
Int J Softw Tools Technol Transfer (2010) 12:353–372
DOI 10.1007/s10009-010-0142-1

REGULAR PAPER

MontiCore: a framework for compositional development
of domain specific languages

Holger Krahn · Bernhard Rumpe · Steven Völkel

Published online: 9 March 2010
© Springer-Verlag 2010

Abstract Domain specific languages (DSLs) are increas-
ingly used today. Coping with complex language definitions,
evolving them in a structured way, and ensuring their error
freeness are the main challenges of DSL design and imple-
mentation. The use of modular language definitions and
composition operators are therefore inevitable in the indepen-
dent development of language components. In this article, we
discuss these arising issues by describing a framework for the
compositional development of textual DSLs and their sup-
porting tools. We use a redundance-free definition of a read-
able concrete syntax and a comprehensible abstract syntax as
both representations significantly overlap in their structure.
For enhancing the usability of the abstract syntax, we added
concepts like associations and inheritance to a grammar-
based definition in order to build up arbitrary graphs (as
known from metamodeling). Two modularity concepts,
grammar inheritance and embedding, are discussed. They
permit compositional language definition and thus simplify
the extension of languages based on already existing ones.
We demonstrate that compositional engineering of new lan-
guages is a useful concept when project-individual DSLs
with appropriate tool support are defined.

Keywords Domain specific language · Grammarware ·
Composition

H. Krahn · B. Rumpe · S. Völkel (B)
Software Engineering Group, Department of Computer Science 3,
RWTH Aachen University, Aachen, Germany
e-mail: voelkel@se-rwth.de
URL: http://www.se-rwth.de

H. Krahn
e-mail: krahn@se-rwth.de

B. Rumpe
e-mail: rumpe@se-rwth.de

1 Introduction

Software development is a complex task which involves
different activities. To push the border of development further
and reduce the costs and risks of complex software develop-
ment, many actions are necessary. One of them is the use
of domain specific languages (DSLs) which are generally
languages that specifically fit the domain the software under
design is assisting [9].

As the experience with DSLs grows and with them the
demand to capture domain-specific concepts, DSLs become
increasingly complex. This makes them significantly harder
to evolve, ensure error freeness, etc. DSLs therefore them-
selves become a target of management, evolution, and in par-
ticular reuse. This is especially important in situations where
grammars and languages change continuously [3]. From pro-
gramming languages we know that modularity of the units
described, and a semantically clear and precisely understood
composition of the modules is a key technique to handle this
kind of complexity [55].

An appropriate modularity concept for DSLs and corre-
sponding composition operations that permit independently
developed language parts to be composed are therefore inev-
itable. As discussed in [29] this does not only include the
syntactical aspects of composition but also its semantics (in
terms of meaning [26]), when to use it methodologically,
and how context conditions such as typing information, etc.
fit together. This paper shows how these issues are addressed
in the framework Monticore (e.g., [38,39,41,49]).

The development of a new language incorporates different
activities. A concrete syntax and an abstract syntax is devel-
oped. Sometimes a more or less explicit and formal semantics
is defined for the language [26]. These activities are comple-
mented by developing a type system, priorities for operators,
naming systems, etc., if appropriate. When examining this

123
[KRV10] H. Krahn, B. Rumpe, S. Völkel
MontiCore: a Framework for Compositional Development of Domain Specific Languages.
In: International Journal on Software Tools for Technology Transfer (STTT),
Volume 12, Issue 5, pp. 353-372, September 2010
www.se-rwth.de/publications

354 H. Krahn et al.

process the definition of concrete and abstract syntax show a
significant redundancy. This leads to duplications and there-
fore possible inconsistencies, which are a constant source
of problems in an iterative agile development of languages
within model-driven development. The situation becomes far
worse when modular development of the language is desired.
Then every language module comes equipped with concrete
and abstract syntax. All parts and all syntax versions need
to evolve in parallel. The synchronized co-evolution in this
situation unnecessarily complicates an efficient development
and evolution of languages. Therefore, an integrated devel-
opment of both is highly desirable and was chosen in our
approach.

As we did not want to concentrate on graphical tooling
issues, but wanted an efficient way to develop models as well
as tools, we have chosen a textual language as the frontend.
This allows us to reuse ordinary textual editors (augmented
with syntax highlighting) as known from Eclipse [18,24] as
well as parser-generators like Antlr [57] or SableCC [17] to
generate language recognition tools from this form of lan-
guage definition.

While graphical modeling approaches are popular because
they provide an easy overview and therefore access to the
model, our experience is that textually defined models are
a lot more efficient to handle and manipulate [24]. So tex-
tual DSLs do have advantages for the modeler as well as for
the language designer. The latter has an easier task to handle
and can reuse well-understood tools including version con-
trol and diffs. A sole disadvantage for the modeler, however,
is that graphical languages are usually more intuitive to read.

Beside grammar-based approaches, metamodeling is a
popular method to define the abstract syntax of modeling
languages. We added elements like associations and inheri-
tance between the abstract syntax tree nodes to our grammar
format. Thus, the instance graphs are full-fledged graph struc-
tures with a spanning tree in it. This permits both, arbitrary
graph handling mechanisms and tree-based navigation to be
used at will.

MontiCore can be used for the agile development of
simple as well as complex textual languages. These may
be specific versions of programming languages, logic, tex-
tual representations of graphical modeling languages, or any
other form of domain-specific languages. MontiCore pro-
vides a grammar format in such a way, that the recognition
power of the resulting parser is only limited by the under-
lying parser generator, namely Antlr [57], which is a pred-
icated-LL(k) parser generator. Furthermore, the framework
provides means of compositionality and modularity on the
language level.

The MontiCore framework is also delivered as an Eclipse
plugin including an editor with different comfort functional-
ities like syntaxhighligthing, outlines, and code-completion.
Furthermore, it analyzes the input [esp. the grammar and

its LL(k) property] and reports errors and warnings using
Eclipse problem reports. However, these functionalities are
built on top of the core framework which is therefore usable
on the command line as well. This is especially important for
build scripts.

As key results of the work described here, we discuss
language embedding and inheritance. Inheritance allows a
developer to apply incremental changes to a language. Com-
positional embedding is useful to combine different language
fragments to a new coherent one. Because modularity con-
cepts are not only highly desirable for the concrete syntax
but also for other artifacts (abstract syntax, tools, etc.) under
design, the MontiCore framework provides a coherent con-
cept of modularity for different aspects of the language.

This article is based on earlier work [22,23,25,38–41,49].
In particular, a previous version of the work described here
was already described in [39,41]. This article was enhanced
and extended to reflect all results found when exploring
MontiCore’s capabilities with respect to compositional lan-
guage definition.

Section 2 describes the syntax of the MontiCore grammar
format and its semantics in form of the resulting concrete and
abstract syntax of the defined language. Section 3 explains
the different modularity concepts in the MontiCore frame-
work and what can be achieved with their use. Section 4
explains how further concepts can be used to build domain-
specific tools based on the language definition in a modular
fashion. Finally, Sect. 5 relates our approach to others and
Sect. 6 concludes the paper.

2 Language definition using MontiCore

One core element of the MontiCore framework is the gram-
mar definition language that allows defining a concrete tex-
tual syntax as well as the internal representation (abstract
syntax) of a language. For this purpose, we use an enriched
grammar that we will introduce in the following.

To represent both elements of a language definition in
a single document has already been discussed intensively
in compiler research. We decided to use a single-definition
approach in contrast to others like [33] to simplify the devel-
opment of DSLs. The benefits are a single concise language
definition developers and users can rely on. Problems like
keeping two descriptions consistent cannot occur. In addi-
tion, the abstract syntax matches the concrete syntax of the
language automatically in the sense that similar elements are
represented similar and distinct elements are represented dif-
ferently. To our experience this design guideline [30] is often
neglected by unskilled language developers which is assured
in our approach by construction.

Of course, there are some counter-argument against an
integrated definition of both syntaxes. First, languages may

123

MontiCore: a framework 355

Fig. 1 Defining productions in MontiCore

have different concrete but only one abstract syntax. From
our experiences, this argument can mostly be neglected for
DSLs as often the (only) concrete syntax emerges the domain.
The second counter-argument is that abstract syntax is often
different from concrete syntax so that tasks of semantic anal-
ysis can focus on the structure of the language without being
overrun by syntactical issues. While this is generally true,
we made the experience that—in contrast to GPLs—DSLs
often have simple type systems and context conditions which
can be implemented straightforward on top of your automat-
ically provided abstract syntax. However, we will describe
means provided by MontiCore which can be used in order to
influence the abstract syntax without affecting the concrete
syntax. These means can be used to gain a more desirable
and comfortable version while still guaranteeing consistency
between both syntaxes. Nevertheless, if it is really necessary
to have a different abstract syntax—either for comfort rea-
sons or to separate both because of multiple concrete syn-
taxes—one can define this abstract syntax and use a model
transformations to transform them into another which is a
well-accepted approach in the model-driven community.

2.1 Defining concrete and abstract syntax

The MontiCore grammar format is an enriched context-free
grammar that is derived from the input language of com-
mon parser generators. Figure 1 contains a simple example
demonstrating some core definitions.

A production has a name and body (right hand side)
separated by “=”. The body contains nonterminals, token
classes, and terminals. The usual concepts for structuring the
body are alternatives (separated by “|”), blocks (in parenthe-
sis) and repetition by adding cardinalities. Blocks, nonter-
minals, token classes, and terminals can have cardinality “?”

