
Towards a Semantics of Activity Diagrams with
Semantic Variation Points

Hans Grönniger1, Dirk Reiß2, Bernhard Rumpe1

1 Software Engineering, RWTH Aachen University, Germany
2 Institut für Wirtschaftsinformatik, Abteilung Informationsmanagement

Technische Universität Braunschweig, Braunschweig, Germany

Abstract. UML activity diagrams have become an established nota-
tion to model control and data flow on various levels of abstraction,
ranging from fine-grained descriptions of algorithms to high-level work-
flow models in business applications. A formal semantics has to capture
the flexibility of the interpretation of activity diagrams in real systems,
which makes it inappropriate to define a fixed formal semantics. In this
paper, we define a semantics with semantic variation points that allow for
a customizable, application-specific interpretation of activity diagrams.
We examine concrete variants of the activity diagram semantics which
may also entail variants of the syntax reflecting the intended use at hand.

1 Introduction

Activity diagrams [1] are a widely accepted modeling language for representing
control and data flow within software systems. The notation is applicable to
various application domains and is useful on many levels of abstraction. To name
just a few forms of use, activity diagrams can be used for low-level descriptions
of algorithms similar to flow-charts [2], for modeling collaborating objects in an
object-based system, or for specifying simple web application page flows [3] and
high-level business application workflows [4].

The basic idea of activity diagrams is to model actions and their possible
orders of execution. Besides this common denominator, interpretation of what
constitutes an action and how to determine when and how an action is enabled or
when it finishes execution remains specific to the application area. Methodically,
the purpose of activity diagrams is also subject to project-specific interpretation:
it may be loosely used for documentation purposes, or formally employed for
analysis or code generation.

Formal semantics for activity diagrams helps to reduce misunderstandings
between people and may enhance interoperability between tools. Because of the
flexibility of the notation regarding its possible forms of use, it turned out to
be inappropriate to use a single and fixed formal semantics. Instead, we de-
fine a semantics with semantic variation points which allow for a customizable,
application-specific interpretation of activity diagrams. Explicit semantic vari-
ation points help people to agree on the meaning of language constructs in a

[GRR10] H. Grönniger, D. Reiß, B. Rumpe
Towards a Semantics of Activity Diagrams with Semantic Variation Points
In: D. Petriu, N. Rouquette, Ø. Haugen (Eds.), Model Driven Engineering Languages and Systems,
Proceedings of MODELS 2010, Oslo, Norway. Lecture Notes in Computer Science, Springer, 2010
www.se-rwth.de/publications

certain project context. Invariant definitions constitute what we call the in-
ner semantics of a notation. This separation helps to reduce the complexity of
agreeing on a formal semantics. This paper concentrates on defining the inner
semantics. Additionally, variants of activity diagrams, for example, to model
low-level algorithms, are sketched.

The paper is structured as follows. In Section 2, we shortly describe the con-
crete and abstract syntax of activity diagrams. In Section 3, we define a formal
inner semantics with variation points, which are interpreted in the different con-
texts in Section 4. In Section 5, we discuss related work and Section 6 concludes
the paper.

2 Syntax of Activity Diagrams

Fig. 1 shows an example activity diagram. The workflow depicted therein de-
scribes an abstract view on a process for grading a thesis. It involves three roles
(denoted on the left hand side): Student, Referee1 and Referee2. The workflow
starts with a student who files a thesis. The action FileThesis has an output
pin (Thesis t) that represents type and name of the outgoing data. The thesis
is reviewed by Referee1 and Referee2 (fork to actions ReviewThesis1 and Re-
viewThesis2). Both actions have input and output pins – taking a Thesis t as
input and passing on a Review r along the flow. When both actions have fin-
ished, the reviews are then evaluated by Referee1 (action Evaluate). Depending
on the outcome of this action, either a certificate for the student is created (ac-
tion CreateCert in case of passed) or note of the failure (action DetainFailure in
case of failed) is taken. After either action, the activity is finished.

