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Abstract. Diversity is prevalent in modern software systems. Several
system variants exist at the same time in order to adapt to changing
user requirements. Additionally, software systems evolve over time in
order to adjust to unanticipated changes in their application environ-
ment. In modern software development, software architecture modeling
is an important means to deal with system complexity by architectural
decomposition. This leads to the need of architectural description lan-
guages that can represent spatial and temporal variability. In this paper,
we present delta modeling of software architectures as a uniform model-
ing formalism for architectural variability in space and in time. In order
to avoid degeneration of the product line model under system evolution,
we present refactoring techniques to maintain and improve the quality
of the variability model. Using a running example from the automotive
domain, we evaluate our approach by carrying out a case study that
compares delta modeling with annotative variability modeling.

1 Introduction

Modern software systems simultaneously exist in many different variants in or-
der to adapt to changing user requirements or application contexts. Software
product line engineering [32] aims at developing a family of systems by managed
reuse in order to decrease time to market and to improve quality. In addition
to this variability in space, software systems are extremely long-lived and have
to evolve over time in order to maintain, improve or update their functionality.
This unanticipated variability in time [26] changes the system design, structure,
and behavior in an unexpected manner, e.g., for adapting it to new customer
requirements or technological conditions. Evolution of software systems needs to
be managed, and gets particularly difficult if a family of systems is considered.

The design of the software architecture plays an essential role in software
development [27,25]. The architecture allows decomposing a complex system
into smaller hierarchically structured components. These can be developed in-
dependently. The change frequency of architectural descriptions is lower than
the changes on the implementation level, where often bugs etc. need to be fixed.
However, changes in the architecture have a wide range impact on the overall
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system such that architectural changes have to be planned, modeled and ana-
lyzed to ensure that the system quality is maintained despite of the changes.
This is particularly complex for software product line architectures.

Most current ADLs [25] do not support the explicit representation of archi-
tectural change. The predominantly used approaches for architectural variability
modeling use annotations to assign model elements to different variants. These
annotative variability modeling approaches mostly use a so called 150%-percent
model of the system architecture incorporating all possible variability in which
specific elements are annotated to belong to specific product variants. The mono-
lithic 150%-percent architecture description gets easily very complex for large
product families and is hard to manage in case of evolutionary changes. Intro-
ducing a new variant will most likely require changes of the whole model, as
modular development and implementation of variable parts is not possible. To
counter this problem, ADLs should support variability modeling by representing
changes to the architecture in space and in time as explicit first-class entities.
The variability description in the ADL should be modular to facilitate trac-
ing changes to particular functions, components, or features. Furthermore, the
description should be readable, easy to comprehend, to evolve, and to maintain.

In this paper, we present A-MontiArc, an ADL with native support for archi-
tectural variability modeling in space and in time that allows defining variants
of interactive distributed and Cyber-Physical systems in a modular manner. A-
MontiArc is based on the concept of delta modeling software product lines [6].
A product line of architectures is described by a core architecture and a set
of architectural deltas that encapsulate changes to the core architecture. In or-
der to obtain a particular product variant, a set of suitable deltas defined in a
product configuration is applied to the core. As variable parts of a model, e.g.
functionality for new product variants, are encapsulated in deltas, this approach
overcomes the aforementioned problems of annotative variability modeling. As
complexity of models is decreased and modular modeling of variability is possi-
ble, delta models are easier to comprehend and to evolve. In previous work [16,
14], A-MontiArc was used to represent spatial variability only. In this paper,
we extend it to capture temporal variability with the same linguistic means.
If new products should be included in a product family, new deltas can easily
be added to a delta model to generate new variants. If a product variant is no
longer supported, its product configuration and redundant deltas may be re-
moved. Modifications to certain product functionalities, e.g., for bug fixing, can
be realized by replacing a particular delta by another version. In order to avoid
degeneration of a delta model after some evolution steps, it can be refactored to
improve its structure without changing the generated products. The evolution
of architectures as considered in this paper reflects the evolution of the features
contained in a software product line. However, the presented approach solely
works on the level of the product line artifacts modeling solution space variabil-
ity [8], in contrast to problem space variability that is typically captured with
product features on the requirements level.



In order to evaluate A-MontiArc, we carried out a case study to gain experi-
ence in spatial and temporal evolution of delta oriented product lines. This case
study has been also modeled using a common annotative variability modeling
approach to compare it with our approach. The case study describes a braking
controller system which exists in variants for cars and motorcycles and allows
the inclusion of several assistance system, like an anti-lock braking system or
an electronic stability control. By considering several evolution and refactoring
scenarios, we demonstrate that delta modeling is particularly well suited for
representing architectural variability and architectural evolution.

The paper is structured as follows. Sect. 2 introduces A-MontiArc for repre-
senting spatial architectural variability. Sect. 3 demonstrates how A-MontiArc
captures temporal architectural variability. Sect. 4 shows three refactoring strate-
gies for delta models. Sect. 5 contains a qualitative and quantitative comparison
of A-MontiArc and an annotative variability modeling approach based on the
preformed case study. Related work is discussed in Sect 6. Sect. 7 concludes the
paper and outlines future work.