Fig. 2 Definition of token classes in MontiCore

(optional), “*” (unbounded cardinality) or “+” (at least one).
Furthermore, nonterminals, token classes, and terminals can
be named (in form of a prefix like “name:”) in order to access
these elements in the internal representation of the abstract
syntax.

Token classes are usually handled as strings, but more
complex data types are possible by giving a function defined
in the programming language Java that maps a string to an
arbitrary data type. Default functions exist for primitive data
types like floats and integers. Figure 2 embodies some illus-
trating examples for token classes. Line 2 defines IDENT
being mapped to string. NUMBER in line 5 is mapped to an
integer as provided by the default mapping. In line 8 CAR-
DINALITY is mapped to an int. However, we use a spe-
cial mapping that is defined by the Java code below (line 10
and 11) where the unbounded cardinality is expressed as the
value −1. To simplify the development of DSLs, the token
classes IDENT and STRING are predefined to parse names
and strings.

In addition to the already explained token classes, ter-
minals like keywords can be added to the concrete syntax
of the language. These elements are normally not directly
reflected in the abstract syntax. Note that in contrast to many
parser generators there is no specific need for distinguishing
between keywords like “public” and special symbols like
“,”. To further simplify the development of a language we
generate the lexer automatically from the grammar. For this
purpose we generate the Antlr-literals for all terminals of
the grammar, generate standard lexical symbols for identifi-
ers and strings, etc.1 By this strategy a number of technical
details like the distinction between parser and lexer (neces-
sary for the parser generator) are hidden from the language
developer as far as possible.

The abstract syntax (also known as the internal repre-
sentation) of a language is also derived from this grammar.

1 The generation of standard lexical symbols can be switched off by
special options in the grammar specification. This is sometimes neces-
sary if the language uses different kinds of identifiers whereas in most
cases the predefined symbols are adequate.

123

356 H. Krahn et al.

Fig. 3 Abstract syntax derived from the grammar shown in Fig. 1 as
UML class diagram [52]

In Fig. 3 we see the class definitions derived from the gram-
mar in Fig. 1. Each production of the grammar leads to a
class with the same name in the abstract syntax.

The body of the production determines the attributes of
the class as follows:

Nonterminals. Each nonterminal is mapped to a composi-
tion of the corresponding type/class.

Explicitly named elements. Nonterminals, token classes and
terminals can explicitly be named to determine the
attribute or composition name, where it is stored. For
example,street:STRING is directly mapped into an
attribute street of type String.

Optional elements. Optional elements like Client? are
still mapped to ordinary attributes but such an attribute
may be null.

Repeated elements. An element, for example nonterminals,
may be repeated in two ways. In the simplest form, it
can be marked with the Kleene star. The second possi-
bility is that there exists a derivation for a production
where this element occurs at least twice. The term A
(B | A C)? for example can be derived to A A
Cwith 2 A’s. Both cases lead to a cardinality higher that
one and instead of an ordinary attribute, a list is used
in the abstract syntax. This approach allows specifying
constant separated lists without an extra construct in the
grammar format. Thus, the term A:X (“,” A:X)*
results in an unbounded composition A with minimal
cardinality of one that contains all occurrences of X.
Please note that both occurrences use the same refer-
enced rule and name. If such a unification is undesired
because the order of the appearance should be reflected,
different attribute names have to be used.

Handling alternatives. In the abstract syntax, we flatten alter-
natives by representing each alternative, e.g., of B|C by
an individual attribute. Both attributesb:B and c:C are
given, but only one will actually have a value, whereas
the other will be null.

Handling blocks. Blocks are merely used to structure the
concrete syntax, such as in (B|C)*. Like with han-
dling alternatives, blocks are flattened in the abstract

Fig. 4 Use of constants

syntax representation. The above (B|C)* leads to two
lists of B and C objects.

Constants and symbols. Keywords are normally not refle-
cted in the abstract syntax. If they are optional and their
appearance changes the meaning of the model, their
presence can be added to the abstract by using them
in brackets. In Fig. 4 the reserved word premiumc-
lient determines the value of the attribute premium.
A single terminal inside brackets is translated to a bool-
ean attribute as shown, and a list of constants (separated
by |) is mapped to an enumeration attribute.

Please note that when deriving the abstract syntax from
the grammar we so far have made two not quite straightfor-
ward decisions. First, whereas flat grammar rules and object-
oriented realizations of the abstract syntax widely coincide,
there is also a structural mismatch, caused by alternatives
within blocks [44]. While A=B|C could be handled using
subclasses B and C of A, a definition like A = (B|C) D
cannot be reflected directly at all. Our approach is to provide
a relatively flat abstract syntax representing each nonterminal
B and C as attribute in class A. An alternative is to restructure
not only the grammar to A=X D and X=B|C which leads to
a better structure of the abstract syntax classes, but also to
more classes.

Second, we also allow using blocks within the grammar
and flatten those in the abstract syntax. Like above, this leads
to loss of potentially important information and the developer
should not nest blocks too deeply. In the above example, the
exact order of appearance of theBs and Cs in(B|C)* cannot
be reconstructed from the abstract syntax only. However, to
solve this problem each class in the abstract syntax is associ-
ated with a source position in the text. Using this information,
the order can be reconstructed easily if necessary.

The MontiCore mechanism to define concrete and abstract
syntax is rather expressive and comfortable. However, it
needs to be used carefully to avoid oversimplification and
loss of necessary information, especially when combining
name derivation, blocks, and alternatives.

As already stated above, MontiCore is based on Antlr and
thus uses a predicated-LL(k) parsing mechanism. There are
two main restrictions for LL(k) parsers: first, left-recursive
grammars cannot be used. This can be solved by transform-
ing the grammar into a right-recursive version. The drawback

123

MontiCore: a framework 357

is, however, that this influences the abstract syntax. Alterna-
tively, keywords can be inserted what preserves the abstract
syntax. Second, grammars that are not LL(k) for any k cause
problems in standard-LL(k)-parsers. As ANTLR uses pred-
icated-LL(k), this does not hold as syntactic and semantic
predicates [56] can be used in this case. The main reason
for choosing ANTLR as underlying parser generator was
its maturity and good documentation. The recursive-descent
style of the generated parsers allowed us to easily instrument
the generated code in order to create our specific AST-struc-
ture and our enhancements to modularize languages.

Figure 3 shows a UML class diagram of the abstract syn-
tax that is created from the productions. In the MontiCore
framework this class diagram is mapped to a Java imple-
mentation. All attributes are realized as private fields with
appropriate access methods (get/set). Composition relation-
ships are realized as attributes and contribute to the construc-
tor parameters of the class. Unnamed compositions use the
name of the opposite class for the access methods. To handle
the abstract syntax, the MontiCore framework provides an
infrastructure to handle the abstract syntax. For example, all
classes support a variant of the Visitor pattern [19] to traverse
the abstract syntax along the composition relationships.

Both versions of our ShopSystem language do have
some deficiencies. The version defined in Fig. 1 suffers from
the problem that both productions Client and Premi-
umClient as well as OrderCash/OrderCreditcard
share some common substructure, but are not related at all.
In a second version, we replace the substructure Client|
PremiumClient by Client as shown in Fig. 4. Then an
additional invariant is needed in the abstract syntax that is not
visible from the class structure, namely only if the boolean
flag premium is true, the discount may be defined.

These deficiencies motivate the extension of the Monti-
Core language definition format to include more advanced
features that handle often occurring challenges. Therefore,
we use object-oriented features like inheritance, interfaces,
and associations in the abstract syntax.

2.2 Interfaces and inheritance between nonterminals

The abstract syntax shown in Fig. 1 raises the question if
something like an “interface-nonterminal” Order could be
defined that is realized by the ordinary nonterminalsOrder-
Creditcard and OrderCash. In a traditional attempt,
we would use Order=(OrderCreditcard | Order-
Cash) or if a common part X can be factored out: Order =
X (OrderCreditcard|OrderCash). The extensions
OrderCreditcard andOrderCash contain the variants
that Order has. However, this approach has two drawbacks:

First, the common part X need to be at the beginning or
at the end of the production, which may not be feasible in
the concrete syntax at all. This approach does not work with

Order in the shown example. Second, this approach lacks
extensibility. The definition of top nonterminal Order does
know what its alternatives are. The language is fully defined
and cannot be extended. This is in strong contrast to object-
oriented concepts, where the superclass is being defined with-
out knowing what its alternatives (subclasses) are. Therefore,
we prefer B extends A instead of A = B|...2.

For this purpose we extend the MontiCore grammar
language by a concept expressing an inheritance relation-
ship between nonterminals and a concept of an interface-
nonterminal that can be implemented by nonterminals.

2.2.1 Inheritance of nonterminals

A nonterminal inherits from a super-nonterminal using the
keyword extends as shown in Fig. 5. In line 16 Premi-
umClient extends a given nonterminal Client. Inheri-
tance between nonterminals has two consequences. First, we
translate the inheritance relationship in the grammar to an
object-oriented inheritance relationship between the accord-
ing classes in the abstract syntax. In addition, we generate
only those attributes in the subclass which were not already
defined for the superclass. Thus, PremiumClient does
not have an attribute Name because this is already part of
its superclass Client. Second, this extension also modi-
fies the concrete syntax and therefore the parser. Inheritance
adds an additional alternative to the super-production, just
like Client=...|PremiumClient.

The EBNF section in Fig. 5 shows a representation with
equivalent concrete syntax to explain the mapping of the
MontiCore grammar format to the input format of a parser
generator.

