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Abstract: Integrating architectural elements with a modern programming language is
essential to ensure a smooth combination of architectural design and programming.
In this position statement, we motivate a combination of architectural description for
distributed, asynchronously communicating systems and Java as an example for such
an integration. The result is an ordinary programming language, that exhibits archi-
tecture, data structure and behavior within one view. Mappings or tracing between
different views is unnecessary. A prototypical implementation of a compiler demon-
strates the possibilities and challenges of architectural programming.

1 Java with Architectural Elements

As stated in [MT00] there are a number of languages that support design, analysis, and
further development of software-system-architectures. These languages are commonly
known as Architecture Description Languages (ADL) and allow a high level description
of software systems of a specific domain. Using an ADL enables reasoning about specific
system properties in an early development stage [GMW97]. Furthermore, there are quite
often mappings from architecture to a General Purpose Language (GPL), producing code
frames for the GPL. This helps ensuring the architectural consistency initially, but when
the code evolves the architecture becomes implicitly polluted or when the architecture
shall be evolved this needs to be done on the code level. Tracing is therefore important to
keep architecture and code aligned. However, it would be much better to integrate both,
architecture and code into one single artifact such that tracing is not necessary anymore.
[MT00] defines a component as a unit of computation or storage that may represent the
whole software system or just a single small procedure. Components in distributed systems
partially run in a distributed manner on different hardware. As a consequence they do not
share memory and the communication through shared variables or ordinary method calls
is not feasible. So they communicate with each other through channels called connectors
by asynchronous message passing. Here a component always has an explicitly defined
interface of needed and offered connectors. In contrast to this, object oriented classes
respectively their instances in a GPL are mostly accessed through their implemented in-
terfaces synchronized by blocking method calls. But a class does not explicitly describe
the interfaces it uses. In addition, the hierarchical containment that is intensely used in
ADLs to structure systems, is almost completely missing in the object oriented paradigm.
A common way to structure object oriented systems is the usage of packages. However
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one is not able to express hierarchical containment with this technique.

Several approaches like JavaBeans [JB09] enrich an existing GPL with a component con-
cept. Nevertheless they do not exceed or extend the borders drawn by the target object
oriented GPL. These approaches mainly introduce new libraries written in plain GPL code
or map a language extension into the original GPL. Doing so, Java has been enriched by
JavaBeans with a concept to use components in an object oriented environment, but the
traceability from architecture to code has not been increased very much. And this trace-
ability is necessary, because the developer is exposed with both views, the architecture and
the code.

We believe that one way to raise this traceability respectively to make it unnecessary is to
combine an existing ADL with a common GPL in such a way that architectural definitions
are explicit and essential part of the language. We decided to use the ADL MontiArc that
resembles a common understanding of how to model distributed communicating systems,
similar to automotive function nets [GHK+07], or UML’s composite structure diagrams
[OMG07], and with a precise underlying calculus like FOCUS [BS01] as described in
Sect. 4. As our target GPL we decided to use Java, because it is a widely accepted modern
language. We integrate classes, methods, and attributes into components. This gives us
a new programming language with the working title “AJava” and enables us to combine
concrete behavior descriptions with an abstract high-level architectural description directly
in one artifact. Enhanced with a syntax highlighting Eclipse-editor that supports functions
like auto-completion, folding, error messages, and hyperlinking to declarations, one is able
to program architectures in a familiar and comfortable development environment. Further
tool support is given by a prototypical compiler for a subset of AJava based on the DSL
framework MontiCore [GKR+08].

The concrete syntax of AJava will be shown in the next section with an introducing exam-
ple. In Sect. 3 we discuss aspects of the design and variations of AJava. Our approaches
to building a compiler and defining semantics are presented in Sect. 4. This paper ends
with related approaches and a conclusion in sections 5 and 6.

2 Integrated Component Programming

As an example of how to model and implement an embedded system in AJava we present
a coffee machine which takes the selection of a type of coffee as input. Connected to
the machine is a milk dispenser which is managed by the coffee machine specifying the
needed amount of milk and receiving an error signal if the milk tank is empty. The coffee
machine itself is composed of a display, the coffee processing unit and bean sensors to
monitor the available amount of coffee and espresso beans.