2 Spatial Variability

Delta modeling [6, 36] is a language-independent approach for modular modeling
of variability in the solution space [8] and can be applied to different modeling
and programing languages like, e.g., class diagrams [35] or Java [34, 36]. In [16,
14], the concept of delta modeling is applied to software architectures in order
to obtain an ADL with native support for architectural variability in space. A
A-MontiArc product line is specified by a designated core architecture that rep-
resents the architecture of a valid product variant, and a set of deltas that add,
remove, or modify architectural elements to derive further product variants. An
architectural variant is definied by a variant configuration that contains a set of
application-specific deltas that are used in order to generate the variant. There-
fore, the operations of these deltas are stepwise applied in a calculated order
to transform the core to the architectural variant. After a variant is generated,
its correctness is checked using mechanisms of the base language. To with an
application order constraint (AOC) that determines which deltas must or must
not be applied before. If, for example, a delta A modifies a model element, that
has been introduced by another delta B and is not part of the core, the AOC of
A has to claim that it must be applied after B. Hence, the application order of
the deltas contained in a variant configuration is calculated by interpreting the
attached AOCs. If more then one application order is valid for a product variant,
all application orders are expected to generate the same product, not regarding
the order of the model elements in the resulting variant. This is the case, if for
example two or more deltas of a configuration do not have an attached AOC
and their position in the application order may be arbitrary switched without
influencing the generated product. However, it is yet unchecked, if several valid
application orders really result in the sematically same product. Therefore the
correctness of AOCs is assumed. According to [34] it is also possible to define
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product lines based on more than one valid core architecture. Then, however,
the core model that is to be modified must be explicitly referenced in product
configurations.

component BrakingSystem {
autoconnect port;

port
in BrakeCommand brake,
out BrakePressure wheelpressurel,
out BrakePressure wheelpressure2,
out BrakePressure wheelpressure3,
out BrakePressure wheelpressure4;

component PressureCalculator brakefunction;

}

Listing 1. Core architecture of BrakingSystem.

A-MontiArc is based on the textual architectural description language (ADL)
MontiArc [18] that allows modeling and simulation of interactive distributed and
Cyber-Physical systems. Therefore it provides modeling elements to describe
component type definitions that contain an interface description, an internal
structure given by subcomponents, and the communication between subcompo-
nents and the components interface. An example of a MontiArc architecture is
given in Lst. 1. It depicts the definition of component type BrakingSystem
that calculates the brake pressure for all four wheels of a car. MontiArc compo-
nents communicate with their environment using their interface. The interface
definition of component BrakingSystem is given by an incoming port brake
with type BrakeCommand (1. 5) and four outgoing ports to emit the calculated
brake pressure for each wheel (1l. 6-9). The BrakingSystem component con-
tains a subcomponent brakefunction that is an instance of component type
PressureCalculator (1. 11). The connections between the outer ports and
the interface of the brakefunction subcomponent are created automatically
using MontiArc’s autoconnect statement (1. 2). Parametrized with keyword
port, it automatically creates connections between all yet unconnected type-
compatible ports with the same name.

A-MontiArc extends the MontiArc ADL with the concepts of delta model-
ing. Therefore it defines a language that allows modifications of component type
definitions by adding or removing model elements like ports, subcomponents, or
connections. Lst. 2 shows delta DTractionControl specified in A-MontiArc
that adds a traction control functionality to component BrakingSystem by
modifying the BrakingSystem component (c.f. 1. 3 ff). The delta adds an ad-
ditional port accel to receive accelerate commands (1. 4). This port is implicitly
connected to the added subcomponent stabilizer (1. 5). The aforementioned
connections between the interface of component BrakingSystem and its sub-




delta DTractionControl after
DAntiLockBrakingSystem && !DTwoWheel ({
modify component BrakingSystem {
add port in AccelerateCommand accel;
add component TC stabilizer;

connect brakefunction.wheelpressurel ->
stabilizer.fromabsl;

connect brakefunction.wheelpressure2 ->
stabilizer.fromabs2;

connect brakefunction.wheelpressure3 —>
stabilizer.fromabs3;

connect brakefunction.wheelpressured4 ->
stabilizer.fromabs4;

Listing 2. Delta adding traction control.

component brakefunction are now explicitly redirected to the newly added
subcomponent that itself is implicitly connected to the outer interface (c.f. 1l. 7—
14). In the example, the AOC given by keyword after in ll. 1 f defines that delta
DTractionControl has to be applied after delta DAntiLockBrakingSys—
tem (see Lst. 3) and not before delta DTwoWheel. To efficiently check the appli-
cability of deltas and the consistency of the application order constraints during
product generation, a family-based analysis of delta-oriented product lines is
presented in [15].

Concrete product variants are defined in A-MontiArc by a product configu-
ration that specifies which deltas have to be applied to the core architecture to
generate a product variant. Lst. 4 shows product configuration CarWwithTC for
a braking system variant that contains an anti-lock braking system (added by
delta DAntiLockBrakingSystem, see Lst. 3) and a traction control (added
by delta DTractionControl, see Lst. 2) beside the basic brake functionality
introduced by the core architecture which is depicted in Lst. 1.

delta DAntilLockBrakingSystem {
modify component BrakingSystem {

add port in WheelSensor wheelspeedl,
in WheelSensor wheelspeed2,
in WheelSensor wheelspeed3,
in WheelSensor wheelspeed4;

replace component brakefunction
with component ABS brakefunction;

Listing 3. Delta adding anti-lock braking system.
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deltaconfig CarWithTC {
DAntiLockBrakingSystem,
DTractionControl

Listing 4. Product configuration CarWithTC.