As said, this concept is motivated by the definition of
object-oriented inheritance where each occurrence of a super-
class can be substituted by a subclass object. We have decided
to use this object-oriented style of inheritance instead of the
traditional grammar style to be more flexible when extend-
ing languages. In the left grammar, the production Client
needs not be changed when extending the language with
PremiumClients. This is a significant benefit that we
will further explore when defining inheritance on languages
in Sect. 3.1. As a disadvantage, it becomes more compli-
cated to understand the language as several places need to
be looked up to understand the variants of an extended non-
terminal like Client. For this purpose, we automatically
generate an EBNF version of the grammar which resolves
all extending rules as shown in Fig. 5, line 15 on the right.

2 This is especially important for grammar inheritance as we will see
in Sect. 3.1. It may be the case that another nonterminal that extends
Order is defined in a subgrammar. Changing the supergrammar in
that case is not desirable since the supergrammar then depends on the
subgrammar and cannot be used without it.

123

358 H. Krahn et al.

Fig. 5 Inheritance and use of interfaces

Sometimes we found it useful to only extend the abstract
syntax through inheritance, without affecting the concrete
syntax. For this purpose, keywordastextends can be used
to express an inheritance that is restricted to the abstract syn-
tax and does not influence the concrete syntax.

2.2.2 Interfaces between nonterminals

The form of inheritance introduced above also allows the
definition of interfaces like Order that are implemented by
ordinary nonterminals. In Fig. 5, line 23 left, the nonterminal
Order is introduced as an interface with no concrete syntax.
Order acts as ordinary nonterminal, for example, like shown
in line 3. The keyword implements is used to implement
an interface (Fig. 5, line 5 and 9, left) with the effect that the
nonterminal Order is defined as an alternative production
(see Fig. 5, line 24 right).

An analogous keyword called astimplements com-
bines only the abstract syntax in the same way as explained
for superclasses. Interface-nonterminals can be defined like
normal rules using the additional keyword interface and
may also extend other interfaces thus enabling the full power
of object-oriented mechanisms. If the rule body is left empty
like shown in the example (Fig. 5, line 23, left) all imple-
menting rules separated by | form the default body of this
rule.

To complete the availability of object-oriented concepts
in the MontiCore grammar, we have added the concept of
an abstract nonterminal. The keyword abstract can be

used to define an abstract class in the same way as inter-
faces are defined. As we will later see, the behavior can be
specified in form of Java methods within a class generated
from a nonterminal. In conformance to Java, abstract classes
allow to specify behavior in the class which is inherited to
all subclasses, whereas interfaces do not have behavior.

By default interfaces and abstract classes do not contain
attributes. We decided against an automatic strategy where
all common attributes of known subclasses are extracted, as
interfaces typically are good places for future extensions of
the defined language which may only use a subset of all
available attributes. Additional attributes may be added to
interfaces and classes by using the keyword ast like shown
in the example (Fig. 5, line 25, left). This concept uses the
same syntax as in an normal production, but only adds attri-
butes to the abstract syntax and does not affect the concrete
syntax. The attributes of interfaces are realized as get- and
set-methods in the implementation and can therefore be used
in the Java implementation (as Java interfaces cannot contain
fields but only methods).

For a clarification of the resulting data structure, the abs-
tract syntax resulting from the language definition in Fig. 5
is shown in Fig. 6.

2.3 Associations

The attributes Name in Client and ClientName in
Order (see Fig. 6) are obviously semantically connected.
However, context-free syntax definitions cannot capture

123

MontiCore: a framework 359

Fig. 6 Abstract syntax of the language defined in Fig. 5

these connections adequately. In the example we are inter-
ested in establishing an invariant that anOrdermay only use
Client names that exists. Furthermore, an efficient navi-
gation from the usage of such a name to its definition to look
up additional information is necessary.

When designing a meta-model, this relation is usually
expressed by an association where an order references a cli-
ent as the ordering person. However, these associations do
break the tree structure that a grammar produces and cre-
ate an ordinary graph. The MontiCore language definition
extends the context-free grammar by adding a mechanism
of defining associations like these. The result of this exten-
sion is an arbitrary graph with an embedded spanning tree of
compositions that results from the original grammar.

In a language definition the keyword association
allows specifying non-compositional associations between
rules which enables the navigation between objects in the
abstract syntax. With this mechanism we can define uni- and
bidirectional navigation between objects of the abstract syn-
tax.

An example for an association can be found in Fig. 7 (line
13–15) where the association OrderingClient connects
oneOrder object with a singleClient. As associations are
implemented via attributes, the reverse direction is a second
attribute that is named Order which connects one Client
object with an unbounded number of Order objects. This
form is very similar to the associations in EMF [7] where two
associations are specified separately but are related to each
other via the attribute “isOppositeOf”.

The main challenging question for associations in a unified
format for concrete and abstract syntax is not the specifica-
tion of the associations, but the automatic establishment of
all links between associated objects in a step after parsing.
Grammar-based systems usually parse the linear character
stream and represent it in a tree structure in accordance to
the grammar. All additional connections necessary are estab-
lished through definitions and usage of names (of classes,
methods, attributes, states, objects, etc.). Symbol tables are
calculated and later used to navigate between nodes in the
abstract syntax tree (AST). The desired target of navigation

Fig. 7 Specification of associations

is determined by identifiers in source and target nodes and a
name resolution algorithm.

Due to the simple nature of many domain-specific lan-
guages that lack complex namespaces, simple resolution
mechanisms like file-wide unique identifiers can often be
used for creating links. Of course, this simplification is not
always suitable, for example languages like Java and many
UML-sublanguages use a more sophisticated namespace
concept. In order to integrate support for such complex lan-
guages in a language definition framework like MontiCore,
the scoping and resolution mechanism have to be formalized
in way that a developer can configure them for the language
under design in a simple way. On the contrary, complex lan-
guages that use inheritance as a language concept and support
models that are distributed among multiple files have com-
plex and widely varying requirements. For example, the Java
Language Specification [20] (certainly more complex than
common DSLs) describes the name resolution algorithm on
14 pages and access control on another 13 pages in natural
language. Especially static imports, inner classes, and inher-
itance complicate the problem in such a way, that this reso-
lution mechanism seems to be inappropriate to be reused for
another language without major changes.

Therefore, we use a twofold strategy: first, we generate
interfaces that contain methods induced by the association

123

360 H. Krahn et al.

Fig. 8 Java implementation of an association

to navigate between the AST-objects. The resulting classes
of the abstract syntax allow accessing the associations in
the same way as attributes and compositions are accessed.
Second, we generate default implementations for simple
resolving problems like file-wide flat simple or simple hierar-
chical namespaces. As an alternative for the second step, the
DSL developer can instead program his own resolution algo-
rithms if needed. Thus, complex and difficult formalizations
of scoping definitions, different inheritance possibilities, and
name resolution algorithms are avoided and replaced by a
programming interface. As a second alternative the devel-
oper can extend the MontiCore framework by adding new
forms of name analysis.

Figure 7 extends the example from Fig. 6 by adding an
association definition. The association ClientOrder con-
nects each Order to a single Client (as specified by “1”)
and each Client to an unbounded number of Orders
(specified by “*”). Please note that if the name of the associ-
ation end is omitted, its realizing attribute is named after
the target class in de-capitalized form. In addition to the
shown cardinalities, ranges like “3..4” are possible val-
ues.

The links are established after parsing is completed. This
way, links are not immediately stored upon node creation.
The realization is designed in this way to easily support for-
ward references in languages, which means that identifiers
refer to elements that occur at a later position in the text
file.

Figure 8 sketches the structure of a Java implementation
for the class diagram from Fig. 7 with the most important
methods. A Binding-interface is generated for each inter-
face and class that is involved in an association as either
source or target. This Binding-interface contains the rel-
evant methods signatures for the navigation between differ-
ent nodes. In addition, a Resolver is generated for each
class or interface which can be used to effectively navigate
between AST-objects while the actual navigation mechanism

and its calculation are effectively hidden from the language
developer.

Note that these interfaces are generated to simplify the
establishment and use of associations for a DSL. If stan-
dard resolving algorithms are appropriate, MontiCore can
generate both Binding-implementations and a single
Resolver-implementation that resolves all objects auto-
matically and therefore allows for an effective navigation
between nodes. The complexity of multiple classes with dif-
ferent responsibilities is hidden from the user of the abstract
syntax, for example, a programmer of a code generator for the
developed language. He simply uses the get- and set-methods
like getOrderingClient that returns the appropriate
Client object.

From the point of view of the developer there is no differ-
ence between links established by parsing and links estab-
lished by the association. This makes our generated abstract
syntax comparable to metamodeling approaches where
related objects are linked directly and not because of nam-
ing schemes. Furthermore, developers simply use the gen-
erated methods in order to access connected objects and
do not have to care about the way the objects have been
linked.

3 Modularity concepts

In [34] the term grammarware is coined as collective term
for grammars and grammar-dependent software. MontiCore
is categorized as a meta-grammarware that uses an enriched
grammar format “as an executable specification (or a pro-
gram)” to generate components as described above. Mod-
ularity principles for the language definition help to break
down the complexity of a problem into smaller pieces and
to increase reusability of “language modules”. Each such
language module shall be understandable by itself without
having to consider internal knowledge about other pieces.