A graphical representation of the main component is given in Fig. 1. Its corresponding
implementation in AJava is given in listing 1. Please note that the textual representation is
covering all features in Fig. 1, although some connectors are not explicitly given but de-
rived from the component’s context. We assume, regarding the development process, that
appropriate editors show the textual representation as main development artifact and the
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Figure 1: Architecture of the CoffeeMachine component

diagram as outline for a better navigation. The component CoffeeMachine in listing
1 defines a public Java enumeration CoffeeType (ll. 8–9) that can be used by all other
components. The interface of a component (its ports) is declared after the keyword port
(ll. 3–6) where each port needs a type T. Admissible types are all Java types. The port
then accepts incoming data of type T or its subtypes. If port names are omitted they will
be set to their type’s name (if it is unique).

Inner components are instantiated using the keyword component. E.g. in l. 15 a com-
ponent of type Display is instantiated and in l. 14 a component of type CoffeePro-
cessingUnit is created with name cpu. Naming components is optional as long as
types are unique. Further elements of the architectural description are connectors that con-
nect one outgoing port with one to arbitrarily many incoming ports. Explicit connections
are made via the connect statement (l. 17) or at instantiation of an inner component.
This short form for connectors can be seen in l. 12 connecting port beanEmpty of inner
component espressoBS to a corresponding port of the coffee processing unit. In many
cases explicit definition of connectors is not necessary if connections can be derived by
port names. The automatic derivation is activated by autoconnect port (l. 2) but
can be overridden and extended by explicit connections. Messages can only be transmit-
ted (asynchronously) between ports via these communication channels, there is no other
form of inter-component communication (cf. Sect. 3).

The behavioral component CoffeeProcessingUnit (CPU) is displayed in listing 2.
In contrast to architectural components like CoffeeMachine behavioral components
contain no further components but implement a concrete behavior (cf. Sect. 3.3). The
CoffeeProcessingUnit contains an interface declaration (ll. 2–8) like all com-
ponents in AJava do. The CPU declares a private state variable milkAvailable (l.
10) and amongst others the dispatcher method onMilkEmptyReceived (l. 12). This



1 component CoffeeMachine {
2 autoconnect port;
3 port
4 in CoffeeType selection,
5 in Boolean milkEmpty,
6 out Integer milkAmount;
7

8 public enum CoffeeType
9 { LatteMacchiato, Espresso, Cappucino, Coffee }

10

11 component BeanSensor
12 espressoBS [beanEmpty->cpu.espressoEmpty],
13 coffeeBS;
14 component CoffeeProcessingUnit cpu;
15 component Display;
16

17 connect coffeeBS.beanEmpty->cpu.coffeeEmpty;
18 }

Listing 1: Structural component CoffeeMachine in AJava syntax

method by convention dispatches incoming messages arriving on port milkEmpty of
type Boolean. Thus the communication is event triggered, but other implementations
will be possible, where data is buffered by the environment or the component’s ports, al-
lowing a possibly explicitly defined scheduling strategy to manage the input buffer. The
example method (ll. 12–19) reacts on input from a sensor and sends an according text
message via its outgoing port message (ll. 14, 16). This port is connected to the display
of the coffee machine (cf. Fig. 1) which is not known inside the CPU component. Please
note that outgoing ports have similarities to private variables and in their implementation
they offer a sending procedure to transmit data from this port.

3 Discussion of the Designed Language

The proposed language AJava is pointing out one way towards a new paradigm or at least
a paradigm integration between object-orientation and architectural design. The resulting
language will not be a silver bullet, but should enable programmers to write evolvable and
well-structured code more easily. However, many language design decisions are still to be
considered based on empirical evidence that is collected using this prototypical language.

In the following, some issues on the design of AJava and its semantics are introduced and
discussed. They mostly tackle trade-offs between Java’s features for interaction between
objects, and harnessing the complexity of the architecture described in AJava.