BrakingSystem

Fig. 5. Initial product line structure

As running example throughout this paper, we consider a product line of
braking system controllers. In Fig. 5, the delta model of this controller product
line is shown. The core architecture BrakingSystem (see Lst. 1) is depicted
at the very top of the figure. Below, we see all deltas denoted by ellipses. The
solid arrows show the possible application orders of the deltas according to the
application order constraints in the after clauses. The supported product vari-
ants are shown in dashed boxes. The product line contains a braking system
for cars without an anti-lock braking system (CarWithoutABS) as core archi-
tecture. By applying the delta DAntiLockBrakingSystem (short: DABS),
a product variant CarWithABS can be obtained. Using the delta DTwoWheel
(short: DTW), a braking system for motorbikes with only two wheels is generated
(BikeWithoutABS). Using the delta DABS, a braking system for motorbikes
with ABS is derived (BikeWithABS). For cars, a traction control can be added




by delta DTractionControl (short: DTC), and afterwards an electronic sta-
bility control can be added by delta DElectronicStabilityControl (short:
DESC). Finally, the architecture can be tailored to work with an adaptive cruise
control system by applying delta DAdaptiveCruiseControl (short: DACC)
or alternatively by a four wheel drive using delta DFourWheelDrive (short:
D4WD). The initial product line of braking systems realized in A-MontiArc
supports eight product variants with six deltas.

3 Temporal Variability

The difference between temporal and spatial variability is that spatial variability
is anticipated and, thus, can be planned ahead while temporal variability is
unanticipated and has to be integrated into the product line after its initial
design. However, variability in time can be presented by the same means as
variability in space using the concepts of delta modeling [6].

The evolution of a product line can be completely classified into three dif-
ferent scenarios: first, new product variants are added; second, product variants
are removed; third, existing product variants are modified. In the following, we
illustrate how these three evolution scenarios can be represented with A-Mon-
tiArc without re-engineering the delta models from scratch, but by evolving it
via modular and local changes to deltas and product configurations.

Add Variants. A delta model in A-MontiArc consists of a designated core archi-
tecture, a set of architectural deltas and the set of supported product configura-
tions which are selected subsets of the available deltas. When new architectural
variants are added, this amounts to adding the respective deltas and product
configurations that are required to generate the new product variants which are
not yet contained in the delta model.

In our running example, we can add a new product variant to the brak-
ing system controller product line that includes support for a reduction gear.
This variant is only for driving offroad and, thus, requires that four wheel driv-
ing is included in the product as well. To capture this change, a new delta
DReductionGear (short: DRG) shown in Lst. 6 is added to the delta model.
A new configuration CarWithRG (see Lst. 7) defines the new product variant.

Remove Variants. When product variants are removed, since they are now longer
supported or maintained, the respective product configurations can simply be
removed from the set of product configurations. If deltas are no longer required
for product generation, because all product configurations using them have been
removed, also the redundant deltas can be removed. The removal of deltas can
require a modification of application order constraints of other remaining deltas.
This can only be the case, if the removed delta is mentioned in the after clause
as a conflicting delta that may not be applied together with this delta. Hence,
constraints on removed deltas can be deleted without changing the remaining
product variants.



delta DReductionGear after DFourWheelDrive {
modify component BrakingSystem {

add component BrakeAmplifier;
connect stabilizer.wheelpressurel

—> BrakeAmplifier.wheelpressurefromespl;
connect stabilizer.wheelpressure?2

—-> BrakeAmplifier.wheelpressurefromesp?2;
connect stabilizer.wheelpressure3

—> BrakeAmplifier.wheelpressurefromesp3;
connect stabilizer.wheelpressured

—> BrakeAmplifier.wheelpressurefromesp4;

Listing 6. Delta for adding reduction gear.

deltaconfig CarWithRG {
DAntiLockBrakingSystem,
DTractionControl,
DElectronicStabilityControl,
DFourWheelDrive,
DReductionGear

Listing 7. Configuration for product variant with reduction gear.

In our running example, assume that the variants CarWithoutABS and
CarWithTC should not be supported anymore, since all cars should now con-
tain either ABS or ESC right away. These configurations can be removed from
the product line without changing any delta, since all deltas are still required
to generate the remaining variants. Now we assume, that the product portfolio
should be consolidated such that only control units for cars are produced and mo-
torbikes are not supported anymore. Hence, the variants BikeWithoutABS and
BikeWithABS are removed and also delta DTwoWheel is removed since it is no
longer required for generating a product variant. In delta DTractionControl,
the negated reference to delta DTwoWheel is also deleted.

Modify Variants. The modification of existing product variants requires to
change the implementation of one or more existing deltas. A reason for a mod-
ification of an existing delta may, for instance, be a bug fix or an improvement
of performance by new component realizations.

In our running example, assume that the existing delta DAdaptiveCruise-
Control (see Lst. 8) has to be modified by adding a new input port for a
rainsensor which is necessary for its correct functioning. The new version of delta
DAdaptiveCruiseControl is depicted in Lst. 9. As only the implementation
inside this delta is changed, the general structure of the product line does not
change. From now on, the new delta is used when generating product variants,
such that the new corrected functionality of the adaptive cruise control system




is contained in any newly generated product variant. Fig. 10 shows the structure
of the product line after applying all three scenarios. Type safety of all deltas
of a product line may be assured using a family-based analysis depending on
MontiArcs checking facilities as described in [15] or by designing a constraint-
based type system similar to the one presented in [33].

delta DAdaptiveCruiseControl after
DElectronicStabilityControl && !DFourWheelDrive {
modify component BrakingSystem {
add port in AccelerateCommand accelfromacc,
in BrakeCommand brakefromacc;
add component SignalHandler;
connect accel —-> SignalHandler.accelfromdriver;
connect brake -> SignalHandler.brakefromdriver;

Listing 8. Original delta for adding adaptive cruise control.

delta DAdaptiveCruiseControl after
DElectronicStabilityControl && !DFourWheelDrive {
modify component BrakingSystem {
add port in AccelerateCommand accelfromacc,
in BrakeCommand brakefromacc,
in RainIntensity rainsensor;
add component SignalHandler;
connect accel -> SignalHandler.accelfromdriver;
connect brake -> SignalHandler.brakefromdriver;

Listing 9. Modified delta for adaptive cruise control system.

