional
representation of variability, further, provides means for
compositional validation and verification of the resulting
architecture.

Hierarchical variability modeling, as presented in this
paper, extends earlier work on hierarchical variability [10],
[11]. The Koala component model [12], [13], [14], [15]
was a first attempt to represent variability inline with the
component hierarchy by explicit linguistic constructs inside
the components. However, Koala is a component model only
available during implementation, compilation, and run-time.
Hence, the language concepts for variability representation
are tailored only to the implementation level. The hierarchi-
cal variability modeling language MontiArcHV described in
this paper extends Koala and aims at providing support for
hierarchical variability modeling in component-based system
development in the early development phases, in particular
during architectural design.

This paper is structured as follows. In Section II, the need
for hierarchical variability modeling in component-based
development of diverse systems is motivated. Section III
presents component-based system development with Mon-
tiArc. In Section IV, the meta model for hierarchical vari-
ability modeling is discussed. Its usage is illustrated using
an example from the automotive domain in Section V. The
ADL for hierarchical variability MontiArcHV is described
in Section VI. Section VII outlines a modeling procedure
for hierarchical variability modeling. Related approaches
are discussed in Section VIII. The paper is summarized in
Section IX.

II. SYSTEM DIVERSITY

Diversity is prevalent in modern software systems. Sys-
tems exist in many different variants in order to adapt

to their application context. Diversity stems from many
sources: some are hardware-related, others are cultural, and
further sources are related to choices in quality attributes
of the system (resource consumption, usability, security,
. . .). Each source may lead to several variations of the
system. Combined, they give rise to an even larger number
of possible system variants.

Product line engineering [7] aims at developing a set of
diverse systems with well-defined commonality and vari-
ability by managed reuse. It benefits from component-
based development approaches. Decomposing the systems
to be developed into components supports the distribution of
work and the communication between different development
teams. Additionally, the component-based system structure
facilitates reusing similar components in different products.

If a product line is created in a component-based ap-
proach, the diversity of the products is captured by the
diversity of the used components. A component may oc-
cur in different variants in the system. These variants are
constituted by selecting concrete variants for the contained
variable subcomponents. In general, the diversity of a com-
ponent can be described in two ways:

1) The variability describes the possible variants of a
variable component. The variability of a component
can be restricted, e.g., by defining constraints on the
variants of the contained variable sub-components.

2) The configuration of a component describes which
concrete variant of the component is chosen in a
system in which this component occurs. The con-
figuration information is, for instance, important to
determine which systems need to be updated in case
a new version of the component variant becomes
available.

In order to support the component-based development of
diverse systems, a variability model for the solution space
is required that integrates the representation of component
variability with the component hierarchy. This modelling ap-
proach for hierarchical variability has to satisfy the following
requirements:

1) Component variability and component hierarchy need
to be treated uniformly in one model.

2) Variability must be specified locally to the compo-
nents. Constraints on variant selection should not go
across hierarchical boundaries in order to facilitate the
distributed development of variable components.

3) The variability model should allow focussing on the
common architecture of all system variants, on the
component variability and on the used component
configurations, since at any point in time during sys-
tem development, maintenance and evolution, it is
important to know which variants can be supported
and which configurations are actually used.

4) Design/configuration decision on a high level maps

1 component LockControlUnit {
2 autoconnect port;
3

4 port
5 in OpenCloseRequest,
6 out LockStatus;
7

8 component LockActuator;
9 component LockController;

10

11 connect LockActuator.cmdSucceeded ->
12 LockController.lockSuccess;
13 }

Listing 1. Structural component LockControlUnit in MontiArc syntax

down to variant selection on components on a low
level of the hierarchy.

III. COMPONENT-BASED SYSTEM DEVELOPMENT

Component-based system development [1] aims at de-
veloping large and complex systems by decomposing the
overall system into a set of components. Components can
be themselves decomposed into subcomponents providing
a hierarchical system structure. A component-based system
can be described using an architecture description language
(ADL). An ADL describes the components, their subcompo-
nent structure, the component interfaces, which are specified
by ports, and the associated communication connections.

We base our hierarchical variability modeling approach
for software architectures on the existing textual ADL Mon-
tiArc [8]. MontiArc is designed for modeling distributed
component-based information flow architectures in which
communication is based on asynchronous messages. We
decided to use MontiArc as a base language for our hier-
archical variability approach, and not similar languages like
Acme [16] or xADL [17], because we require the extensi-
bility of human readable concrete syntax and language tool
support. MontiArc is developed using the DSL framework
MontiCore [18] that supports language reuse on concrete
and abstract level of textual DSLs such that the required
extensibility is achieved.