1 component CoffeeProcessingUnit {
2 port
3 in CoffeeType selection,
4 in Boolean espressoEmpty,
5 in Boolean coffeeEmpty,
6 in Boolean milkEmpty,
7 out Integer milkAmount,
8 out String message;
9

10 private boolean milkAvailable;
11 //...
12 public void onMilkEmptyReceived(Boolean milkEmpty) {
13 if (milkEmpty) {
14 this.message.send("Sorry, no milk today.");
15 } else {
16 this.message.send("Got milk!");
17 }
18 this.milkAvailable = !milkEmpty;
19 }
20 }

Listing 2: The coffee processing unit implemented in AJava

3.1 Communication forms between components

Components in AJava can contain attributes, variables, and even encapsulated Java classes.
Intuitively components are similar to objects and could use their regular ways of commu-
nication. This would allow method calls, event passing, shared variables and more mech-
anisms used in object oriented systems to also be used among components. The design
of ADLs and MontiArc in general favors however a more limited form of communica-
tion: message passing via channels connecting ports of components. In the context of
AJava this restriction would prohibit that a component calls a method or reads attributes
of another component. The second communication form especially ensures the classi-
cal communication integrity (cf. [LV95]) that claims that components only communicate
through explicitly defined interfaces and such the effect and resulting behavior of a reused
component is much easier to predict.

3.2 Communication via Channels

Channels are typed connections from one source port to one or more target ports. Channels
can also be fed back, where source and target port belong to the same component. A
programmer might want to pass references to objects from one component to another to
share object state. While this might be convenient and feasible if two components run in
the same VM, it pollutes clean design, because it forces components to run on the same
physical engine. Furthermore, it couples components in an implicit way, making reuse



much more difficult. Language design variants are to only communicate via (a) messages
of simple types or (b) encode the full object structure and send it over the channel. The
latter however, can lead to much unnecessary traffic and might lead to semantic changes
due to different object identities of otherwise identical objects. This could be improved
through optimizing strategies, e.g. a transparent implementation of lazy sending of data
parts, and explicit encoding of object identities.

3.3 Structural vs. Behavioral Components

Several ADLs like ROOM [SGW94] force the system designer to compose system-behavior
as the accumulated behavior of all leaf-components in the lowest hierarchy layer. Other
approaches like [OL06], in that case UML Composite Structure Diagrams are used to
model architectures, allow behavior on all hierarchy-layers of system-architectures. On
the one hand, both variants can be translated into each other. On the other hand, reuse and
convenient modeling of parts of the software seem to be pretty much affected by these two
different approaches.

For example a structural refinement does not necessary yield to a behavioral refinement in
the latter case. By now AJava follows the first strategy and separates between structural
and behavioral components. We believe that the effort needed to break down functionality
to leaf-nodes pays off with better traceability of functionality and the ability to replace
whole branches with dummies for better testability.

However, experiments of a controlled mixture of behavioral elements and a structural de-
composition within a component could show, how e.g. to integrate scheduling or message
dispatching strategies within components that allow the programmer a fine grained control
over the messages processed.

3.4 Embedded components

In contrast to general purpose components running on regular VMs an embedded AJava com-
ponent should be able to run on an embedded systems with few resources. Compiling
against small VMs like kaffe [Kaf09] or JamVM [Jam09] restricts the used Java version
and compiler. JamVM is extremely small but only supports the Java Language Specifica-
tion Version 2, so some new concepts like e.g. generics or annotations are not available.
To avoid this drawback we might use Java SE For Embedded Use [EJ09] that is currently
compatible with Java 6. However this VM requires much more resources and reduces
the application range of AJava components to devices with more powerful cpus like e.g.
mobile phones. Please note that AJava can, besides its application for embedded systems,
also be used for general purpose software development tasks.



4 Language Realization and Semantics

For a precise understanding of the AJava language, a formal specification of the key con-
cepts is most helpful. For a definition of its features and semantics we follow the method-
ology proposed in [HR04]. In a first step we defined its syntax as a context free grammar
using the DSL framework MontiCore [GKR+08], a framework for quick development
of modeling and also programming languages. From there we explored and still explore
the language through application of a prototypical AJava compiler. The objective of this
compiler is to translate AJava sources to complete and self-contained Java classes. The
system engineer only works on AJava artifacts and not the generated Java code. Although
as sketch of the formal denotational semantics is understood, a precise definition will later
be defined based on [GRR09] to define system model semantics for AJava.

The current implementation of the MontiCore compiler generator derives the abstract syn-
tax tree as well as an instance of the ANTLR parser [Ant08] that can process AJava pro-
grams. In previous works MontiCore grammars for Java as well as an architectural de-
scription language MontiArc have been developed independently. As MontiCore supports
the reuse and combination of independently defined languages e.g. through embedding of
languages [KRV08b] the development of a composed compiler was relatively quick and
straightforward.