4 Refactoring Delta-oriented Product Lines

As we can observe in the previous section, evolving a delta-oriented product
line includes the addition and removal of deltas and the addition and removal
of product configurations. This may lead to a degeneration of the product line
structure, e.g., deltas are factually separated, but always applied together, or
sequences of deltas are always applied to the core without generating individ-
ual products. While this is not a problem for the generated product variants
themselves, it unnecessarily complicates the product line structure and hinders
further evolution and maintenance.
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Fig. 10. Brake controller product line structure after evolution

Refactoring [11] is a well-known technique on the programming language
level to improve the structure of code without changing its semantical meaning.
The same idea can also be applied to product lines realized with A-MontiArc.
Product line refactorings aim at reducing the overall complexity of the product
line structure and at the same time increasing its comprehensibility. This is
achieved by carefully changing the structure of a product line, but preserving the
set of products that can be generated. Changes of the structure are accomplished
by modifications of

1. the set of available deltas,

2. the content of existing deltas,

3. the application order constraints attached to deltas, and
4. the set of variant configurations.

In this section, we propose exemplary refactoring strategies to maintain the
quality of the product line structure after product line evolution. In particular,
we consider the Compose-Deltas-Refactoring where deltas that are always ap-
plied together are merged, the Merge- With-Core-Refactoring where deltas are
integrated in the core to form a new core and Merge- With-Core-Refactoring With
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Inverse Deltas that extends the possibilities of the former refactoring. This set
of refactorings is not complete. Depending on the structure of a product line,
more refactoring strategies might be possible.

Compose Deltas-Refactoring. The Compose-Deltas-Refactoring merges the con-
tent of a sequence of deltas and forms a new delta that contains the combined
modifications of the delta sequence.

Situation: The precondition for this refactoring is that we have a sequence
of deltas that are always applied together and where the intermediate products
after applying any prefix of the sequence do not correspond to a supported
product variant.

Mechanics: The Compose Deltas-Refactoring is carried out as follows:

1. Identify a sequence of deltas Dy, ..., D, satisfying the above conditions.
2. Construct a new delta D, containing the modifications of the delta sequence:
(a) Merge the modification operations of the composed deltas into D, by
putting all delta operations in sequence, starting from D; and ending
with D. Delta operations targeting the same architectural element can
be composed to a single operation. For example, if a component is first
added, then removed in a subsequent delta, and finally added again, the
three operations can be replaced by a single add operation.
(b) Compute the new application order constraint AOC, of D, which is the
union of the application order constraints of the merged deltas
AOC4, ..., ADC, where references to the deltas Dy, ...,D, are removed.
3. Adjust all supported product configurations that include the delta sequence
Dy, ...,Dy to only include Dy.
4. Remove Dy, ...,D,_1 from the delta model, since they are no longer used to
generate any product variant.

Effect: By the Compose-Deltas-Refactoring, product generation is simplified
as only one delta instead of a sequence of deltas has to be applied. Additionally,
the complexity of the product line decreases since deltas that are no longer
required after the refactoring can be removed.

delta DElectronicStabilityControl after
DTractionControl && !DFourWheelDrive {
modify component BrakingSystem {
add port in LateralAcceleration lateralaccel;
replace component stabilizer with component ESC stabilizer;
}

Listing 11. Delta for adding an electronic stability control system.

Example: In our running example, the deltas DTractionControl (set
Lst. 2) and DElectronicStabilityControl (see Lst. 11) are always used




delta DElectronicStabilityControl after
DAntiLockBrakingSystem && !DFourWheelDrive({
modify component BrakingSystem {
add port in AccelerateCommand accel,
in LateralAcceleration lateralaccel;
add component ESC stabilizer;

connect brakefunction.wheelpressurel ->
stabilizer.fromabsl;

connect brakefunction.wheelpressure2 ->
stabilizer.fromabs2;

connect brakefunction.wheelpressure3 ->
stabilizer.fromabs3;

connect brakefunction.wheelpressured4 ->
stabilizer.fromabs4;

}

Listing 12. Delta composed from DTractionControl and
DElectronicStabilityControl.

together and the intermediate product after applying delta DTractionControl
is not a supported product variant (see Fig. 10). To simplify the structure, these
two deltas may be composed to a single delta which is again called DElectro-
nicStabilityControl and shown in Lst. 12. It contains the delta opera-
tions of the two original deltas for adding the ports accel and lateralaccel
and the respective connections. For the component stabilizer, there is only
one delta operation adding the version of the component introduced by delta
DElectronicStabilityControl. Delta DTractionControl adds sub-
component stabilizer to BrakingSystem (1. 5) that is replaced subse-
quently in the original delta DElectronicStabilityControl by another
subcomponent (1. 4). Hence, in the composed delta it suffices to add the new
version of the component, such that redundant delta operations can be removed.
The new application order constraint of the delta DElectronicStability-
Control is (DAntiLockBrakingSystem && !DFourWheelDrive), since a refer-
ence to delta DTractionControl is no longer required. Afterwards, all product
configurations containing the delta DTractionControl are adapted to only
include the new version of delta DElectronicStabilityControl and delta
DTractionControl is removed.