MontiCore supports two modularity concepts which can
be used for different purposes. First, grammars may inherit
from each other to add new productions or to override exist-
ing ones in order to adopt an existing language to new needs.
Second, language embedding can be used in order to combine
separately designed languages or parts of it. It is important
to notify that these modularity concepts at first apply to the
languages concrete syntax, but they also apply to the AST
(internal representation), to the check of context conditions,
to analysis and code generation techniques, to an independent
development and composition of the tool infrastructure for
language parts, and finally to a methodical decoupling of the
language development and use. In Sect. 4 we will explain how
MontiCore supports a modular development beyond concrete
and abstract syntax.

123

MontiCore: a framework 361

Fig. 9 Multiple language inheritance

3.1 Grammar inheritance

Grammar inheritance can be used if an existing language
shall be extended by specifying only the differences between
a given and the new language. The existing language defi-
nition remains unchanged. A well-known example for such
language extensions is the use of SQL-Select statements as
expressions inside a general purpose language (GPL) (like
prominently shown in [46]). The language can be extended
by using a given grammar for the GPL and adding the SQL
part only. In a monolithic approach, the grammars would be
integrated and a new parser would be generated from there.
This is obviously not desirable; a reuse of existing artifacts
should be preferred.

MontiCore provides the concept of grammar inheritance
that allows reusing an already existing infrastructure for the
SQL language. It is possible to conveniently define the new
grammar by inheriting from both, the GPL and the SQL
grammar. Therefore, grammar inheritance in MontiCore
allows a developer to specify (multiple) grammars from
which all productions are inherited to the new grammar. This
way, we achieve reuse of independently developed grammars
for the specification of concrete and abstract syntax including
parser and AST classes.

In Fig. 9 grammar inheritance is used to parse Java with
a new form of expressions namely SQL select statements
(we qualify nonterminals using package names as discussed
below). The new production SQLSelect overrides the
inherited production SQLSelect from the SQL-grammar
by adding a new interface Expression which originates
from the Java-grammar. First, this establishes an inheritance

relationship betweenmc.sql.SQLSelect andmc.jav-
asql.SQLSelect. Second, it enforces a subtyping rela-
tionship between mc.java.Expression and mc.sql.
SQLSelect defined in line 6. In this special case the body
of the production remains unchanged because it is not further
specified (which is different from an epsilon production). The
subgrammar also inherits all token classes from their super-
grammars. This allows a developer to override the definition
of a token class and thereby to use a different lexical analysis
in the subgrammar.

As shown in Fig. 9, each new nonterminal results in a
new class in the abstract syntax. MontiCore ensures that this
class is a subtype of the class that is defined by the overrid-
den rule and therefore all other classes that refer to original
class (for example through compositions or associations) can
remain unchanged. This approach is much better than a com-
plete regeneration of new AST classes for the subgrammar,
because algorithms that work on the abstract syntax of the
supergrammar can be applied to the classes of the subgram-
mar. This is extremely helpful if complicated algorithms for
the extended language, e.g., for symbol table building can
be still used (maybe after minor adaptation) but no reimple-
mentation is necessary.

A well-known problem of multiple inheritance is name
clashes when different supergrammars use the same produc-
tion names. See for example [60] for a discussion on the
possibilities to resolve these problems for object-oriented
programming languages. For the MontiCore grammar for-
mat we decided to use the following solution: in the case
that two or more supergrammars share a common production
name, the new production must be a subtype and thus contain
all elements of all productions with that name in the super-
grammars. Of course, this is not always possible because the
super-productions may contradict each other. But, there are
cases where it is possible to override the rule:

1. All equal-named productions of the supergrammar have
the same type (which is likely if the supergrammars have
common ancestors).

2. One class is already a subclass of all other involved clas-
ses.

We decided to realize the above-described solution to
avoid explicit resolving strategies like in C++ where the
developer can refer to a specific superclass by naming it.
We felt that theses references would complicate the gram-
mar too far which contradicts the aim to provide a readable
specification of languages. Therefore, we advocate an agile
way of developing domain-specific languages, where a refac-
toring of one of the contradicting supergrammars solves the
problem, and the readability of the resulting grammar can be
retained.

123

362 H. Krahn et al.

Methodically, it is desirable to apply grammar inheritance
only if the desired language extension is similar to the super-
language. For example, in the given Java/SQL example the
SQL productions add new keywords like SELECT and FROM
to the language which are no longer valid identifiers for the
new language. This situation and the consequences are sim-
ilar to the introduction of the assert keyword (and neces-
sary subsequent changes to legacy software) in Java 1.4. If
this situation implies serious problems or the two languages
contradict each other in form of the lexical analysis, language
embedding should be used that allows using separate lexers
and parsers for the two languages. Furthermore, language
embedding decouples not only the language definition, but
also parsers and tooling infrastructure.

3.2 Language embedding

DSLs are usually designed to solve a clearly defined task;
therefore, it is often necessary to combine several languages
in order to define all aspects of the artifact of interest. A typ-
ical representative for language that needs to be combined is
OCL. It is able to work as a constraint language for other mod-
els and must therefore be combined with another language
in order to define the artifact of interest more precisely.

For an integrated management, it is convenient to write
an OCL statement nearby the artifact that it is constraining.
Therefore, OCL statements shall be embedded in another
given language. Using standard parsing technologies this
would require a single grammar containing all involved
sublanguages, which hinders the reuse of single sublanguag-
es and results in monolithic grammars. Instead, we prefer
different languages that can be flexibly combined with each
other.

The MontiCore grammar allows defining external non-
terminals. These are nonterminals where other languages
can be hooked into in order to continue parsing according
to their grammar. Figure 10 gives an example for language
embedding. The keyword external marks the nontermi-
nalsStatementCredit and StatementCash as exter-
nal which have to be filled with appropriate productions in the
embedded language. In addition, the nonterminal State-
mentCash specifies the constraint that the start rule of the
embedded grammar must return an instance of the type
example.IStatementCash. The slash marks it as a
handwritten interface; therefore, it is possible to define
requirements for the embedded language in the form of meth-
ods that have to be supplied. It is noteworthy that no specific
language is embedded here, but the type of the top node of
the embedded language is specified.

External nonterminals can be understood as “bottom non-
terminals” in grammar fragments [42]: they can be used on
the right-hand side of a production but are not defined as
production in the grammar itself.

Fig. 10 Language embedding through external nonterminals

The MontiCore tooling infrastructure is able to indepen-
dently derive parsers and abstract syntax from these gram-
mars and to combine those parsers at runtime. MontiCore
ensures the correct behavior of the underlying parsing algo-
rithms: it invokes the embedded parser in order to recognize
the subsequent text according to the embedded language.

The most complex situation in this setting is when more
than one language is used to replace one single external non-
terminal. MontiCore can make the decision within the base
language as it is able to select the correct language by val-
ues of already parsed attributes or by using predicates. For
this case, we add an additional attribute lang:IDENT to
the rule OrderCash in Fig. 10. After this has been done,
MontiCore can be instructed to use Java whenever the value
of the attribute is “Java” and C++ otherwise. This approach is
recommended when the embedded languages interfere with
each other, i.e., when there are sentences which are valid for
both Java and C++. The introduction of an explicit attribute
allows the user to select the correct language himself.

The resulting grammar can be seen as the union of all
involved fragments. However, and this is the most important
advantage, languages can be developed and embedded inde-
pendently of each other. Furthermore, as explained in more
detail in Sect. 4, analysis and generation tools can be devel-
oped in the same modular fashion. In addition to the parsers
and the AST also the processing algorithms are decoupled.

Our experiences with language embedding show that often
the designers of the host language know that an extension is
needed, but the form of extension is unclear at design time.
This distinguishes language embedding from language inher-
itance where at design time it is usually unknown that an
extension is needed and at a later point in time the exist-
ing language shall be altered. The Statechart language, for
example, supports actions on the transition, but the exact
language in which actions are specified is left open and may
change according to the operational environment. Therefore,
it is natural for the language designer to specify a “hole”
in the grammar in form of an external rule Action where

123

MontiCore: a framework 363

different languages can be plugged in. Since a Java grammar
is included in the MontiCore framework, it is most conve-
nient to use it as a default action language in such cases as
shown in [22]. However, there are often situations where a
combination of embedding and inheritance leads to desired
results. As both concepts do not interfere with each other,
MontiCore supports to use them in parallel.

4 Developing tools in a modular fashion using
the DSLTool-framework

The MontiCore grammar defines parsing components that
transform the linear text of a DSL into an object structure in
modular fashion. This enables reuse and is a prerequisite for
libraries that contain language definitions for reuse. A parser,
however, only forms the frontend of the language process-
ing framework. The consecutive steps like analysis and code
generation also have to be designed in a modular fashion to
gain the full benefit from such an approach. MontiCore pro-
vides the DSLTool-framework that is designed to support an
easy realization of generative and analytic tools that operate
on the DSL’s abstract syntax. In the following we describe
the features of the DSLTool-framework, its architecture, and
a subset of its features in more detail. We especially focus on
the compositional aspects of language engineering.

4.1 Architectural drivers and main features

The architecture of such a framework is different from the
architecture of a compiler, because model-based code gen-
erators often support more than a single code generation like
the creation of production, simulation, and test code. Also a
commonly accepted intermediate language for different kind
of models is not established. Therefore, we did not adapt
an existing compiler architecture but identified reoccurring
technical questions and provided proved and tested solutions
for them. The DSLTool-Framework combines these solu-
tions as a basis for specific generative tools. We identified
the following architectural drivers [1] for such a framework:

1. Modular decoupled development of algorithms for a
given language.

2. Integration of different languages and algorithms in the
same tool.

3. Flexible configuration.
4. Easy-to-use APIs for reoccurring tasks within generative

software development.
5. Executable on different platforms.