4.1 Communication realization

As discussed in Sect. 3 several variants of communication mechanisms are possible, scal-
ing from strict port communication to liberal method calls between any kinds of objects.
While method calls can be realized directly in Java, port to port communication in a dis-
tributed system has to be implemented in a different way. Ideally components need not
care about the physical deployment of their communication partners. This also means that
all components, either on one machine or distributed, use the same communication inter-
face. Generally components run in their own thread and asynchronous communication is
realized through buffering to decouple components.

This creates the need for a smart communication layer encapsulating the inter-component
communication. As AJava components are realized in Java, existing communication meth-
ods like RMI [RMI09] or CORBA [OMG08] are of particular interest. As both protocols
use TCP for inter-component communication they are not feasible for embedded bus com-
munication. Instead a hand written communication layer that maps component port com-
munication to e.g. the Java CAN API [BN00] is more suitable. Additional capabilities,
like buffering or an explicit possibility of a component to manipulate its input buffer, will
need extra infrastructure to be implemented. The suitability of different communication
layers for AJava components in an embedded environment is to be investigated.



4.2 Formal Semantics

Operational semantics of AJava is defined by supplying a translation to Java code. This
definition of semantics makes it hard to apply automated reasoning about features of the
language and properties of programs since the translation rules are not explicitly given in
a way accessible to theorem provers. So far there is no complete reasoning framework for
the whole Java language. Advances however have been made in formalizing the language,
and proving the type system correct [Ohe01].

The approach favored here is the semantic mapping of AJava to the system model de-
scribed in [BCR06, BCR07a, BCR07b]. This approach has been introduced in [CGR08a,
CGR08b] for class diagrams and state charts. Inter-object communication can be specified
in two ways in the system model: composable state machines or through communication
of components in FOCUS style [BCR07b].

A logic for realizable component networks based on [GR07] is currently under develop-
ment and will be suited for the definition of AJava’s semantics with respect to certain of
the above discussed design decisions. For the most natural semantics component commu-
nication directly maps to asynchronous communication over typed Focus channels. Both
approaches mentioned so far only support the abstract definitions of timing. Reasoning
about timing in real-time systems thus has to be further investigated.

5 Related Work

Another approach to combine the GPL Java with an ADL is ArchJava [ACN02] that in-
troduces components, ports, and connectors to an object oriented environment. In contrast
to AJava ArchJava facilitates dynamic architectures as described in [MT00]. This way
components can be added and removed to systems during runtime. The major disadvan-
tage of ArchJava compared to AJava is that ArchJava’s components have no support of
distribution across the borders of a single VM.

A common approach to implement components in Java is the usage of JavaBeans [JB09].
Again, the main disadvantage compared to an integrated ADL based programming lan-
guage is either a missing mapping from architecture to code or the need for synchro-
nization of many different heterogeneous documents describing the system. In addition
JavaBeans communicate via method calls hence they are bound to run on a single VM. To
avoid this drawback they can be combined with RMI, but as discussed in Sect. 4.1, this is
not feasible for embedded systems.

Another approach to ensure architectural consistency is presented in [DH09]. The de-
scribed prototype ArchCheck automatically derives a base of logical facts from java source
code describing existing dependencies. Architectural consistency rules are manually de-
rived from architectural descriptions and checked by an interpreter according to the derived
base of rules and facts. Compared to AJava this approach is not bounded to one system
domain as AJava only copes information flow architectures. But again, the involved arti-
facts have to be synchronized manually in contrast to AJava that automatically enforces



the architectural consistency by design of the language.

6 Conclusion

We propose a possible way to combine architectural and concrete behavioral descriptions
into the programming language AJava. This language integrates Java and the ADL Mon-
tiArc rendering artificial mappings between architecture and implementation superfluous.

This work is still in a preliminary stage. Based on our tooling framework [GKR+08,
KRV08b, KRV08a], we are currently developing an enhanced version of the compiler for
our language.

This prototype together with other experience on definition of programming languages
[Rum95] will help us to contribute to a possible smooth extension of a GPL with appro-
priate architectural elements, such that the level of programming is raised towards archi-
tecture and may be in the future also towards requirements.
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