Architectural components in MontiArc are units of com-
putation or storage defining their computational commit-
ments via interfaces [19]. Theses interfaces are the only
interaction points of components to provide clear concepts
of interaction between entities of computation [20]. Logi-
cal architectures modeled by MontiArc can be realized in
software or in hardware.

An example of a MontiArc component is given in Listing
1 that shows the architecture of a lock control unit that
controls locking and unlocking of a car-door. It receives
a request, triggers the contained subcomponents and emits
the status of the controlled lock. Based on this example
the main modeling-elements of MontiArc are introduced. A
component definition starts with the keyword component

followed by the components name (cf. l. 1) and its interior
surrounded by curly braces. As components are organized
in packages they can be uniquely identified by a qualified
name. Implementation of a component is either given by de-
composition to subcomponents (structural component) or a
Java implementation or state chart realizing the components
behavior (atomic components). A subcomponent starts with
the keyword component followed by a component type
and an optional name (cf. ll. 8-9). This way a subcomponent
is an instance of it’s component-type.

Component interface definitions are given by ports (cf.
ll. 4-6). A port always has a direction - in for incoming and
out for outgoing ports - and a data type. In MontiArc, ex-
plicit naming of ports as well as subcomponents is optional
as long as their type is unique in the current component
definition. If implicit naming is used, a port respectively a
subcomponent is named after its type. Explicit names are
given after the type of a subcomponent or port.

To ease modeling, MontiArc offers an implicit mechanism
to create communication connections. The autoconnect
port statement (cf. l. 2) implicitly connects ports with
the same unique name and a compatible type. If it is
parametrized with type instead of port implicit connec-
tions between ports with the same unique type are created
disregarding the ports’ names. If it is not possible to create
all connections automatically, as uniquely identifying names
may not be always given, explicit connections can be created
using the connect statement connecting one source port
with one or more target ports. If a target or source port
belongs to a subcomponent, it is qualified with the subcom-
ponent’s name. Implicit connectors can always be redefined
by explicit connector definitions. This way the connector
in ll. 11f connects the outgoing port cmdSucceeded of
subcomponent LockActuator with the incoming port
lockSuccess of subcomponent LockController.

IV. HIERARCHICAL VARIABILITY MODELING

Hierarchical variability describes component variability
and component hierarchy uniformly in one model. We distin-
guish three categories of modeling elements in hierarchical
variability modeling, as shown in the meta model in Fig. 1:
commonality, variability and configuration.

Commonality captures the common architecture of all
systems. These common architectural modeling elements are
defined by the ADL MontiArc (cf. Section III) that serves as
basis for the presented approach. A Component is imple-
mented by a set of architecture elements (ArcElement).
An ArcElement can be a component, a subcomponent, a
port, or a connector.

Variability of components is defined by variation points.
Following the terminology of Pohl et al. [7], a variation point
describes what can vary in a component. In order to express
this variability, the MontiArc component definition is ex-
tended by variation points (VariationPoint) that can be

for

*

*

super

Component

<<interface>>
ArcElement

VariantDefinition

VariantConfig

Port Connector

SubComponent

VariantSelection

Commonality Variability Configuration

1

*

realizedBy/
realizes

*

*

contains

1..*1..*

contains

1
1

context VarDef v inv:
 forall ArcElement e in v.arcElement:
 !(e instanceof VarPoint);

VariationPoint

Cardinality

requires

excludes

bool abstract

1

Figure 1. Meta model for Hierarchical Variability Modeling

used as additional ArcElement. Components containing
variation points are referred to as variable components.

Each variation point has a set of associated variants
that specify how the variation point can be realized. Fol-
lowing [7], variants specify how the component can vary.
Variants are defined by the concept VariantDefinition
and are connected to exactly one variation point. A variant
contains several ArcElements which are added to the
component definition if the variant is selected to realize
the corresponding variation point. A variation point has
a cardinality which defines how many variants can be or
have to be selected to realize the variation point. Using
the cardinality, optional variants ([0..1]), required variants
([1..1]), or arbitary multiplicities for the variant selection
can be expressed. The selection of a variant at one variation
point may require or exclude the selection of a specific
variant at another variation point of the component. This
can be expressed by requires and excludes variability
constraints between variants on the same level of hierarchy.
Variants may not contain variation points themselves, which
is expressed by the OCL constraint in Fig. 1, in order to
allow for the local specification of component variability.
Instead, a variant may contain variable subcomponents that
encapsulate the variability of a set of component variants
sharing a common architecture.