From this list of architectural drivers a set of functions was
derived that are supported by the DSLTool-Framework. The
creation of various tools for DSLs and especially the gener-

ator for the MontiCore grammar format in the bootstrapping
process was helpful to get feedback on the framework design.

Attributes. Attribute grammars [35] are ways to specifiy
attributes that are calculated according to the data in the
AST. MontiCore grammars can be enriched by adding
attribute definitions. Attribute calculations are defined
in Java. Details can be found in Sect. 4.6.

Error messages. Understandable error messages are an
important aspect of language development. Generative
tools should show descriptive error messages for faulty
inputs to users, so that the input can be corrected easily.
The error message implementation does not depend on
the execution environment and provides means to add
new ways of error reporting (for example in an Eclipse
plugin).

File creation. A standardized and simple way to create files
and folders supports developers to concentrate on their
actual task. Therefore, the DSLTool-Framework offers
means to easily create files or folders. Furthermore,
within the file creation of a generative tool it is important
not to write the same file repeatedly and switch off file
creation completely for test cases. The first approach
increases the performance of coupled tools like com-
pilers, and the second approach ensures that test cases
are free of side effects. Using the DSLTool-Framework
nonrecurring file creation is automatically ensured,
switching off file creation can be archived in the con-
figuration.

Functional API. Manipulation of data can often be described
in a concise functional form. Therefore, the developer
is supported by a Java API with functions as first clas-
sartifacts.

Incremental code generation. The creation of output files
whose content is based on multiple input files hinders
compilation of just the modified input. The DSLTool
supports an effective intermediate storage of partial files
to enable incremental code generations and therefore
speeding up the generation process.

Model management. The processing of different models
which refer to each other makes it necessary to have
a name system between different types of models. The
DSLTool-Framework ensure the principle interopera-
bility between different models as explained in further
detail in Sect. 4.3.

Order of processing. The order of the steps within the pro-
cessing of models should be parameterizable. Thus,
a tool can be created that shows a distinct behavior
depending on its runtime configuration.

Platform inpendence. Generators based on the DSLTool-
framework are executable as command line tools. This
simplifies the integration in continuous build systems.
Additional plugins can be generated that integrate the

123

364 H. Krahn et al.

Fig. 11 Relationship between Roots, ExecutionUnits and RootFacto-
ries

tools in Eclipse without changing the generator logic.
Details can be found in Sect. 4.5.

Template-Engine Generators can be written with popular
template engines like Velocity [64] or Xpand [53]. In
addition, the DSLTool-Framework provides its own
template engine that supports co-evolution of templates
and runtime environments which simplifies the agile
development of generators including Refactoring [37].

Traversal of data structures. Flexible traversal strategies for
data structures are needed within generative tools. The
solution for the DSLTool-Framework is described in
detail in Sect. 4.4.

4.2 Architecture

The DSLTool-Framework processes object structures that
contain the data of input files in a structured form. Depending
on the file format of the input files these objects have a varying
type and are called root objects. The common supertype of all
root objects is DSLRoot which contains basic functionality
for accessing the generator, file processing, and status/error
message. In addition, it contains information like the AST
and symbol tables and acts as a repository to store additional
information computed by execution units which is needed
for subsequent computations.

Root objects are created by a RootFactory which sets
up parsers and pretty printers. Standard subclasses exist to
distinguish different languages by the used file extension or
the first used keyword in the instance. An Execution-
Unit encapsulates algorithms that operate on ASTs, begin-
ning with the AST’s root object. The algorithm is assumed
to be stateless. Instead, all calculated state information shall
be placed in the AST or directly on the root object as anno-
tations. Subclasses exist to process single root objects or sets
of root objects at the same time. Figure 11 summarizes the
relationships between these most important classes in the life
cycle of a root object.

Fig. 12 Overview of a DSLTool

A generator within the DSLTool-Framework is a subclass
of DSLTool. Its internal structure is displayed in Fig. 12.
Its configuration (IDSLToolConfiguration) includes
the root object types and available algorithms. A subset (or
all of them) will be executed on a given input depending on
the runtime parametrization stored in IDSLToolParame-
ters.

The order of processing is determined by the class ADSL-
ToolExecuter. During the execution it can be neces-
sary to load additional models from the file system which
is be done by the Modelloader in collaboration with the
DSLRootFactory as explained above because these addi-
tional models are also represented as root objects. Files are
read and written by ADSLToolIOWorker which simpli-
fies testing. Errors and status messages are processed by
the IDSLToolErrorDelegator that feeds different
Errorhandlers for different platforms like command line and
Eclipse. The DSLTool can be accessed from algorithms
realized as ExecutionUnits by the interface IModel-
InfrastructureProviderwhich provides a subset of
the functionality of a DSLTool to the developer.

4.3 Model management

Packaging is a well-known concept to organize projects and
thus, to handle complexity. MontiCore offers standard infra-
structure to add a package mechanism to a DSL definition
that is similar to Java packages. If the DSL definition incorpo-
rates the provided standard form of packaging, DSL writers
are able to use qualified names that consist of a package name
(dot-separated identifiers) and the name of the DSL instance
(model) itself. In those DSL instances it is possible to option-
ally start with a declaration to which package they belong.
To support a reasonable project structure, the conformance
of the package declaration with the file system is checked
automatically: models in the package A.B.C must be located
in a directory A/B/C.

123

MontiCore: a framework 365

Fig. 13 Excerpt of abstract syntax using MontiCore packaging

In the implementation the name of the instance itself has
to be provided by the DSL, the top level AST-node must
return the name of the instance by a getName()-method.
This method can either be handwritten or generated; the latter
is the case if the corresponding rule has an attribute name.
As for package names, the conformance of the DSL instance
name and the filename is checked automatically. For a com-
pletion of the package structure, it is possible to add a list of
imports behind the package declaration with the same struc-
ture and effect as in Java. Imports can be used in order to
load and resolve instances of other packages. This function-
ality is already supported by the MontiCore framework and
therefore easy to use in a new DSL definition.

As said, the usage of the MontiCore package mechanism
is optional. It is added to the DSL by adding the compila-
tionunit keyword in the options section of the grammar
followed by the start rule which is responsible for providing
the name of the instance. The usage of packaging results in
a slight different abstract syntax as outlined in Fig. 13.

The methods of the interface ModelInfrastructureProvid-
er to load models is based on the implementation of the
getName()-method and the use of the option compila-
tionunit.

4.4 Visitor

The traversal of object structures is an often needed auxiliary
tool to implement analyses and code generations.
MontiCore supports the traversal of models along their span-
ning composition tree and uses a adapted Visitor design pat-
tern [19]. The realization of the traversal is based on Java
Reflection to support the dynamic extensibility provided by
language embedding. The central class for the traversal is
mc.ast.Visitor which can be parameterized with dif-
ferent mc.ast.ConcreteVisitor instances for differ-
ent fragments. This fits to the embedding of languages where
algorithms should be implemented for the fragments so that
they be combined at configuration time to form a complete
algorithm for the composed language. Language inheritance
is supported by subtyping the ConcreteVisitor.

Figure 14 shows a combination of two Concrete-
Visitor objects to a single Visitor. The Visitor tra-
verses an object structure and fails if either a CashOrder

Fig. 14 Example for compositional visitors

or an OrderCreditCard with less then 10 Euro is used.
The first part of the functionality is realized on the shop sys-
tem language, whereas the credit card order is realized on
a fictitious language embedded in the external nonterminals
shown in Fig. 10.

The traversal of the object structure is a preorder run along
the spanning composition tree of the model. The run can be
influenced by the developer using the following three types of
methods which all have a single parameter that has the type
of a model class. An arbitrary mixture for different model
classes is possible:

visit(...) This method is invoked before the child nodes
are traversed.

endVisit(...) This method is invoked after the child
nodes are traversed.

ownVisit(...) This method is invoked before the child nodes
are traversed and stops further traversal for
these children.

In addition, within the visit-methods the developer can
invoke the method stopTraverseChildren() to stop
the traversal of the children so that it behaves like a own-
Visit(...)-method. As an alternative the traversal can be
stopped at all by invoking stopTraverse(). Conversely,
it is possible to explicitly start the traversal of child nodes by
invoking the startTraverse(...)-method on them.

123

366 H. Krahn et al.

In contrast to other approaches [8,54] we stick to the basic
pattern from [19] and generate atraverse(...)-Method
within the model classes. This invasive version speeds up the
execution for the pure traversal: other non-invasive appro-
aches showed a performance reduction of factor 18 to 256
compared with the basic implementation; we could only mea-
sure a slow down of factor 4. The time for traversal is usually
only responsible for part of the runtime. For more complex
operations like a code generation we could therefore measure
a total overhead of about 30–40% in comparison with using
the basic pattern for the same algorithm. As the implemen-
tation allows intentionally to not traverse certain subtrees by
using ownVisit(...)-methods, our implementation can
also be quicker depending on the given algorithm.

The combination of different Visitors is possible as all Vis-
itors can fail (as already shown in the example). Therefore,
a combination of Visitors to strategies as explained in detail
in [43,66,67] is possible and realized within the MontiCore
framework.

4.5 Eclipse

Being a sophisticated editor generator is not the main focus of
MontiCore but an exploration of concepts for DSL definition
and handling. However, the usability of a language highly
depends on how the tools support the users when working
with the language. Nowadays, there are specialized editors
and IDEs like Eclipse [12] for almost every language with
comfort functions like syntax highlighting or auto-comple-
tion. Even in Eclipse a modification of the underlying lan-
guage usually results in time-consuming modifications for
language-specific tools. This is an obstacle for agile language
development and evolution. Therefore, it is desirable to com-
bine language and tool development in an efficient way.