GradeThesis

FileThesis

ReviewThesis1

ReviewThesis2

CreateCert

DetainFailure
[failed]

[passed]

AD

Evaluate

Thesis t

Thesis t

Thesis t

Review r

Review r

Set<Review> r

Fig. 1. Example activity “GradeThesis”

Please note that we currently do not consider constructs like hierarchical
decomposition, interruptible activity regions or parameter sets which are present
in the UML 2.2 [1] standard. Additional constructs can and will be handled in
subsequent versions of the semantics. The focus of this work, however, is to show
the handling of variants for the interpretation of activity diagrams.

2.1 Abstract Syntax

The abstract syntax of an activity diagram is given in Definition 1. An activity
diagram has a name, a set of nodes and transitions. roleOf associates a role
(being a name) to each node. A Node has a type, a name, a list of input and
output pins, and some Effect when executed which remains unspecified for now.
Transitions connect input and output pins of nodes. The names Src,Dst refer
some node, the names InPin,OutPin refer to pins of the connected nodes. pinType
yields the (data) type of the pin which also remains unspecified. Guards may
be specified on outgoing transitions but actually belong to the source node.
Therefore, we associate guards with output pins. These guards can be obtained
by function guard. The exact structure of the language of guards is also not fixed
in Definition 1.

Definition 1 (Abstract Syntax of Activity Diagrams).

AD = Name× ℘(Node)× ℘(Transition)×
roleOf× pinType× guard

Node = NType× NName× InPin∗ × OutPin∗ × Effect
roleOf ∈ Node→ Role
NType = {action, initial, final, forkjoin, decisionmerge}
Transition = Src× OutPin× Dst× InPin
guard ∈ PName→ Guard
InPin,OutPin = PName
pinType ∈ PName→ PType
Src,Dst = NName
Role,NName,PName = Name

As can be seen from Definition 1 the usually distinct node types for fork and
join as well as decision and merge have been combined to more general nodes.
A single fork, for example, is just a special case of a node of type forkjoin with
exactly one input transition.

We introduce helper functions that operate on the abstract syntax for con-
venience.

– inT : AD×Node→ ℘(Transition) yields all incoming transitions given a node.
– outT : AD×Node→ ℘(Transition) returns all outgoing transitions of a node.
– Dot-notation is used to access parts of the abstract syntax. For instance, if
ad ∈ AD, then ad.Node denotes the set of nodes in ad.

Further, we assume that the following context conditions hold (among oth-
ers). The diagram is complete in the sense that all nodes define pins when con-
nected by a transition. Pins that are only control pins are given the (pseudo)
type ⊥⊥⊥. Pins with an underspecified data type are given the type >>> representing
arbitrary values. Each transition references existing nodes and pins. In the con-
crete syntax (cf. Fig. 1), pins and their types may be left out but are assumed
to be present in the abstract syntax.

As for the concrete syntax, we only consider a true subset of constructs com-
pared to the UML standard. We also refrain from defining a simplified metamodel
for the abstract syntax because our set-based notation is more succinct, precise,
and convenient when defining the semantic mapping.

3 Inner Semantics of Activity Diagrams

We give a denotational semantics to activity diagrams. To do so, we precisely and
explicitly define the (abstract) syntax (previous section), the semantic domain,
and the semantic mapping [5].

3.1 System Model

The system model in the form of [6, 7] serves as our semantic domain. It charac-
terizes object-based systems by describing their structural, behavioral, and inter-
action aspects. The purpose of the system model is to have a common semantic
domain for all kinds of UML diagram types. As described in [8] several UML
sub-languages have already been mapped to the system model. A set-valued
semantic mapping for individual diagram types allows for integrating multiple
semantics: the integrated semantics of a set of models denotes all systems in the
system model that fulfill all properties induced by the models. Object references
are available as elements of a universe of object identifiers UOID3. Similarly,
a universe of class names (UCLASS), variable names (UVAR), values (UVAL),
methods (UMETH), threads (UTHREAD), and program counters (UPC) is part
of each system in the system model providing static information. For each object
oid, classOf(oid) ∈ UCLASS determines its class. All methods m are defined in
a class: definedIn(m) ∈ UCLASS and there is a set of program counters for each
method, i.e., pcOf(m) ⊆ UPC.