The configuration describes the selection of component
variants and the configuration of the actual products de-
fined by the hierarchical variability model. For the defi-
nition of a component, it might be necessary to restrict
the variability of contained variable subcomponents and to
select a particular subcomponent variant. A variant selection
(VariantSelection) allows configuring the variation
points of inner subcomponents by selecting the desired asso-

ciated variants. A specific component variant that is the re-
sult of a variant selection can also be used as ArcElement
in other component definitions. With variant selections in
the component hierarchy, only variation points of direct
subcomponents can be configured in order to maintain the
locality of the component definition.

A complete product configuration (VariantConfig)
consists of variant selections for all variable components
contained in the system that are not selected in the com-
ponent hierarchy. Only in a product configuration using
VariantConfig, it is possible to configure variation
points at arbitrary positions in the component hierarchy,
since locality of the specification is only relevant for compo-
nents that should be reused, but not for the actual products.
In hierarchical variability modeling, it is possible to provide
partial system configurations by leaving some variation
points underspecfied, for instance, to define a common
system platform where only configurations of variable sub-
components at lower hierarchical levels might be different.
A partial system configuration can be provided allowing
abstract VariantConfigs. Abstract configurations can
be extended iteratively by adding variant selections for
the underspecifed variation points. The reconfiguration of
variation points by replacing previously selected variants is
not allowed since this would invalidate the previously de-
fined system configuration. Hence, the relationship between
abstract partial configurations and complete configurations
can be described by inheritance.

Hierarchical variability modeling satisfies the require-
ments formulated in Section II: It allows expressing com-
ponent hierarchy and component variability uniformly in
one model by considering variable components and variant
selections likewise as architectural modeling elements. Com-

WindowSystem MA

WindowWinder
driverWinder

WindowStatus

WinderRequest

WinderRequest

driverRequest

coDriverRequest

WindowWinder
coDriverWinder

WindowWatch
Dog

WindowStatus

driverStat

coDriverStat

overallStat

WindowStatus

MoreWindows [0,1]

MoreWindowsDog [0,1]

Figure 2. Component WindowSystem

ponent variability is specified locally by allowing variability
constraints and variant selections only on the same or adja-
cent hierarchical levels. The supported component variants
can be derived from the variable component definitions by
considering all possible variant selections under the given
variability constraints. The used component variants are
determined by the specified variant selections.

V. ILLUSTRATIVE EXAMPLE FOR HIERARCHICAL
VARIABILITY

As an example for hierarchical variability, we consider a
car with an electric window control system that manages
requests for electric windows from different switches. This
system can be realized in software or in hardware which
demonstrates that this approach is not restricted to one of
these domains. The driver of the car is allowed to control
all windows. In addition, each window can be controlled
by the corresponding passenger. The system is modeled
as a component WindowSystem depicted in Fig. 2. The
subcomponents are a WindowWinder component for the
driver window and a WindowWinder component for the
co-driver window. As input, every WindowWinder com-
ponent receives the request by the driver and the re-
quest by the respective passenger. It gives priority to the
DriverRequest, in case the incoming requests differ. The
outputs of all WindowWinder components are merged in a
component WindowWatchDog. The WindowWatchDog
component monitors the status of the windows and produces
a signal containing the actual status of all windows. This
status is evaluated by the window motors to trigger an action
(e.g. moving down a specific window).

The WindowSystem component has a variation point
MoreWindows marked by the triangle on the top edge
of the component in Fig. 2. The variation point enables
the optional addition of architectural elements to sup-
port a system with more than two windows. The sub-
component WindowWatchDog also has a variation point
MoreWindowsDog allowing to adjust this component for
dealing with more than two windows.

A possible variant FourWindows for variation point
moreWindows is given in Fig. 3. This variant adds two
WindowWinder components for the rear windows, the

MAVWindowSystem

driverRequest

WindowWatch
Dog

MoreWindows [0,1] =
FourWindows

MoreWindowsDog [0,1] =
FourWindowsDog

WindowWinder
rearLeft

WindowWinder
rearRight

rearLeftRequest

rearRightRequest

rearLeftStat

rearRightStat

WinderRequest

WinderRequest

WinderRequest

WindowStatus

WindowStatus

Figure 3. Variant FourWindows

WindowSystem MA

WindowWinder
driverWinder

WinderRequest

WinderRequest

driverRequest

coDriverRequest

WindowWinder
coDriverWinder

WindowWatch
Dog

WindowStatus

WindowWinder
rearLeft

WindowWinder
rearRight

WinderRequest

WinderRequest

rearLeftRequest

rearRightRequest

WindowStatus

WindowStatus
rearLeftStat

rearRightStat

driverStat

coDriverStat

Figure 4. Resulting system for configuration FourWindowSytem

required ports, and connections. Additionally, the subcom-
ponent WindowWatchDog needs to be changed to deal
with for the additional two windows. This is done by
selecting the variant FourWindowsDog for variation point
MoreWindowsDog of WindowWatchDog component.