For effective language-specific tool development Monti-
Core offers possibilities to generate Eclipse plugins. A Mon-
tiCore grammar can be complemented with a small editor
description that supports customization of an DSL-specific
editor similarly to the IMP [61] approach.

As a side note, it is noteworthy that we use an entirely
different technique. In contrast to the code-centric approach
of IMP DSL developers do not have to implement generated
skeleton classes. Instead all information necessary for tool
definition is integrated into the language specification. Espe-
cially, wizards were avoided as they tend to hinder the evolu-
tion of a language due to limited round-trip facilities. Beyond
that, the tool and the language definition are co-located and
thus it is relatively like that they remain consistent.

The most important options are introduced in the follow-
ing summary: Fig. 15 shows an excerpt from the definition
of the plugin for the shopsystem DSL. The generated editor
and some of its functionalities can be seen in Fig. 16.

Fig. 15 Excerpt from a definition of a language-specific editor

Syntaxhighlighting. Syntaxhighlighting is very helpful to
easily get an overview of a language document.
Language-specific keywords are defined by a comma-
separated list and are automatically detected and col-
ored in the generated editor.

Outline. An outline provides an overview of the language
instance in a separate view. A segment in the outline
consists of a small icon and a text which can also depend
on the attribute values of the AST node it represents.
Selecting an item in the generated outline marks the
representing code area within the editor.

Folding. Folding provides functionality to show and hide
parts of the language document. Nonterminals that
should provide folding functionality can be defined in
a comma separated list.

Error messages. Error messages containing a declarative
description of the error and the area of the erroneous lan-
guage part are shown in the problems view of Eclipse.
Errors typically occur while the text is parsed or dur-
ing the check of contextual constraints. It is possible to
hook in self-written checks. Again, selecting an item in
the problems view marks the according code in the text
editor.

Editor menu items. User-defined functionalities can be
hooked into the generated plugin by menu items like
“transformations” or “code generation” in the context
menu of the generated editor.

Explorer menu items. Similarly, it is possible to define
popup menu items for the context menu of the pack-
age explorer (a view which shows whole projects and
all files, etc. within the project). They allow to hook
in functionality which depends on more than one file
(which is mostly the case for editor menu items). A com-
position of several models is an example for explorer
menu items.

123

MontiCore: a framework 367

Fig. 16 Screenshot of the generated editor

Modularity. All concepts described above support modular-
ity. This means that a combination of two languages by
embedding automatically leads to new tools that support
the combined functionality for this combined language.
Furthermore, in the case of inheritance it is sufficient to
specify the delta for the sublanguage only and more
important, only the delta of the editor functionality is
generated.

4.6 Attributes

MontiCore offers a flexible attribute grammar system which
reflects the compositional approach for the development of
abstract and concrete syntax of a DSL as described above.
Each grammar can be supplemented by an arbitrary num-
ber of attributes which are either synthesized or inherited
(c.f. [35]). As an example for the shopsystem we introduce
an attribute outstanding which is used in order to com-
pute the outstanding accounts for the whole shop. Therefore,
we augment our grammar with the definition of a synthesized
attribute as shown in Fig. 17.

This definition is not complete as the actual computation
is missing. In order to compute values, we decided not to
use a specialized attribute computation language but to use
Java. This enables the developer to program complex compu-

Fig. 17 Example for a synthesized attribute definition

tations as well as to use an arbitrary type for each attribute.
The attribute calculations are implemented in a Java class
as methods which compute the values as shown in Fig. 18.
Line 22 requires a detailed discussion: As explained earlier,
MontiCore grammars can be combined flexible using gram-
mar inheritance and embedding. One can imagine that in the
case of embedding the outer language has an attribute out-
standing, whereas the inner language has an attributesum
which are semantically the same. When combining both lan-
guages we wanted to avoid that one of the calculations has
to be adapted.

To solve this issues we used the following strategy: each
grammar defines its attributes as explained above. Then, when
combining languages the developer can map different attri-
butes of different languages to one “virtual” attribute. This
can be done either by a special DSL (see Fig. 19) or by writing
some glue code in Java. We prefer these “virtual” attributes

123

368 H. Krahn et al.

Fig. 18 Example for a synthesized attribute calculation

Fig. 19 Example for an attribute combination

over adding new computation rules that map the different
attributes for two reasons. First, language embedding might
occur on several places in a grammar where this mapping
has to be repeated. Second, the combination of fragments
with the “virtual” attribute might be reused and embedded in
other fragments. Using our approach, it is then not necessary

to understand the internal structure of the combination with
different attributes, but the user can rely on a single attribute.

5 Related work

Language workbenches. A language workbench simplifies
the development of domain-specific languages by provid-
ing formalisms to define the language. There are graphical
approaches (e.g., [45]), but we concentrate on approaches
that allow the specification of textual domain-specific lan-
guages.

The Meta Programming System (MPS) allows the devel-
opment of textual languages as an extension to an IDE for
Java. A syntax-directed editor is generated from the lan-
guage definition, and a template engine helps the developer
to specify code generations. Attribute grammars and their
tool suites like LISA [48] allow a grammar-based develop-
ment of domain-specific languages. In the general sense, a
lot of concepts like MontiCore’s associations can be real-
ized as attributes in such grammars. MontiCore, furthermore
simplifies a number of standard cases by supplying standard
solutions that be easily applied by a developer.

The Grammar Deployment Kit (GDK) [36] consists of
several components to support the development of grammars
and language processing tools. The internal grammar format
can be transformed into inputs of different parser generators,
such as btyacc [10], Antlr [57] or SDF [28]. Furthermore, it
provides possibilities for grammar adaption, like renaming of
rules or adding alternatives. In opposition to our approach it
does not support extensions like inheritance or associations.

ASF+SDF [2] is a language development meta-environ-
ment. The syntax definition is based on a scannerless general-
ized LR parsing technique [65] and permits modular
syntax definition. Furthermore, the framework offers support
for source code analysis, transformations, code generation,
and IDE development. The main difference to MontiCore is
that we offer modularity concepts not only at the syntax level
but we reflect these concepts at the level of other aspects of
language development like code generation by visitors, attri-
bute grammars, and editor generation.

Languages and tools for specifying concrete and
abstract syntax. We are currently not aware of a language
that allows specifying both a textual concrete syntax and
an abstract syntax with additional cross-AST associations in
a coherent and concise format. Grammarbased approaches
usually lack a strongly typed internal representation (for
exceptions see below) and the existing model-based appro-
aches use two forms of description, a meta-model for the
abstract syntax and a specific notation for the concrete syn-
tax.

SableCC [17] is a parser-generator that can generate
strongly typed abstract syntax trees and tree-walkers.

123

MontiCore: a framework 369

The grammar format contains actions to influence the auto-
matic derivation of the AST. In contrast to MontiCore, Sab-
leCC does not aim to include associations in its AST.

The algorithm presented in [68] derives a strongly typed
abstract syntax from a BNF-like grammar. In contrast to the
MontiCore parsing frontend Wile uses an explicit notation
for lists that are separated by constants and the missing inte-
gration of nonterminals with same name.

In [32] a DSL named Textual Concrete Syntax (TCS) is
described that specifies the textual concrete syntax for an
abstract syntax given as a meta-model. Different meta-mod-
eling techniques can be used with the approach like KM3 [31]
or EMF [7]. The described tool support is similar to the one
we used for the MontiCore framework and the name resolu-
tion mechanisms are the same that we generate automatically
from the grammar format. In contrast to our approach, two
descriptions for abstract and concrete syntax are needed.

In [15] and [50] the Textual Concrete Syntax Specification
Language (TCSSL) is described that allows the description
of a textual concrete syntax for a given abstract syntax in form
of a meta-model. TCSSL describes a bidirectional mapping
between models and their textual representation. The authors
describe tool support to transform a textual representation to
a model and back again. As in MontiCore the AST usually
(but not necessarily) is a real abstraction the AST loses the
necessary information to keep bidirectional links. However,
we are more interested in transformation, AST-based anal-
ysis, and code generation and therefore need not retain the
original concrete syntax in those cases.

Compositional language development. Compositional
language development is an important goal, especially in
grammar-based software. The main problem is that common
techniques as LL or LR parsing are not closed under compo-
sition. A particular problem using LL or LR is on the lexical
level, [6] discusses different solutions, one of them—namely
controlling the lexer from the parser—is implemented in our
tool although [6] favors another strategy (scannerless pars-
ing) mainly for technical reasons. The strategy of controlling
the lexer from the parser is also used in [69]. In opposition
to our approach, a parser controls one single lexer by pass-
ing all tokens that are possible at this point of parsing to the
lexer. We generate different lexers for different languages
which are selected at runtime. Therefore, we can reuse pars-
ers and lexers without regeneration/recompilation. The same
approach (passing valid tokens to the lexer) is implemented
in the Silver system [63]. Both Silver and MontiCore permit
multiple language inheritance and thus, the combination of
multiple languages, but the approaches are slightly different.
While Silver combines languages and generates parser/lexer
from the combined version, we keep the languages stand-
alone and combine them at configuration time. Therefore,
we do not need to regenerate everything when only one lan-
guage changes. This seems to be more appropriate because

all sublanguages are often not known. Furthermore, Silver
offers an attribute system and forwarding techniques [70] to
implement language extensions. This attribute system uses a
special DSL to express computations and forwarding while
we use Java.