From a global view-point, a system of the system model is a single non-
deterministic state machine. The behavior is determined by a transition function
of the form

∆ : STATE→ ℘(STATE)

where STATE is the set of global states. Each state s ∈ STATE consists of
three components. The data store dsOf(s) ∈ UOID → (UVAR → UVAL) of a
state s captures attribute values of all currently existing objects. The control
store csOf(s) ∈ UOID → UTHREAD → Stack(FRAME) saves computational
states of methods in a stack of frames for each object and thread. A frame
f = (callee,mname, vars, pc, caller) ∈ FRAME stores the called object refer-
ence, the method name, current local variables, the current program counter,
and the calling object. To access the program counter, we define πpc(f) = pc.
Finally, the event store esOf(s) holds unprocessed messages. As can be seen from
the transition function above, we have a closed-world assumption. Inter-object

3 All elements are defined in the context of a system sm ∈ SystemModel. We write
UOID but actually refer to a specific system’s set of object identifiers UOIDsm.

communication is hidden in the global view since messages are sent directly to
the receiving event stores. Concurrent activities are possible in one state tran-
sition because a global state as a whole captures the individual state of each
object. A trace t ∈ TRACE of a system in the system model is a finite or infinite
sequence of states

t = s1 · s2 · s3 · · · such that si+1 ∈ ∆(si)

For details regarding the rationale behind the system model and the actual
definitions please consult [6, 7].

3.2 Semantic Mapping

The basic idea of the semantic mapping, depicted in Fig. 2, is that an “instance”
of the activity diagram is represented by some system model concepts such as
objects, threads, etc. The abstract names e1, c1 and so on for these entities
have been chosen deliberately to not suggest any specific choice. While Fig. 2
highlights only one instance, there may be multiple instances of the same diagram
executing concurrently.

For an execution trace and a fixed instance it is then checked if all state
transitions si+1 ∈ ∆(si) conform to the behavior prescribed by the diagram. In
Fig. 2, for example, the system model concept that represents action A has to
be executed prior to the system model concepts that represent actions B and
C. Thus, the inner semantics presented in this Section defines possible orders
of executions of actions. How these actions manifest in a system is left open
and can be detailed by “fixing” the variation points of the inner semantics.semmapsemmap

Example AD

A
B

C
D

Example

instance 1: diagram maps to e1, e2, e4, e5, c1, c2, c3

c2 c2 c2
system
statese1

e4 e5 e3

e2
c1 c3

e1

e4 e5 e3

e2
c1 c3

e1

e4 e5 e3

e2
c1 c3

...s1 s2 s3
∆ ∆

......
e7e6

...
c4

e7e6
c4

e7e6
c4

1 2 3

Fig. 2. Idea of mapping activity diagrams

The following definitions are given in standard maths. However, according to
our approach presented in [8], all definitions (including abstract syntax) will be
encoded in a theorem prover to obtain a machine-checkable language definition
which is suitable for verification purposes.

In Definition 2, we introduce the set ADInst, i.e., the set of activity diagram
instances. Depending on the intended interpretation of the activity diagram, it

has to be possible to obtain, e.g., the representation of roles or actions as system
model concepts. The exact definition is subject to specific interpretation and is
consequently defined as a variation point.

Definition 2 (Variation point for activity diagram instances). ADInst
denotes a set of activity diagram instances for an activity diagram. Given an in-
stance, we obtain the corresponding activity diagram by function ad : ADInst→
AD. No further assumptions are made on the number and structure of elements
of ADInst or on function ad.

Our semantics is completely abstract in terms of how we represent an instance
of an activity diagram as entities in the system. Establishing a connection be-
tween the inner semantics of the diagram and possible realizations is the aim of
Sect. 4 where we discuss realization variants.

In each state of the system, information about the currently executing actions
is required. Since the mapping of actions to system entities is not fixed, this also
remains a variation point.

Definition 3 (Variation point of state of actions). Function executing :
Node × ADInst× STATE → Bool checks if a given node is currently executing
for an instance in a system state.

Pin types pose a restriction on what tokens may flow into or out of the nodes.
This is defined in Definition 4.

Definition 4 (Variation point for assigning tokens to a pin type). Func-
tion elems : PType → ℘(Token) yields a set of tokens that match the pin type.
If the type is the special type >>>, then all tokens are valid (arbitrary data or just
control), i.e., elems(>>>) = Token. The special control token ⊥ is the only token
matching ⊥⊥⊥, i.e., elems(⊥⊥⊥) = {⊥}.