An example of a configured system that is defined by the
hierarchical variability model is depicted in Fig. 4. In this
configuration, the variation point MoreWindows is config-
ured with the variant FourWindows which automatically
configures the variation point of the contained subcomponent
MoreWindowsDog.

The textual representation of the WindowSystem com-
ponent in our architectural description language with hi-
erarchical variability MontiArcHV is given in Listing 2.
The listing contains the MontiArc defintion of the common
architectural elements, including ports (cf. ll. 3-6), refer-
ences to the WindowWinder subcomponents (cf. ll. 8-
9), the subcomponent WindowWatchDog that is de-
fined inside the component (cf. ll. 11-18), and the re-
quired connections (cf. ll. 20-31). Additionally, the variation
points for the WindowWatchDog component and for the
WindowSystem component are specified. (cf. ll. 17, 33).
The cardinality of both ([0..1]) marks them as optional
variation points.

Listing 3 defines the variant FourWindows for the
variation point MoreWindows in Listing 2 (cf. l. 33). The

1 component WindowSystem {
2

3 port
4 in WinderRequest driverRequest,
5 in WinderRequest coDriverRequest,
6 out WindowStatus;
7

8 component WindowWinder driverWinder,
9 coDriverWinder;

10

11 component WindowWatchDog {
12 port
13 in WindowStatus driverStat,
14 in WindowStatus coDriverStat,
15 out WindowStatus overallStat;
16

17 variationPoint: MoreWindowsDog [0..1];
18 }
19

20 connect driverRequest ->
21 driverWinder.driverRequest,
22 driverWinder.passengerRequest,
23 coDriverWinder.driverRequest;
24 connect coDriverRequest ->
25 coDriverWinder.passengerRequest;
26 connect driverWinder.WindowStatus ->
27 WindowWatchDog.driverStat;
28 connect coDriverWinder.WindowStatus ->
29 WindowWatchDog.coDriverStat;
30 connect WindowWatchDog.overallStatus ->
31 WindowStatus;
32

33 variationPoint: MoreWindows [0..1];
34 }

Listing 2. Component WindowSystem

variant adds ports for the input of the rear windows (cf. ll. 3-
5), the WindowWinder subcomponents for the rear win-
dows (cf. l. 7), and the required additional connections.
Since the WindowWatchDog component must be adjusted
if this variant is selected, its variation point is configured by
selecting the variant FourWindowsDog (cf. ll. 21-22).

An example system configuration in MontiArcHV is
given in Listing 4. To obtain a valid system architecture for
a system with four windows, the top level variation point
WindowSystem.MoreWindows must be configured by
selecting the variant FourWindows (cf. ll. 3-4). This
selection also configures the variation point of the variable
subcomponent WindowWatchDog

The variable component WindowSystem can now be
reused to model a car with an electric window control
system and an electric locking system. Thus, the Car com-
ponent contains two variation points to capture the variability
of the electric locking and the window control systems.
The first variation point, called LockController, al-
lows the addition of an eletric locking system component
LockControlUnit as described in Sect. III by selecting
the associated variant FourDoorsLock. The second vari-

1 variant FourWindows realizes
2 WindowSystem.MoreWindows {
3 port
4 in WinderRequest rearLeftRequest,
5 in WinderRequest rearRightRequest;
6

7 component WindowWinder rearLeft, rearRight;
8

9 connect driverRequest ->
10 rearLeft.driverRequest,
11 rearRight.driverRequest;
12 connect rearLeftRequest ->
13 rearLeft.passengerRequest;
14 connect rearRightRequest ->
15 rearRight.passengerRequest;
16 connect rearLeft.WindowStatus ->
17 WindowWatchDog.rearLeftStat;
18 connect rearRight.WindowStatus ->
19 WindowWatchDog.rearRightStat;
20

21 WindowSystem.WindowWatchDog.MoreWindowsDog
22 realizedBy FourWindowsDog;
23 }

Listing 3. Variant FourWindows

1 variantConfig FourWindowSystem for
2 WindowSystem {
3 WindowSystem.MoreWindows
4 realizedBy FourWindows;
5 }

Listing 4. Configuration FourWindowsSystem

ation point, called WindowController, is used to add a
specific variant of the electric window control component
WindowSystem.

The variant FourWindowVehicle is one possibility
to realize the variation point WindowController. A
four window vehicle in this example always requires the
presence of the electric locking system. Hence, there is
a variability constraint between the variants that are as-
sociated to the variation points LockController and
WindowController. This dependency can be descried
as depicted in Listing 5 (cf. l. 3) using a requires
clause. The variant FourWindowVehicle also adds
a WindowSystem component (cf. l. 5) and config-
ures its variation point (cf. l. 7-8) such that the variant
FourWindows is selected.