In addition, there are sophisticated parsing technologies
which permit a compositional approach (e.g., GLR [62],
Early parsers [11], or Packrat parsing [16,21]. These technol-
ogies often concentrate on the concrete syntax only, whereas
our approach integrates all parts of language development in
a compositional manner.

Beyond these parsing technologies, attribute grammar sys-
tems exist that permit a modular language development. Well
known examples are the LISA [47,48] and JastAdd [13,14].
Especially, JastAdd provides a lot of support for different
kind of attributes, amongst them Reference Attribute Gram-
mars (RAGs) [27]. RAGs permit attributes to be references to
nodes in the AST. This is comparable to our association con-
cept as in both MontiCore and JastAdd users define the rules
for attribute computation in Java. The main difference to our
work is that JastAdd mainly concentrates on the specifica-
tion of attributes and extensibility of compilers. This requires
the developer to use other tools, e.g. for parser generation.
MontiCore provides an integrated solution with a uniform
frontend by embedding external tools in a transparent way.

Language libraries as discussed in [6] mainly target at
GPLs with embedded DSLs. These DSLs are the assimi-
lated into the host language to design a language extension.
A prominent example for this approach is MetaBorg [5,4].
However, we do not concentrate on GPL extensions (although
this can be done using MontiCore) but on the co-existence of
several languages on the same level. This seems to be more
appropriate in the DSL world as we usually have several lan-
guages specialized for a specific task and thus, there is often
no possibility to map one language into another.

Polyglot [51] is an extensible compiler framework for
Java. It provides an infrastructure to implement extensions
on the level of concrete syntax, abstract syntax, type sys-
tem, and code generation. These extensions are implemented
using object-oriented methods like inheritance, delegation,
and factories. In this respect it is comparable to the princi-
ples used in our framework MontiCore. However, Polyglot
it is limited to Java and extensions thereof. Although our
framework can be used for the same purpose, we support
arbitrary languages.

6 Conclusion

As main results, this work discusses the possibilities of mod-
ular, compositional language development in MontiCore, and
how embedding of languages and language inheritance can
be achieved.

123

370 H. Krahn et al.

MontiCore is text-based and uses an extended grammar
format to specify both, abstract and concrete syntax of a mod-
eling language in a concise format. By using an integrated
representation for both it avoids typical redundancy problems
that occur when abstract and concrete syntax are described by
two different languages. To generalize from tree structures to
graphs (with spanning trees), the possibility to define associa-
tions between AST nodes and provide standard functionality
to establish those links after parsing through name resolution
techniques was added.

MontiCore provides two modularity mechanisms to reuse
existing languages in a controlled way. First, grammar inher-
itance allows extending a grammar A in a subgrammar B by
extending the nonterminals from Awith new parsing alterna-
tives. This allows keepingA and its generated code unchanged
and therefore paves the way for extensible languages. Lan-
guage inheritance allows subtyping a language in order to
adapt it to new needs. Second, language embedding allows
specifying a grammarA(h)with explicit holesh by identify-
ing one or more nonterminals that are not realized within the
language definition itself. Another language B is embedded
into A(B) by filling the hole with an appropriate nontermi-
nal. While this is theoretically relatively straightforward, the
MontiCore framework can generate code for the parsers as
well as symbol tables and other infrastructure independently
and compose the parsers at configuration time. This is a very
important new feature and paves the way for a modular lan-
guage definition and even reuse of infrastructure when the
source code is not available.

As said our techniques are implemented in a framework
called MontiCore, which is based on an established parser-
generator. It is able to parse textual syntax and generates the
model representation in Java. Additionally, EMF support is
available to be interoperability with a variety of other tools.
We have used the framework to develop tools for a number
of toy examples as well as sophisticated language definitions
like UML/P [58,59] and complete Java 5. In addition, the sys-
tem is bootstrapped and currently about 75% of the code is
generated from several DSLs. The Monticore framework can
be used as an online service that is available via [49].

Acknowledgments The work presented in this paper is partly under-
taken as a part of the MODELPLEX project. MODELPLEX is a pro-
ject co-funded by the European Commission under the “Information
Society Technologies” Sixth Framework Programme (2002–2006).
Information included in this document reflects only the authors’ views.
The European Community is not liable for any use that may be made
of the information contained herein.

References

1. Bass, L., Clements, P., Kazman, R.: Software Architecture in Pra-
tice. Addison-Wesley, New York (2003)

2. van den Brand, M., Heering, J., van Deursen, A., de Jong, H., de
Jonge, M., Kuipers, T., Klint, P., Moonen, L., Olivier, P., Scheerder,
J., Vinju, J., Visser, E., Visser, J.: The ASF+SDF meta-environ-
ment: a component-based language development environment. In:
Proceedings of Compiler Construction (CC) 2001, number 2102
in LNCS. Springer, Heidelberg (2001)

3. Van Den Brand, M., Sellink, A., Verhoef, C.: Current parsing tech-
niques in software renovation considered harmful. In: Proceedings
of the Sixth International Workshop on Program Comprehension,
pp. 108–117. IEEE Computer Society, New York (1998)

4. Bravenboer, M., de Groot, R., Visser, E.: MetaBorg in action:
examples of domain-specific language embedding and assimilation
using Stratego/XT. In: Summer School on Generative and Transfor-
mational Techniques in Software Engineering (GTTSE’05), Braga,
Portugal, July 2005

5. Bravenboer, M., Visser, E.: Concrete syntax for objects: domain-
specific language embedding and assimilation without restrictions.
In: Proceedings of International Conference on Object Oriented
Programming, Systems, Languages and Applications (OOPSLA)
2004. ACM, New York (2004)

6. Bravenboer, M., Visser, E.: Designing syntax embeddings and
assimilations for language libraries. In: 4th International Workshop
on Software Language Engineering (2007)

7. Budinsky, F., Steinberg, D., Ed Merks, E., Ellersick, R.,
Grose, T.J.: Eclipse Modeling Framework. Addison-Wesley, New
York (2003)

8. Büttner, F., Radfelder, O., Lindow, A., Gogolla, M.: Digging into
the visitor pattern. In: Proceedings of International Conference on
Software Engineering & Knowledge Engineering (SEKE) 2004.
IEEE Computer Society Press, New York (2004)

9. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Meth-
ods, Tools, and Applications. Addison-Wesley, New York (2000)

10. Dodd, C., Maslov, V.: BTYACC—backtracking YACC, 2006.
http://www.siber.com/btyacc/

11. Earley, J.: An efficient context-free parsing algorithm. Commun.
ACM 13(2), 94–102 (1970)

12. Eclipse Website http://www.eclipse.org
13. Ekman, T., Hedin, G.: The jastadd extensible java compiler. SIG-

PLAN Notices. In: Proceedings of the 2007 OOPSLA Conference,
vol. 42(10), pp. 1–18 (2007)

14. Ekman, T., Hedin, G.: The JastAdd system—modular extensible
compiler construction. Sci. Programm. 69(1–3), 14–26 (2007)

15. Fondement, F., Schnekenburger, R., Gerard, S., Muller, P.-A.:
Metamodel-Aware Textual Concrete Syntax Specification. Tech-
nical Report LGL-REPORT-2006-005, Swiss Federal Institute of
Technology, December (2006)

16. Ford, B.: Packrat parsing: simple, powerful, lazy, linear time. In:
Proceedings of the International Conference on Functional Pro-
gramming (ICFP) 2002. ACM, New York (2002)

17. Gagnon, E., Hendren, L.: SableCC—an object-oriented compiler
framework. In: Proceedings of TOOLS (1998)

18. Gamma, E., Beck, K.: Contributing to Eclipse: Principles, Patterns,
and Plugins. Addison Wesley Longman, Redwood City (2003)

19. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, New York (1995)

20. Gosling, J., Joy, B., Steele, G.L.: The Java Language Specification,
3rd edn. Addison-Wesley, New York (2005)

21. Grimm, R.: Better extensibility through modular syntax. In: PLDI
’06: Proceedings of the 2006 ACM SIGPLAN Conference on
Programming Language Design and Implementation, pp. 38–51.
ACM, New York (2006)

22. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M.: Integration
von Modellen in einen codebasierten Softwareentwicklungsproz-
ess. In: Proceedings of Modellierung 2006 (LNI P-82) (2006)

123

http://www.siber.com/btyacc/
http://www.eclipse.org

MontiCore: a framework 371

23. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.:
MontiCore 1.0—E. In: Framework zur Erstellung und Verarbei-
tung domänenspezifischer Sprachen. Technical Report Informatik-
Bericht 2006-04, Software Systems Engineering Institute, Braun-
schweig University of Technology (2006)

24. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.:
Textbased modeling. In: 4th International Workshop on Software
Language Engineering (2007)

25. Grönniger, H., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.:
Monticore: a framework for the development of textual domain
specific languages. In: 30th International Conference on Software
Engineering (ICSE 2008), Leipzig, Germany, 10–18 May 2008,
companion volume, pp 925–926 (2008)

26. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics
of “semantics”? Computer 37(10), 64–72 (2004)

27. Hedin, G.: Reference attributed grammars. In: Parigot, D.,
Mernik, M. (eds.) Second Workshop on Attribute Grammars and
their Applications, WAGA’99, pp. 153–172. Amsterdam, The
Netherlands (1999) (INRIA rocquencourt)

28. Heering, J., Hendriks, P.R.H., Klint, P., Rekers, J.: The
syntax definition formalism SDF—reference manual. Sigplan
Not. 24(11), 43–75 (1989)