Merge- With-Core-Refactoring. The Merge-With-Core-Refactoring merges the
core of a product line with the content of deltas to create a new core model.
Situation: After product line evolution, it can happen that the core itself is
not a valid product anymore. All product variant configurations contain the same
subset of deltas that transform the outdated core to a valid product variant.

Mechanics: The Merge-With-Core-Refactoring is carried out as follows:




1. If the core itself is no supported product variant, identify a delta sequence
Dy, ..., D, that is directly applied to the core such that the intermediate prod-
ucts are also no supported product variants.

2. Apply the deltas Dy, ...,D, to the core to create a new core for the product
line.

3. Adjust supported product variants by removing the deltas Dy, ..., Dy.

4. Adjust application conditions of remaining deltas by removing the deltas
Dy, ..., Dy.

5. Remove the deltas Dy, ...,D, that are now integrated into the core from the
product line.

Effect: After applying this refactoring, the core is valid product again. By
reducing the amount of available deltas, comprehensibility of the product line
has been increased while decreasing overall complexity.

component BrakingSystem {
autoconnect port;

port

in BrakeCommand brake,

out BrakePressure wheelpressurel,
out BrakePressure wheelpressure?2,
out BrakePressure wheelpressure3,
out BrakePressure wheelpressure4,
in WheelSensor wheelspeedl,

in WheelSensor wheelspeed?2,

in WheelSensor wheelspeed3,

in WheelSensor wheelspeed4;

component ABS brakefunction;
}

Listing 13. Core containing delta DAntiLockBrakingSystem.

Example: In our case example (see Fig. 10), the core does not represent a
supported product variant any more. Delta DAntiLockBrakingSystem has
to be applied to the core before we obtain the product variant CarWithABS.
Hence, the delta DAntilLockBrakingSystem can be integrated into the core.
Fig. 14 shows the structure of the product line after applying the Merge-With-
Core-Refactoring and the previous Compose-Deltas-Refactoring. The new core
architecture is shown in Lst. 13.

Merge- With-Core-Refactoring With Inverse Deltas. In some cases, it can be
useful to integrate a sequence of deltas into the core, although there is a product
variant that is represented by the existing core.

Situation: A reason for this scenario may be that in the future the new
core will become the basis for product development, but the old core should
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Fig. 14. Deltas and configurations after two refactorings

still be maintained for a transitional period of time. After this time, it should
be possible to easily remove the old core from the product line. The respective
sequence of deltas can already be integrated into the new core, if the old core is
reconstructable as long as necessary.

Mechanics: This transformation of the product line can be achieved using
inverse deltas. An inverse delta [15] is a delta which reverts modifications carried
out by another delta. An inverse delta of some existing delta is created by chang-
ing add operations to remove operations and vice versa. Modification operations
have to be handled separately depending on the structure they alter. In [15], we
show that for every delta in A-MontiArc a corresponding inverse delta exists.

A Merge-With-Core-Refactoring with Inverse Deltas is performed as follows
(where the first 4 steps perform a Merge-With-Core-Refactoring):

1. Identify a delta sequence Dy, ...,D, which should be integrated into the core.
The core represents an existing product, while there are no intermediate
products generated by the delta sequence that correspond to supported pro-
duct variants.

2. Apply the deltas Dy, ...,D, to the core to create a new core for the product
line.

3. Update the remaining product configurations and the application order con-
straints of the remaining deltas by removing any references to the deltas
Dy, ..., Dy.
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4. Remove the deltas Dy, ...,D, from the product line.

5. Create an inverse delta for the sequence of deltas Dy, ...,D, by inverting the
delta operations of the delta that is obtained by composing the sequence
of deltas Dy, ...,D, (as described in the Compose-Deltas-Refactoring). The
application order constraint of the inverse delta is the negation of all other
deltas such that the inverse delta is always applied first in any product
configuration. This delta transforms the new core to the old core. Although
the application order constraint for the delta is not needed for this particular
scenario, it is useful for further evolution steps.

6. Add a product configuration for obtaining the old core which only contains
the inverse delta.

Effect: The refactoring merges a set of mostly used deltas with the core. For
products that do not contain these deltas, the old core may be reconstructed by
applying the created inverse delta. It is usefull, if the refactored deltas are part
of the majority of product variants and the other products will be removed from
the product line anytime soon. This way, development of new product variants
is eased, as they may be build up on a richer core model.

delta DInverse after !DAdaptiveCruiseControl
&& !DFourWheelDrive && !DReductionGear {
modify component BrakingSystem {
remove port accel;
remove port lateralaccel;
remove component stabilizer;

disconnect brakefunction.wheelpressurel ->
stabilizer.fromabsl;

disconnect brakefunction.wheelpressure2 —->
stabilizer.fromabs2;

disconnect brakefunction.wheelpressure3 ->
stabilizer.fromabs3;

disconnect brakefunction.wheelpressured ->
stabilizer.fromabs4;

Listing 15. Inverse delta for delta DElectronicStabilityControl.

Example: Assume that the variant CarWithESC should become the new
core since every new car in the near future should be equipped with an electronic
stability control. Hence, delta DElectronicStabilityControl shown in
Lst. 12 can be integrated into the core. The new core shown in Lst. 13 is
now serving as basis for all product variant generation. All product variants
that previously used delta DElectronicStabiliyControl are adjusted as
well as the application order constraints of the remaining deltas. The delta
DElectronicStabiliyControl is removed from the product line. However,
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Fig. 16. Deltas and configurations after refactoring with inverse deltas

variant CarWithABS should still be supported for a transitional period of time.
Hence, an inverse delta is required that reverts the modifications of delta DElec-
tronicStabilityControl. This new delta DInverse is shown in Lst. 15.
It is added to the product line, and a new product configuration for the product
variant CarWithABS is added that applies the inverse delta to the new core.
The resulting product line is depicted in Fig. 16.