1 variant FourWindowVehicle realizes
2 Car.WindowController
3 requires LockController.FourDoorsLock {
4

5 component WindowSystem;
6

7 WindowSystem.MoreWindows realizedBy
8 FourWindows;
9 }

Listing 5. Variant FourWindowVehicle

1 grammar HierVarArc
2 extends mc.umlp.arc.MontiArc {
3 VariationPoint implements ArcElement =
4 "variationPoint" ":" Name
5 Cardinality? ";";
6 }

Listing 6. MontiCore grammar that adds variation points to component
definitions

VI. AN ADL FOR HIERARCHICAL VARIABILITY

To provide tool support for hierarchical variability mod-
eling, we implemented the language MontiArcHVusing
the MontiCore framework [18]. Since we want to add
hierarchical variability modeling to the existing ADL
MontiArc, we extend the MontiArc [8] grammar using
MontiCore’s language inheritance mechanism. MontiCore
is used to specify the standard architectural modeling
elements. MontiArcHVextends MontiArc with the con-
cepts shown in Listing 6 in order to define the part of
MontiArcHVdescribing variable components with variation
points. The production VariationPoint implements the
interface ArcElement that is given in the MontiArc super-
grammar mc.umlp.arc.MontiArc. A component de-
scribed in this language can contain variation points in addi-
tion to MontiArc ArcElements. The specification of a vari-
ation point starts with the keyword variationPoint:
followed by its name and an optional (?) cardinality.
If no cardinality is given we assume that the variation
point is realized by exactly one variant. The part of the
MontiArcHV grammar for the the specification of variants
is given in Listing 7. It also extends the MontiArc language
and inherits the MontiArc architectural modeling elements.
The starting rule VariantFile allows processing variant
definitions (VariantDefinition) or component config-
urations (VariantConfig).

A variant definition VariantDefinition (cf. ll. 6-11)
starts with the keyword variant followed by its name.
Variant definitions in MontiArcHV can be parametrized
by optional variant parameters (cf. ll. 15-17). Using
these parameters, ports or subcomponents that are added
by the variant get a parametric name. Technically, this
is implemented by overwriting the production rules for
ports and for the name part of subcomponents to add
a variableParameter to the names separated by ∼
(cf. ll. 27, 30). The parameters are instantiated with concrete
values in a variant selection as explained below. Parametriza-
tion is, for instance, useful if the same variant should be
selected several times, but the added ports or components
should have different names.

A variant definition always realizes a specific vari-
ation point that is referenced by its qualified name. An
optional constraint is used to declare variability con-
straints between variants. In the meta model (cf. Fig. 1)
and the example (cf. Sect. V), we used requires and

1 grammar VariantDefinitionDSL
2 extends mc.umlp.arc.MontiArc {
3 VariantFile =
4 (VariantDefinition | VariantConfig);
5

6 VariantDefinition =
7 "variant" Name VariantParameter?
8 "realizes" variationPoint:
9 QualifiedName

10 ("constraint" "(" Constraint ")")?
11 body:ArcComponentBody;
12

13 external Constraint;
14

15 VariantParameter =
16 "(" parameters:Name
17 ("," parameters:Name)* ")";
18

19 VariantReference =
20 (variantName:QualifiedName
21 ("(" parameters:Name
22 ("," parameters:Name)* ")")?);
23

24 ArcPort =
25 Stereotype?
26 (incoming:["in"] | outgoing:["out"])
27 Type (variableParameter:Name "˜")?
28 Name?;
29

30 ArcReferenceInstance =
31 (variableParameter:Name "˜")? Name;
32

33 VariantConfig =
34 ...
35 }

Listing 7. MontiCore grammar for the definition of variants

excludes constraints. However, the external production
Constraint can be instantiated with a more general
constraint language (e.g., OCL) using MontiCore’s language
embedding mechanism to express more complex variability
constraints. The body of a variant definition is given by an
ArcComponentBody which it may contain arbitrary many
ArcElements including variant selections. A component
configuration VariantConfig selects concrete variants
for the variation points contained in a variable component.
This part of the grammar is not shown in Listing 7.

Based on the grammars for MontiArcHV depicted in
Listings 6 and 7, MontiCore generates an infrastruc-
ture to process concrete hierarchical variability models in
MontiArcHV including a lexer, a parser and and data
structures for representing the abstract syntax tree. However,
not all MontiArcHV models that are syntactically correct
are meaningful. To find faulty models, context conditions
have to be defined and implemented. For MontiArcHV,
the following set of context conditions extends the context
conditions that have to hold for standard MontiArc (cf. [8])
models:

1) Non-abstract variant configurations have to configure
all variation points in the referenced architecture,
either by defining variant selections themselves or by
extending a super-configuration.