To completely capture the current configuration of an activity diagram instance,
control and data flow tokens that sit on transitions need also be considered. This
is introduced in the following definition. All data are tokens as well. Function
bufState in Definition 5 gives access to the current token buffer of a transition
in a state. Elements in the buffer have to match the pin types the transition is
connected to. These types are not necessarily equal but compatible. No further
assumptions are made on the behavior of the buffer.

Definition 5 (Variation point on tokens and token buffers). Token is
a set of control and data tokens. bufState : Transition × ADInst×STATE →
Buffer(Token) returns the current buffer of a transition in a state. Given a tran-
sition t, instance inst, and state s, the tokens in the buffer match the pin types
of the transition:

∀e ∈ bufState(t, inst, s) :
e ∈ (elems(ad(inst).pinType(t.InPin)) ∩ elems(ad(inst).pinType(t.OutPin)))

For convenience, we define bufEmpty(t, inst, s) = (bufState(t, inst, s) = ε)
and bufNonEmpty(t, inst, s) = (bufState(t, inst, s) 6= ε).

Further, we determine the tokens produced and consumed on a transition in
a system model step, s′ ∈ ∆(s) in Definition 6.

Definition 6 (Consumption and production of tokens). The function
cons : Transition × ADInst×STATE×STATE → Token∗ returns tokens that
have been consumed from a transition between to system states. Function prod :
Transition × ADInst×STATE× STATE → Token∗ yields tokens that have been
produced on a transition, respectively.

Outputting a token may be guarded. We do not specify syntax nor semantics
for the language Guard but, according to Definition 7, assume a function that
evaluates guards given a context.

Definition 7 (Variation point on evaluation of guards). Function eval :
Guard×ADInst×STATE→ Bool evaluates guards.

isInitial in Definition 8 checks if a system state corresponds to an initial activity
diagram configuration. A system state corresponds to an initial configuration if
there are only tokens on the outgoing transitions of initial actions and no other
action is currently executing.

Definition 8 (Initial states of a system). For an instance inst ∈ ADInst,
the function isInitial : ADInst×STATE → Bool determines if a state s ∈
STATE is an initial state:

isInitial(inst, s) =
(∃n ∈ ad(inst).Node :

(n.NType = initial ∧ ∀t ∈ outT(ad(inst), n) : bufNonEmpty(t, inst, s))∧
(∀n ∈ ad(inst).Node :

(n.NType 6= initial =⇒ ∀t ∈ outT(ad(inst), n) : bufEmpty(t, inst, s)∧
¬ executing(n, inst, s)))

A system state corresponds to a final configuration (Definition 9) if there
are only tokens on the ingoing transitions of final actions and no other action is
executing.

Definition 9 (Final states of a system). For an instance inst ∈ ADInst, the
function isFinal : ADInst×STATE→ Bool determines if a state s ∈ STATE is
a final state:

isFinal(inst, s) =
(∃n ∈ ad(inst).Node :

(n.NType = final ∧ ∃t ∈ inT(ad(inst), n) : bufNonEmpty(t, inst, s))∧
(∀n ∈ ad(inst).Node :

(n.NType 6= final =⇒ ∀t ∈ inT(ad(inst), n) : bufEmpty(t, inst, s))∧
¬ executing(n, inst, s)))

Two things may be noted here: a) Requiring that no other action is execut-
ing in an initial or final state results in unique, non-overlapping activity diagram
instances with respect to system model entities. That means, changing the state
in one instance does not affect any other instance. Currently, we still investigate
under which conditions overlapping should be admissible since it enables inter-
ference between diagram instances which can be desired or unwanted. b) As an
extension to Definition 9, we could define some pre-final state condition in that,
although a final node was reached, other actions may still execute. Depending on
the context, we could allow actions to carry on for some extra time to complete
their tasks or kill them immediately.

We now define if a step in the system from state s to state s′ with s′ ∈ ∆(s)
by an instance conforms to the behavior prescribed by the activity diagram. This
definition may be extended if additional node types (such as hierarchical nodes)
are defined.