The concept of inverse deltas is very flexible. Hence, it is possible to always
include features into the core architecture and add inverse deltas to the product
line to remove these features in order to generate specific product variants not
containing these features. This is particularly advantageous if the core architec-
ture is one of the main products of the product line since it can be thoroughly
validated and verified using standard single application engineering techniques.

5 Comparison to Annotative Variability Modeling

The predominantly used approach in industrial applications for modeling archi-
tectural variability is annotative variability modeling [39]. Our experience shows
that annotative variability modeling is the easiest way to add variability informa-
tion to an existing software product. However, a subsequent change to another
variability modeling method is mostly not realized since this is often very time
consuming. Annotative variability modeling is based on a 150%-model captur-
ing all possible variability and annotating specific elements with the variant(s) in
which they are included. Elements of the core architecture have no annotations.
In order to derive a particular variant, all elements annotated with only different
variants are removed.

In order to compare A-MontiArc and its capabilities to capture product
line evolution with annotative variability modeling, we realized all scenarios in
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Sec. 3 and Sec. 4 with A-MontiArc and also with annotative variability model-
ing. We decided to compare A-MontiArc with an annotative modeling approach
for MontiArc, since annotative variability modeling is the main variability mod-
eling approach used current industrial practice. An annotative MontiArc dialect
offers a good comparability to A-MontiArc, as both langauges are based on the
same syntax and exclusively differ in its variability modeling technique. For our
comparison, we do not consider compositional variability modeling approaches,
such based on aspect-oriented implementation techniques [1, 10], since these ap-
proaches do not natively support extractive product line development and the
removal of modeling elements. The ability to explicitly represent removals is,
however, essential for the direct representation of product line evolution with-
out considering additional changes in the model structure, e.g., by refactorings
before the evolution is carried out. Tool support for both modeling approaches,
annotative and delta-based, is provided by the MontiCore framework for devel-
oping domain-specific languages [13] by extending the existing implementation
of MontiArc [18].

Annotative Variability Modeling in MontiArc For realizing annotative variability
modeling in MontiArc, each architectural element is annotated by a stereotype
denoting the variant(s) in which it is included. Variable parts of an architecture
are ports, subcomponents, and connectors. Hence, these elements may be anno-
tated to assign them to variants. The excerpt of an annotated MontiArc model
in Lst. 17 shows an example of these stereotype annotations for architectural
elements. Line 2 contains an incoming port without any annotation indicating
that this element is part of the core architecture. The incoming port in 1. 4 is only
needed for bikes. The corresponding annotation in 1. 3 states that this incoming
port is only used in the variant BikeWithABS.

port
in BrakeCommand brake,
<<variant = "BikeWithABS">>

in BrakeCommand brakerear;

Listing 17. Example of model element annotation.

In annotative variability modeling, adding a product variant to the product
line means to add new architectural elements to the 150%-model and to annotate
these and already existing architectural elements with the newly added variant.
This can require to change the 150%-model in several places and might become
fairly complex not to miss necessary additions. In delta modeling, simply new
deltas and product configurations can be added that locally encapsulate the
necessary modifications.

Remowving variants in the annotative approach amounts to removing the re-
spective variant annotations and also the architectural elements that are no
longer required by any other variant. Here, again changes all over the variability



model may be necessary. Also, it has to be taken care that architectural elements
belonging to the core without annotations are not accidentally removed and that
architectural elements of removed variants are not silently added to the core. In
delta modeling, variants are removed locally by changing the respective product
configurations and deleting redundant deltas.

The modification of existing variants in the annotative approach can have
an impact on several architectural elements. New elements are added and an-
notated with the specific variant and redundant elements are removed. This is
particularly difficult, since variants which are not affected by the modification
should not be changed. In delta modeling, only the content of specific deltas has
to be changed while the application order constraints, the other deltas and the
product configurations remain unchanged.

The refactorings presented in Sec. 4 are specifically tailored to A-Monti-
Arc. In particular, the Compose-Deltas-Refactoring and the Merge-With-Core-
Refactoring with Inverse Deltas can only be applied in delta modeling. However,
also in annotative variability modeling, it is possible to move certain variants
to the core. This requires to determine all architectural elements which should
belong to the core in the future. In a subsequent step, all annotations referring
to these variants can be removed. This again might be a fairly complex and
error-prone task, since it requires modifications in all parts of the variability
model where architectural elements belonging to the considered variants occur.
In delta modeling, only the deltas which should be included in the core have
to be integrated, and application conditions of other deltas and specific product
configurations can be changed locally.

Comparison with A-MontiArc The modeling of the product line evolution sce-
narios in the annotative approach is very time consuming and error-prone since
changes to product variants or the core architecture potentially require changes
in all parts of the product line model. For every architectural modeling element,
it has to be decided in which specific variants it appears. In delta modeling,
changes are encapsulated modularly in deltas and can be performed locally.
While in the annotative variability modeling approach, variability modeling is
mixed with modeling of the functional architecture, in delta modeling, variabil-
ity is a first-class entity. Deltas only focus on the representation of variability
and are, thus, easier to comprehend and to evolve.