2) The component referred to in a variant configuration
has to exist, and contain all variation points that are
referenced.

3) The super-configuration of a configuration has to exist.
4) The variation point that is realized by a variant defi-

nition has to exist.
5) Referenced variation point and the referenced variants

in variant selections have to exist.
6) The number of actual parameters that are provided by

a variant selection has to match the number of formal
parameters of the corresponding variant definition.

VII. MODELING WITH MONTIARCHV

MontiArc, as the basis ADL for MontiArcHV, sup-
ports bottom-up as well as top-down modeling approaches,
such as the Attribute Driven Design Method [21]. Because
MontiArcHVis an extension of MontiArc, this holds for
MontiArcHV too. In this section, we sketch a top-down
method for modeling a variable component structure with
MontiArcHVthat is based on the three modeling categories:
commonality, variability, and configuration.

First of all, the common parts of a system architecture
have to be defined. The system is split into common sub-
systems (subcomponents). Communication between these is
modeled by connecting component interfaces that are given
by ports. The contained subcomponents are decomposed
themselves into common architectural elements. All com-
mon elements of the modeled system, i.e., common parts
of variable components, subcomponents and non-variable
components, will later be part of every defined system.

As a second step, variability is introduced in the model.
Therefore, variation points are added to components to
define explicitly where components may vary. Then, variants
that can be selected to realize the variation points are
modeled. The addition of variability to a component may
imply that variability has to be introduced to the contained
subcomponents as well. As an example, consider a variant
V1 that adds a port P1 to a component C. The port P1 should
be connected to the contained subcomponent SC. Hence, a
variation point VPSC has to be added to the subcomponent
SC, and an associated variant V2 has to be defined that
adds the corresponding port to subcomponent SC in order
to provide the desired connection. Additionally, in variant
V1, a variant selection of the variation point VPSC has to
be defined such that the variant V2 in subcomponent CS is
selected whenever variant V1 is selected.

The third step of the modeling method is to define
system configurations by selecting variants for variation
points respecting their cardinality. A concrete configuration

corresponds to a product, while abstract configurations cor-
respond to a common platform. The open variation points
of abstract configurations are configured later to describe
concrete products. The above steps may be iterated, until a
desired degree of decomposition is achieved.

VIII. RELATED APPROACHES

The reusable artifacts of a component-based software
product line have to be organized such that an efficient
product derivation is faciliated [22]. Different alternatives
are discussed in [23], [24], such as structuring the variability
models according to the organizational structures, specific
business needs or following the architectural components.
However, in these works, a designated variability model for
diverse component-based systems is not defined. Existing
approaches to represent solution space variability models
of component-based systems can be classified in two main
directions [25]: annotative (or negative) and compositional
(or positive) modeling approaches.

Annotative approaches consider one model (that is usually
non-hierarchical) representing all products of the product
line. Variant annotations, e.g., using UML stereotypes [4],
[5] or presence conditions [6], define which parts of the
model have to be removed to derive a concrete product
model. The orthogonal variability model (OVM) [7] models
the variability of product line artefacts in a variability model
that is separated from the artifact model. Links from the
variability model to the artifact model take the place of
annotations and determine which model parts are removed
for certain product variants. In [26], the variability modeling
language (VML) is proposed that specializes the ideas of
OVM for architectural models.

Compositional approaches associate model fragments
with product features that are composed for a partic-
ular feature configuration. In [27], [25], [28], models
are constructed by aspect-oriented composition. Feature-
oriented model-driven development (FOMDD) [29] com-
bines feature-oriented programming (FOP) with model-
driven engineering. In [30], model fragments are merged
in order to provide the variability model of a product line.
Apel et al. [31] apply model superposition to compose model
fragments. Model superimposition considers models with
a hierarchical structure that is preserved when models are
composed. But the approach presented in [31] does not focus
on supporting component-based software development.

Apart from positive and negative variability representa-
tions, model transformations are used for capturing product
variability. The common variability language (CVF) [32]
represents the variability of a base model by rules describing
how modeling elements of the base model have to be
substituted in order to obtain a particular product model.
In [33], graph transformation rules capture the variability
of a single kernel model comprising all commonality. In
[34], architectural variability is represented by change sets

containing additions and removals of components and com-
ponent connections that are applied to a base line architec-
ture. Delta modeling [35], [36] is a modular approach to
represent system variability via transformations. A diverse
set of systems is represented by a designated core system and
a set of system deltas explicitly specifying changes to the
core system in order to obtain other system variants. Delta
modeling can be used for component-based systems [37],
but an integration of delta modeling with the component
hierarchy is not yet considered.