Definition 10 (A well behaving system step). The function step with sig-
nature step : Node × ADInst×STATE×STATE → Bool prescribes the allowed
behavior in a system step w.r.t. an instance inst according to node n.
step(n, inst, s, s′) =

((n.NType = action =⇒
(startAct(n, inst, s, s′) ∨ finishAct(n, inst, s, s′) ∨ stepInst(n, inst, s, s′)))∧

(n.NType = forkjoin =⇒ stepForkJoin(n, inst, s, s′))∧
(n.NType = decisionmerge =⇒ stepDecisionMerge(n, inst, s, s′))
∨ stutter(n, inst, s, s′))

The following function definitions all have the same signature like step.

Definition 11 (A stutter step). The function stutter checks for a stutter step:
The execution state (w.r.t. the instance inst) does not change and no tokens are
consumed or produced.

stutter(n, inst, s, s′) =
(executing(n, inst, s) = executing(n, inst, s′)∧
∀t ∈ inT(ad(inst), n) : cons(t, inst, s, s′) = ε∧
∀t ∈ outT(ad(inst), n) : prod(t, inst, s, s′) = ε)

Definition 12 (Starting an action node). The function startAct checks for
a start of an action node: execution is started and the required token is consumed.

startAct(n, inst, s, s′) =
(¬ executing(n, inst, s) ∧ executing(n, inst, s′)∧
(∀t ∈ inT(ad(inst), n) : #(cons(1, t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : prod(t, inst, s, s′) = ε))

Definition 13 (Finishing an action node). The function finishAct checks
for a finishing step of an action node: Execution is stopped and the required
token is produced.

finishAct(n, inst, s, s′) =
(executing(n, inst, s) ∧ ¬ executing(n, inst, s′)∧

(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1)∧
(∀t ∈ inT(ad(inst), n) : cons(t, inst, s, s′) = ε))

While startAct and finishAct allow for behavior of nodes that last longer than
one system step, stepInst in Definition 14 is appropriate when the execution of
a node can be finished in just one step.

Definition 14 (Instant reaction of an action node). The function stepInst
checks for a step of an action node that constitutes of executing the whole action.

stepInst(n, inst, s, s′) =
((∀t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1))

It is assumed that a node produces or consumes at most one token on each tran-
sition at a time. Definition 6 allows for a more general treatment where multiple
tokens are considered. This can be exploited in future versions of the semantics
when considering, for example, streams of tokens and parameter sets [1].

Definition 15 (Step on a fork/join node). The function stepForkJoin checks
for a step of a fork or join node (or a combination of both): On all input tran-
sitions a token is consumed while on all output transitions a token is produced.

stepForkJoin(n, inst, s, s′) =
((∀t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1)∧
(∀t ∈ outT(ad(inst), n) : #(prod(t, inst, s, s′)) = 1))

Please note, according to Definition 15, the reaction of a fork/join node is in-
stantaneous. While this may be adequate for many interpretations, it may be
inappropriate for others. An alternative definition could introduce a two-phase
behavior of fork/join similar to that of action nodes. Also a combined definition
(instantaneous or delayed) is possible. The same holds for Definition 16.

Another interesting issue is the buffering of tokens. There is no need to
produce all tokens in one go. What it means to store or retrieve a token depends
on how the buffer is “implemented”. A rather sophisticated but useful way would
be to store arriving data values in attributes (one for each incoming pin) and use
an intelligent controller that senses if all tokens arrived (i.e., all attributes are
set). This would then be the instant in time at which all tokens are produced.

Definition 16 (Step on a decision/merge node). stepDecisionMerge checks
for a step of a decision or merge node (or a combination of both): There is exactly
one input token consumed and exactly one output token produced on an output
pin with its guard evaluated to true.

stepDecisionMerge(n, inst, s, s′) =
((∃t ∈ inT(ad(inst), n) : #(cons(t, inst, s, s′)) = 1∧
∀t′ ∈ inT(ad(inst), n) : t′ 6= t =⇒ cons(t, inst, s, s′) = ε)∧

(∃t ∈ outT(ad(inst), n) :
#(prod(t, inst, s, s′)) = 1 ∧ eval(ad(inst).guard(t.OutPin), inst, s′)∧
∀t′ ∈ outT(ad(inst), n) : t′ 6= t =⇒ prod(t, inst, s, s′) = ε))

The last definition of the inner semantics of activity diagrams now defines a sat-
isfaction relation of a trace of the system with an activity diagram instance. The
conditions that need to be fulfilled are: a) there is a state with an initial con-
figuration (i-th state), and all subsequent steps b) behave according to function
step, or c), if the execution reached a final configuration, it remains final.