In order to quantitatively compare A-MontiArc with annotative modeling,
we consider all implementations which are modeled in out case study. In total,
we look at seven different product line scenarios: the base scenario is the initial
product line depicted in Fig. 5; the first scenario is the product line after adding
the product variant CarWithRG; the second scenario corresponds to the product
line after removing variants which is depicted in Fig. 10 (p. 10); the third scenario
is the product line after modification of variant CarWithACC. Scenarios 4 to
6 correspond to the three different refactoring strategies: the fourth scenario
is the product line after the Compose-Deltas-Refactoring; the fifth scenario is
the product line after also applying the Merge-With-Core-Refactoring as it is



depicted in Fig. 14 (p. 14); the sixth scenario is the product line after the Merge-
With-Core-Refactoring With Inverse Deltas depicted in Fig. 16 (p. 16).

base scenario 1 || scenario 2 || scenario 3
A [150%|| A [150%| A [150%| A |150%
#components 6 7 6 5
#ports 67 75 56 55
F#connections 6 10 10 10
##variants 8 9 5 5
#£chars 4209|4156 ||5048| 5111 |[3887| 4056 ||3803| 3956
##varchars 2437|1591 (|2954| 1916 ||2238| 1472 ||2264| 1456
rel. variant inf. ||57% | 38% [|58% | 37% ||57%| 36% ||59% | 36%
##files 20 6 23 7 17 6 16 5
#maxchars 474 | 2087 || 474 | 2660 || 438 | 2284 || 438 | 2334
avg. chars p. file|| 210 | 692 || 219 | 730 || 228 | 676 || 237 | 791

Table 18. Quantitative comparisson of A-MontiArc and annotative modeling for tem-
poral variability

scenario 4 || scenario 5 || scenario 6

A [150%|| A [150%| A [150%
#components 5 5 5
#ports 55 55 55
##connections 10 10 10
F#variants 5 5 5
##chars 3586|3956 (|3273| 3219 ||3448| 3219
##varchars 2047|1456 ||1649| 719 ||1514| 719
rel. variant inf. ([57%| 36% (|50% | 22% ||43% | 22%
#files 15 5 14 5 14 5
#maxchars 448 12334 || 438 | 1865 || 645 | 1865
avg. chars p. file|| 239 | 791 || 233 | 643 || 246 | 643

Table 19. Quantitative comparisson of A-MontiArc and annotative modeling for refac-
toring scenarios

Tab. 18 and 19 show the results of our evaluation. For the overall sizes of
the product lines in the different scenarios, we counted the total number of com-
ponents (#components), ports (#ports), explicit connections (#connections),
and supported product variants (#variants). Implicit connections created by
the autoconnect statements are not counted. In the table, we see that all
examples are mid-sized with 5 to 7 components and 5 to 9 supported product
variants.
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Fig. 20. Number of characters for model and variability representation.

For quantitatively comparing the way variability is encoded in delta modeling
and annotative variability modeling, we measured the overall sizes of the models,
the total amount of variability information required to express all product vari-
ants, and the relative amount of variability information compared to the infor-
mation necessary for encoding of functionality. We computed the overall model
sizes by counting each visible character (except for comments) in the product
line model (#chars). Since MontiArc allows many different formatting styles,
visible characters give a more accurate measure of the model size than lines of
code. Also for the variability information, we counted the number of characters
(#varchars) used for specifying deltas in A-MontiArc-models and the characters
used for annotations in the annotative variability model. To compare the ratio
between variability and functional parts of the models, the relative amount of
variant information is calculated (rel. variant inf.) by dividing the number of
characters used for encoding variability by the total number of characters used
in the overall model. These metrics are suitable, as both languages use the same
syntax and exclusively differ in modeling variability.

Fig. 20 visualizes the overall number of characters used for representing the
product line architectures in the different scenarios and the number of characters
used to specify variability, both for delta modeling and annotative variability
modeling. Roughly, we can say that the sizes of both models are the same for both
variability modeling approaches. Adding product variants in the first scenario
increases the size of the model and also the amount of variability information
in both approaches. Removing variants decreases the size of the model and the
variability information. Modification of an existing product variant only changes
the size of the model and the amount of variability information slightly. In the
fourth scenario, which is the first refactoring scenario, we see the advantage
for delta modeling if deltas are combined. The overall size of the model after
refactoring is lower than for the annotative variability model. Since the Compose-



Deltas-Refactoring and the Merge-With-Core-Refactoring with Inverse Deltas
are not applicable for annotative variability modeling, the figures do not change
from the third to the fourth scenario and from the fifth to the sixth scenario.
The Merge-With-Core-Refactoring in the fifth scenario reduces the size of the
model and also the amount of variability information for both approaches such
that the model size is almost equal again. In scenario 6, after the Merge-With-
Core-Refactoring with Inverse Deltas the size of the delta model is larger since
the inverse delta is added to the product line model.
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Fig. 21. Relative amount of variability information.

The ratios of variability information compared to the overall model size stay
roughly the same for both approaches independent of the evolution scenario for
the base and the first four scenarios as it is visualized in Fig. 21. Only, when
variants are merged into the core the ratio drops. The reason for this is that by
merging deltas with the core or removing annotations variability information is
removed while the overall size of the model stays the same. In general, the ratio of
variability information is higher for delta modeling than for annotative variability
modeling. From the figures, delta modeling seems to be very similar to annotative
variability modeling when comparing the mere model size and its changes for the
different evolution scenarios. However, when looking at the ratio of variability
information, we can see that in annotative variability modeling roughly one third
of all characters are used for expressing variability by annotations. If we now
consider that in the annotative variability modeling approach we only have one
150%-model of all possible variability and that variability information is spread
all over the model, having a third of all characters used for annotations renders
the model very complex and difficult to comprehend and evolve. In contrast, in
delta modeling, variability information is encapsulated in deltas which can be
evolved locally.