Plastic partial components [38] provide a means to model
component variability inside the components by extending
partially defined components with variation points and asso-
ciated variants. Variants can be cross- or non-cross-cutting
architectural concerns that are composed with the common
component architecture by weaving mechanisms that have to
be specified by the component designer. However, variants
cannot contain variable components such that component-
variability and -hierarchy are not fully integrated.

The Koala component model [13], [39] is a first approach
aiming at hierarchical variability modeling. In Koala, the
variability of a component is described by the variability
of its sub-components. The selection between different sub-
component variants is realized by switches that are used
as designated components. Via explicit diversity interfaces,
information about selected variants is communicated be-
tween sub- and super-components in order to configure the
switches to select a specific subcomponent variant. Diversity
interfaces and switches in Koala can be understood as
concrete language constructs targeted at the implementation
level to express variation points and associated variants.
The approach presented in this paper abstracts from these
concrete language constructs. Instead, it provides a general
approach that integrates component variability and compo-
nent hierarchy to foster component-based development of
diverse systems during architectural design.

Other textual ADLs that may be extended with hier-
archical variablity modeling concepts are Acme [16] or
xADL [17]. An extension of Acme can be achieved using
its property mechanism. A variation point may be embedded
in a property and, hence modeled as a plain string. That,
however, is an error prone approach, as these strings has
to be interpreted manually. Syntax highlighting or further
modeling support for variation points cannot be provided
by Acme. xADL can be extended by defining new XML
schemes. As human readability of XML files is poor, xADL
does not match our extensibility requirements, too.

IX. CONCLUSION

Hierarchical variability modeling integrates the represen-
tation of the component variability with the component
hierarchy. Component variability is expressed locally within
components, such that distributed development of vari-
able components is facilitated. Using hierarchical variability

modeling, it is possible to determine the component variants
that are supported and the variants that are currently used at
all times during system development and maintenance.

For future work, we aim at improving our tool support
for MontiArcHV and at evaluating the modeling concepts
using industrial-scale case examples of diverse component-
based systems. In order to examine the advantages of hierar-
chical variability modeling, we plan an detailed conceptual
and empirical comparison with other variability modeling
approaches for component-based systems, such as [40]
or [37]. Future work will also evaluate how evolution can
be supported by hierarchical variability modeling via the
addition and removal of variants. Currently, MontiArcHV

supports only the addition of architectural modeling ele-
ments to an existing component. In the future, MontiArcHV

will be extended by more invasive composition techniques,
such as model superimposition [31], to facilitate more
expressive components modifications by selected variants.
MontiArcHV is designed to model solution space variability
of system components. In order to provide a connection to
the problem space variability that is usually described by
feature models, we plan to investigate how the configura-
tion of variation points by variant selections relates to the
selection of problem space features.

REFERENCES

[1] C. Szyperski, Component Software. Addison-Wesley, 1997.

[2] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
2000.

[3] K. Kang, J. Lee, and P. Donohoe, “Feature-Oriented Project
Line Engineering,” IEEE Software, vol. 19, no. 4, 2002.

[4] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a UML
Profile for Software Product Lines,” in Workshop on Product
Familiy Engineering (PFE), 2003.

[5] H. Gomaa, Designing Software Product Lines with UML.
Addison Wesley, 2004.

[6] K. Czarnecki and M. Antkiewicz, “Mapping Features to Mod-
els: A Template Approach Based on Superimposed Variants,”
in GPCE, 2005.

[7] K. Pohl, G. Böckle, and F. van der Linden, Software Product
Line Engineering. Springer Verlag, 2005.

[8] A. Haber, T. Kutz, J. O. Ringert, and B. Rumpe, “MontiArc
1.1.3 - Architectural Modeling Of Interactive Distributed
Systems,” RWTH Aachen University, Tech. Rep., 2011, (to
appear).

[9] A. Haber, J. O. Ringert, and B. Rumpe, “Towards Architec-
tural Programming of Embedded Systems,” in Tagungsband
des Dagstuhl-Workshop MBEES VI. Munich, Germany:
fortiss GmbH, 2010.

[10] F. van der Linden and A. Saunders, “Handling Architectural
Diversity,” ESPRIT 20477 project ARES, Tech. Rep. Deliv-
erable 4.1-2.b, October 1997.

[11] P. van de Hamer, F. van der Linden, A. Saunders, and
H. te Sligte, “An Integral Hierarchy and Diversity Model
for Describing Product Family Architecture,” in Proceedings
Development and Evolution of Software Architectures for
Product families-2. Springer, 1998.