Definition 17 (A trace that satisfies an activity diagram instance). For
a trace t ∈ TRACE of a system in the system model and an activity diagram
instance inst ∈ ADInst, t satisfies inst, t |= inst, exactly if

(∃i : isInitial(inst, t[i])∧
(∀j ≥ i, n ∈ ad(inst).Node :

step(n, inst, t[j], t[j + 1])∧
(isFinal(inst, t[j]) =⇒ isFinal(inst, t[j + 1]))))

Until now, we have not clarified how an activity diagram instance may look like
under a specific interpretation. This is the aim of the next section.

4 Variants

In this section two variants of activity diagram interpretations are introduced.
The degree of formality varies. A rather complete treatment of activity diagrams
describing a single method execution which is made up of atomic actions is given.
Activity diagrams in which actions are treated as complete methods are discussed
informally. Further variants are briefly discussed in the conclusion.

4.1 Variant 1: Nodes as atomic actions

Consider the example in Fig. 3. The activity diagram describes an algorithm
to compute the factorial of a number. Each action is assumed to be an atomic
action. The whole activity is a method definition. The idea now is to specify vari-
ants of the definitions in Sect. 3 which are variation points to obtain a semantics
in which we interpret an activity diagram as a single method. An instance of the
activity diagram hence is a concrete single execution of that method. In this case,
an activity diagram instance can be characterized by the following definition:

Definition 18 (Variant of Definition 2: Activity Diagram Instances).
An instance of an activity is a single method execution. The following functions
constitute the context of the execution:

– caller : ADInst→ UOID is the caller of the method.
– meth : ADInst→ UMETH is the method described by the activity diagram.
– params : ADInst→ UVAR∗ is the list of parameters of the method.
– callee : ADInst → UOID is the called object. It has to define the method,

i.e., classOf(callee(inst)) = definedIn(meth(inst)).
– pc : Node × ADInst → UPC is a valid program counter value of the action

for the specified method, i.e., pc(n, inst) ∈ pcOf(meth(inst))
– thread : ADInst→ UTHREAD is the thread executing the method.

Math.fac(int n)

r = 1

AD

i = 1

r = r * i

i = i + 1

 return (r * n)
[i=n]

[i<n]

Fig. 3. Activity for method ”fac”

Since all actions are atomic actions, we need not consider the execution state of a
node. All executions are instantaneous and Definition 3 remains underspecified.

No data but only control flow is relevant in this variant, hence we set PType =
{⊥⊥⊥} and define elems(⊥⊥⊥) = {⊥ = thread(inst)} for an instance inst. This is to
model the fact that if there is a token in the buffer of a transition, then the target
of the transition is the next action to execute. This is the case if the program
counter of the current stack frame identified by some object and thread points
to the node which is targeted. For some instance inst, transition t, and state s,
this means

bufState(t, inst, s) = [thread(inst)]
⇔ pcOf(top(csOf(s)(callee(inst))(thread(inst)))) = pc(t.Dst, inst)

where top is the first element of the stack. This fixes the variation points of
Definitions 5 and 4.

We assume a given action language AL and set Effect = AL and Guard ⊆ AL.
Semantics is traditionally defined: An atomic action is evaluated in the context of
an object and a thread that execute an action and it is checked whether the state
s′ mirrors the effect of executing the action in state s. Consider, for example, an
action for setting an attribute SetAttr x y: the data store of the object is updated
according to the given attribute x and value y. Also the program counter is
advanced, i.e.,

sem : AL×UOID×UTHREAD×STATE×STATE→ Bool
sem(SetAttr x y, oid, th, s, s′) =

(dsOf(s′)(oid) = dsOf(s)(oid)⊕ [x 7→ y]∧
csOf(s′)(oid)(th) = incPC(csOf(s)(oid)(th)))

In order to make sure that actions are properly executed, we add the con-
straint that executing a node n in instance inst corresponds to considering its
effect:

stepInst(n, inst, s, s′)⇔ sem(n.Effect, callee(inst), thread(inst), s, s′)