29. Herrmann, C., Krahn, H., Rumpe, B., Schindler, M., Völkel, S.:
An algebraic view on the semantics of model composition. In:
Akehurst, D.H., Vogel, R., Paige, R.F. (eds.) Model Driven Archi-
tecture—Foundations and Applications (ECMDA-FA), Number
4530 in LNCS, pp. 99–113, Haifa, Israel, June 2007. Springer,
Heidelberg

30. Hoare, C.A.R.: Hints on Programming Language Design. Techni-
cal report. Stanford University, Stanford (1973)

31. Jouault, F., Bezivin, J.: KM3: a DSL for metamodel specifica-
tion. In: Proceedings of 8th IFIP International Conference on For-
mal Methods for Open Object-Based Distributed Systems (LNCS
4037), pp. 171–185 (2006)

32. Jouault, F., Bezivin, J., Kurtev, I.: TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In: Proceedings
of the Fifth International Conference on Generative Programming
and Component Engineering (2006)

33. Kadhim, B.M., Waite, W.M.: Maptool—supporting modular syn-
tax development. In: CC ’96: Proceedings of the 6th International
Conference on Compiler Construction, pp. 268–280, London, UK.
Springer, Heidelberg (1996)

34. Klint, P., Lämmel, R., Verhoef, C.: Toward an engineering disci-
pline for grammarware. ACM Trans. Softw. Eng. Meth. 14(3), 331–
380 (2005)

35. Knuth, D.F.: Semantics of context-free languages. Math. Syst. The-
ory 12, 127–145 (1968)

36. Kort, J., Lämmel, R., Verhoef, C.: The grammar deployment kit.
In: Electronic Notes in Theoretical Computer Science, vol. 65.
Elsevier, Amsterdam (2002)

37. Krahn, H., Rumpe, B.: Techniques For Lightweight Generator
Refactoring. In: Proceedings of Summer School on Generative
and Transformational Techniques in Software Engineering (LNCS
4143). Springer, Heidelberg (2006)

38. Krahn, H., Rumpe, B., Völkel, S.: Efficient editor generation for
compositional DSLs in eclipse. In: Proceedings of the 7th OOP-
SLA Workshop on Domain-Specific Modeling (2007)

39. Krahn, H., Rumpe, B., Völkel, S.: Integrated definition of abstract
and concrete syntax for textual languages. In: Proceedings of Mod-
els 2007, pp. 286–300 (2007)

40. Krahn, H., Rumpe, B., Völkel, S.: Mit sprachbaukästen zur schnell-
eren softwareentwicklung: Domänenspezifische sprachen modular
entwickeln. Objektspektrum 4, 42–47 (2008)

41. Krahn, H., Rumpe, B., Völkel, S.: Monticore: modular develop-
ment of textual domain specific languages. In: Proceedings of Tools
Europe (2008)

42. Lämmel, R.: Grammar adaptation. In: Proceedings of For-
mal Methods Europe (FME) 2001 (LNCS 2021), pp. 550–570.
Springer, Heidelberg (2001)

43. Lämmel, R., Jones, S.P.: Scrap your boilerplate: a practical design
pattern for generic programming. In: Proceedings of Workshop
on Types in Language Design and Implementation (TLDI 2003)
(2003)

44. Lämmel, R., Meijer, E., Revealing the X/O impedance mismatch
(Changing lead into gold). In: Datatype-Generic Programming.
Springer, Heidelberg (2007)

45. Ledeczi, A., Maroti, M., Bakay, A., Karsai, G., Garrett, J.,
Thomason, C., Nordstrom, G., Sprinkle, J., Volgyesi, P.: The
generic modeling environment. In: International Workshop on
Intelligent Signal Processing (WISP). IEEE, New York (2001)

46. Meijer, E., Beckman, B., Bierman, G.: Linq: reconciling object,
relations and xml in the net framework. In: SIGMOD ’06: Pro-
ceedings of the 2006 ACM SIGMOD international conference on
Management of data, pp. 706–706. ACM, New York (2006)

47. Mernik, M., Lenič, M., Avdičaušević, E., Žumer, V.: Multiple
attribute grammar inheritance. In: Parigot, D., Mernik, M. (eds.)
Second Workshop on Attribute Grammars and their Applications,
WAGA’99, pp. 57–76. Amsterdam, The Netherlands (1999) (IN-
RIA rocquencourt)

48. Marjan, M., Žumer, V., Lenič, M., Avdičaušević, E.: Imple-
mentation of multiple attribute grammar inheritance in the tool
LISA. SIGPLAN Not. 34(6), 68–75 (1999)

49. MontiCore Website http://www.monticore.de
50. Muller, P.-A., Fleurey, F., Fondement, F., Hassenforder, M.,

Schneckenburger, R., Gérard, S., Jézéquel, J.-M.: Model-driven
analysis and synthesis of concrete syntax. In: Proceedings of MoD-
ELS 2006 (LNCS 4199), pp. 98–110 (2006)

51. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: an extensible
compiler framework for Java. In: Proceedings of the International
Conference on Compiler Construction (CC) 2003, number 2622 in
LNCS. Springer, Heidelberg (2003)

52. Object Management Group. Unified Modeling Language: Super-
structure Version 2.1.2 (07-11-02) (2007). http://www.omg.org/
docs/formal/07-11-02.pdf

53. OpenArchitectureWare Website http://www.openarchitectureware.
com/

54. Palsberg, J., Jay, C.B.: The essence of the visitor pattern. In: Pro-
ceedings of the 22nd IEEE Int. Computer Software and Applica-
tions Conf., COMPSAC, Vienna, Austria, August, pp. 9–15. IEEE,
Los Alamitos (1998)

55. Parnas, D.L.: On the criteria to be used in decomposing systems
into modules. Commun. ACM 15(12), 1053–1058 (1972)

56. Parr, T.: The Definitive ANTLR Reference: Building Domain-
Specific Languages. Pragmatic Programmers, 1st edn. Pragmatic
Bookshelf, Raleigh (2007)

57. Parr, T., Quong, R.: ANTLR: A predicated-LL(k) parser genera-
tor. J. Softw. Prac. Exp. 25(7), 789–810 (1995)

58. Rumpe, B.: Agile Modellierung mit UML: Codegenerierung, Test-
fälle, Refactoring. Springer, Heidelberg (2004)

59. Rumpe, B.: Modellierung mit UML. Springer, Heidelberg (2004)
60. Simons, A.J.H.: The theory of classification, part 17: multiple

inheritance and the resolution of inheritance conflicts. J. Object
Tech. 4(2), 15–26 (2005)

61. The Eclipse IDE Meta-tooling Platform Website. http://
eclipse-imp.sourceforge.net/

62. Tomita, M.: Efficient Parsing for Natural Languages. A Fast Algo-
rithm for Practical Systems. Kluwer, Dordrecht (1985)

63. Van Wyk, E., Krishnan, L., Schwerdfeger, A., Bodin, D.: Attribute
grammar-based language extensions for java. In: European Confer-
ence on Object Oriented Programming (ECOOP), Lecture Notes
in Computer Science, vol. 4609, July. Springer, Heidelberg (2007)

64. Velocity Website http://velocity.apache.org/

123

http://www.monticore.de
http://www.omg.org/docs/formal/07-11-02.pdf
http://www.omg.org/docs/formal/07-11-02.pdf
http://www.openarchitectureware.com/
http://www.openarchitectureware.com/
http://eclipse-imp.sourceforge.net/
http://eclipse-imp.sourceforge.net/
http://velocity.apache.org/

372 H. Krahn et al.

65. Visser, E.: Scannerless Generalized-lr Parsing. Technical Report,
University of Amsterdam (1997)

66. Visser, J.: Visitor combination and traversal control. In: OOPSLA
’01: Proceedings of the 16th ACM SIGPLAN conference on Object
Oriented Programming, Systems, Languages, and Applications,
pp. 270–282. ACM, New York (2001)

67. Visser, J., Generic Traversal over Typed Source Code Representa-
tions. Ph.D. thesis, University of Amsterdam, February (2003)

68. Wile, D.S.: Abstract syntax from concrete syntax. In: ICSE ’97:
Proceedings of the 19th International Conference on Software
Engineering, pp. 472–480, New York, NY, USA. ACM, New York
(1997)

69. Van Wyk, E.R., Schwerdfeger, A.C.: Context-aware scanning for
parsing extensible languages. In: GPCE ’07: Proceedings of the 6th
International Conference on Generative Programming and Com-
ponent Engineering, pp. 63–72, New York, NY, USA. ACM, New
York (2007)

70. van Wyk, E., de Moor, O., Backhouse, K., Kwiatkowski, P.: For-
warding in Attribute Grammars for Modular Language Design.
In: Proceedings of the 11th International Conference on Compiler
Construction 2002, pp. 128–142, London, UK. Springer, Heidel-
berg (2002)

123

	MontiCore: a framework for compositional development of domain specific languages
	Abstract
	1 Introduction
	2 Language definition using MontiCore
	2.1 Defining concrete and abstract syntax
	2.2 Interfaces and inheritance between nonterminals
	2.2.1 Inheritance of nonterminals
	2.2.2 Interfaces between nonterminals

	2.3 Associations

	3 Modularity concepts
	3.1 Grammar inheritance
	3.2 Language embedding

	4 Developing tools in a modular fashion using the DSLTool-framework
	4.1 Architectural drivers and main features
	4.2 Architecture
	4.3 Model management
	4.4 Visitor
	4.5 Eclipse
	4.6 Attributes

	5 Related work
	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