[12] R. van Ommering, “Koala, a Component Model for Consumer
Electronics Product Software,” in Proceedings Development
and Evolution of Software Architectures for Product Families-
2. Springer, 1998.

[13] R. van Ommering, F. van der Linden, J. Kramer, and
J. Magee, “The Koala Component Model for Consumer
Electronics Software,” IEEE Computer, March 2000.

[14] R. van Ommering and J. Bosch, “Widening the Scope of
Software Product Lines - From Variation to Composition,”
in Proc. of SPLC. Springer, 2002.

[15] R. van Ommering, “Building Product Populations with Soft-
ware Components,” Ph.D. dissertation, University of Gronin-
gen, December 2004.

[16] D. Garlan, R. T. Monroe, and D. Wile, “Acme: An archi-
tecture description interchange language,” in Proceedings of
CASCON’97, 1997.

[17] E. M. Dashofy, A. van der Hoek, and R. N. Taylor, “A Highly-
Extensible, XML-Based Architecture Description Language,”
in Proceedings of the Working IEEE/IFIP Conference on
Software Architectures (WICSA 2001), 2001.

[18] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel, “MontiCore: a Framework for the Development of
Textual Domain Specific Languages,” in 30th International
Conference on Software Engineering (ICSE 2008), Leipzig,
Germany, May 10-18, 2008, Companion Volume, 2008.

[19] N. Medvidovic and R. Taylor, “A Classification and Com-
parison Framework for Software Architecture Description
Languages,” IEEE Transactions on Software Engineering,
2000.

[20] M. Broy and K. Stølen, Specification and Development of
Interactive Systems. Focus on Streams, Interfaces and Refine-
ment. Springer Verlag Heidelberg, 2001.

[21] F. Buchmann and L. Bass, “Introduction to the Attribute
Driven Design Method,” in ICSE ’01: Proceedings of the 23rd
International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2001.

[22] C. W. Krueger, “Software Reuse,” ACM Comput. Surv.,
vol. 24, June 1992.

[23] J. M. Hunt, “Organizing the Asset Base for Product Deriva-
tion,” Software Product Line Conference, 2006.

[24] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer,
“Structuring the Product Line Modeling Space: Strategies and
Examples,” in VaMoS, 2009.

[25] M. Völter and I. Groher, “Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development,”
in SPLC, 2007.

[26] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes, “Lan-
guage Support for Managing Variability in Architectural
Models,” in Software Composition, ser. Lecture Notes in
Computer Science, 2008, vol. 4954.

[27] F. Heidenreich and C. Wende, “Bridging the Gap Between
Features and Models,” in Aspect-Oriented Product Line En-
gineering (AOPLE’07), 2007.

[28] N. Noda and T. Kishi, “Aspect-Oriented Modeling for Vari-
ability Management,” in SPLC, 2008.

[29] S.Trujillo, D. Batory, and O. Dı́az, “Feature Oriented Model
Driven Development: A Case Study for Portlets,” in ICSE,
2007.

[30] D. Dhungana, T. Neumayer, P. Grünbacher, and R. Rabiser,
“Supporting Evolution in Model-Based Product Line Engi-
neering,” in SPLC, 2008.

[31] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “ Model
Superimposition in Software Product Lines,” in International
Conference on Model Transformation (ICMT), 2009.

[32] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and
A. Svendsen, “Adding Standardized Variability to Domain
Specific Languages,” in SPLC, 2008.

[33] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and H. Gomaa,
“Model Composition in Product Lines and Feature Interaction
Detection Using Critical Pair Analysis,” in MoDELS, 2007.

[34] S. A. Hendrickson and A. van der Hoek, “Modeling Product
Line Architectures through Change Sets and Relationships,”
in ICSE, 2007.

[35] D. Clarke, M. Helvensteijn, and I. Schaefer, “Abstract Delta
Modeling,” in GPCE. Springer, 2010.

[36] I. Schaefer, L. Bettini, V. Bono, F. Damiani, and N. Tan-
zarella, “Delta-oriented Programming of Software Product
Lines,” in SPLC. Springer, 2010.

[37] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer, “Delta
Modeling for Software Architectures,” in MBEES, 2011.

[38] J. Pérez, J. Dı́az, C. C. Soria, and J. Garbajosa, “Plastic Partial
Components: A solution to support variability in architectural
components,” in WICSA/ECSA, 2009.

[39] R. C. van Ommering, “Software Reuse in Product Popula-
tions,” IEEE Trans. Software Eng., vol. 31, no. 7, 2005.

[40] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Roth-
hardt, and B. Rumpe, “Modelling Automotive Function Nets
with Views for Features, Variants, and Modes,” in Proceed-
ings of ERTS ’08, 2008.