To further analyze understandability and maintainability, we measured the
average sizes of the files which make up the product line models for the sin-
gle scenarios (see Tab. 18 and 19). A product line model is distributed over
several files (#files) where each file defines a component, a delta or parts of
it. In general, large files are harder to understand, to change and to maintain.
Hence, we measured the maximum (#maxchars) and average characters per file
(avg. chars p. file). We can see that in delta modeling the number of files is
generally higher which results from the fact that each delta and the contained
components are stored in separate files while in annotative variability modeling
only each component has a separate file. Overall, the size of a file in annota-
tive variability modeling is three times larger than in delta modeling. Thus, the
evaluation of the scenarios yields that delta modeling improves the readability
and understandability of product line architectures and eases their evolution and
maintenance by modularizing variability in small encapsulated entities.

6 Related Work

Most modeling approaches for architectural variability only consider one di-
mension of variability. For spatial variability, we can distinguish three main
approaches: annotative, compositional and transformational variability model-
ing. Annotative approaches use variant annotations, e.g., UML stereotypes in
UML models [40,12] or presence conditions [7], to define which architectural
elements belong to specific product variants. In the orthogonal variability model
(OVM) [32], a separate variability representation with links to the architecture
model replaces direct annotations. While annotative variability modeling allows
fine-grained modifications, it relies on a monolithic product line representation.

Compositional approaches for modeling architectural variability [39] capture
architectural variation by selecting specific component variants. In [10], Plas-
tic partial components [31] model component variability by extending partially
defined components with variation points and associated variants. Hierarchical
variability modeling for software product lines [17] aims at combining component
variability with the component hierarchy to foster component-based development
of diverse systems during architectural design. Compositional variability model-
ing allows a modular description of variability, but limits the impact of changes
to the applied composition technique.

Transformational approaches, such as delta modeling [6], represent variabil-
ity by transformation of a base architectural model. In the common variability
language (CVL) [19], elements of the base model are substituted according to
a set of pre-defined rules. In [21], graph transformation rules capture the vari-
ability of a single kernel model comprising the commonalities of all systems.
In [20], architectural variability is represented by change sets containing addi-
tions, removals or modifications of components and component connections that
are applied to a base line architecture. All these approaches are only consider
variability in space as the previous versions of A-MontiArc [16, 14].



Temporal variability is usually specified with two mechanisms [29]: logical
assertions or graph transformations. In the assertion-based approaches, e.g., [30,
38], a transformation is characterized by a pre-condition defining when a trans-
formation can be applied and a post-conditions specifying the properties that
are ensured by the transformation. In graph transformation-based approaches,
the product variants are represented by graphs. System evolution is specified by
a graph transformation rule, see e.g. [28]. These approaches, however, represent
temporal variability on a meta-level.

In order to be able to reason about architectural evolution, it has to be cap-
tured as first-class entity [27]. One approach towards this goal [24] defines new
components by explicitly expressing the differences to the old component by
adding, deleting, renaming or replacing elements. This is very similar to delta
modeling where a delta encapsulates the differences from one product variant to
the other. Aspect-oriented composition is also applied to model software archi-
tecture evolution [3] expressing variability by weaving selected aspects into a core
architecture. However, these approaches only consider architectural evolution.

Refactorings of feature-oriented programming (FOP) product lines are pre-
sented in [37]. These refactorings that move fields or types between feature mod-
ules are mostly based on classical code refactorings like, e.g., pulling up fields or
methods to parent types. In alignment with our approach, the authors suggest
refactorings of a product line to be variant-preserving. Hence, such a refactoring
only changes the structure of the product line, but not contained variants. How-
ever, the presented approach aims at the implementation of a software product
line and not at its architecture.

In contrast to the above approaches, product line evolution [9] considers the
combination of variability in space and variability in time. Extractive product
line engineering [22] develops a product line from a set of legacy applications; the
proactive approach aims at evolving an initial product line if new user require-
ments arise. In the PuLSE product line engineering methodology [4], product
line evolution is defined as designated development phase. However, these ap-
proaches only focus on terminological issues and development processes. There
is some work on feature model evolution [5] and evolution of feature-oriented
[2] or aspect-oriented software product line implementations [1,10]. However,
evolution in feature-oriented modeling and programming approaches is treated
with different linguistic means than spatial variability, mostly due to the fact
that features cannot remove model or program entities which is essential for
capturing unexpected changes caused by evolution. Hence, a uniform modeling
framework for architectural variability in space and in time is missing despite
techniques, such as aspect-oriented composition and model transformations, that
can factually express both dimensions of variability. A-MontiArc fills this gap
by representing variability in space and in time as a first-class entity with the
same linguistic means.



7 Conclusion

We have proposed A-MontiArc, an ADL with native support for variability
based on delta modeling. A-MontiArc allows expressing architectural variability
in space and in time in modular and easily maintainable manner as we demon-
strated by a quantitative and qualitative comparison with annotative variability
modeling. We presented exemplary refactorings that help cleaning up a degen-
erated product line. Variability by using delta modeling can also be applied
to other modeling languages and is not restricted to modeling software architec-
tures. Behavioral variability within the architectural descriptions can be realized
by using deltas on state machines [23] or Java source code [34, 36].

For future work, we aim at defining further refactorings that merge deltas
with identical modification operations but different application order constraints
and vice versa. Scalability and applicability has to be checked based on a more
complex industrial-scale examples. We also plan to extend the conceptual ideas
of A-MontiArc into a seamless software engineering process for software pro-
duct lines that allows dealing with variability in space and in time by the same
techniques.
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