Decision nodes determine the next action to execute based on their guards. Since
this is done by setting the program counter to the right value, guards have side
effects in this variant. In order to reflect this, we complement Definition 16 with:

stepDecisionMerge(n, inst, s, s′)
⇔ ∃t ∈ outT(ad(inst), n) :
sem(ad(inst).guard(t.OutPin), callee(inst), thread(inst), s, s′)

To not contradict Definition 16, we assume eval(g, inst, s) to hold for all guards,
instances, and transitions. Consequently, Definition 16 just ensures that exactly
one token is consumed and produced while the above constraint ensures that the
effect of a guard was observed in a system step.

Syntactic consequences: According to this variant and the semantics defined
for it, fork/join nodes should be excluded syntactically since there is only one
thread or token. The sequential execution by one thread also indicates that all
nodes (except for decision nodes) may have only one output pin and that roles
are excluded as well. Since only control flow between atomic actions is modeled,
data types on pins are also disallowed.

4.2 Variant 2: Actions as methods

In this variant, all actions are considered to be complete methods of some objects
instead of atomic actions of one method. This might be a suitable interpretation
of the activity diagram in Fig. 1.

Activity diagram instances can in this case be characterized as in Defini-
tion 19: Nodes correspond to methods, there is a set of threads executing these
methods. A specific object on which the method is called is obtained by oid.
Roles are represented as objects as well.

Definition 19 (Variant of Definition 2: Activity Diagram Instances).
An instance of an activity diagram in which actions denote methods is charac-
terized by the following functions:

– meth : Node×ADInst→ UMETH is the method referenced by the node.
– threads : ADInst→ ℘(UTHREAD) is the set of threads in that instance.
– oid : Node×ADInst→ UOID is an object that holds a method for the node.
– rrep : Role×ADInst→ UOID is the object representing the role.

Instances can be refined further by introducing sub-variants of Definition 19. For
example, we may require that for an instance inst, the role of node n is defining
the method, i.e.,

definedIn(meth(n, inst)) = classOf(rrep(ad(inst).roleOf(n), inst))
= classOf(oid(n, inst))

According to Fig. 1, for example,

definedIn(meth(Evaluate, inst)) = classOf(rrep(Referee1, inst))

So the method that implements action Evaluate is defined in a class that repre-
sents role Referee1. An interesting question in this context then is: Who is calling
an action (i.e., method). Is it done by the role itself? Is there some additional
control structure that checks if a role finished one of its methods and then calls
(enables) the next one? Methods may, however, not be associated to roles at
all. Instead, specific objects, structured roughly as in the command design pat-
tern [9] could represent action nodes. To ensure data integrity, one has to be
careful when allowing concurrent instances, i.e., concurrent executions of meth-
ods (or of a single method as in variant 1). Analysis of the activity diagrams
would be required to proof or refute this property. At this state, we cannot
faithfully give definite answers but will examine these questions in future work.

Executing a node (cf. Definition 3) means executing a method, so there has
to be a stack frame f = (oid(n, inst),nameOf(meth(inst)), ∗, ∗, ∗)4 for a thread
th ∈ threads(inst), i.e.,

executing(n, inst, s)⇔ f ∈ (csOf(s)(oid(n, inst))(th))

Again, we could be more specific. For example, we could force the caller of
the method to be the object that is representing the role, i.e., we have the last
component of f equal to rrep(ad(inst).roleOf(n), inst). In this variant, a natural

Handle
Person

int x

Person p

class HandlePerson { // ...
 int x; Person p;

 void setX(int x1) {
 ctrl.notify(“setX“); x = x1;
 }
 void setPerson(Person p1) {
 ctrl.notify(“setPerson“); p = p1;
 }

 void exec() { // ... } //called by ctrl.
}

Fig. 4. Special buffering strategy for tokens as attributes

interpretation of tokens are method calls in the system. However, there is again
more than one choice. A token may correspond to a call that is both carrying
control and data. A single token could then correspond to a possibly complex
parameter list for the method. In case of multiple incoming transitions to a node,
we could also follow the idea discussed earlier that the actual method execution
can only be started if all required input data has arrived on all input pins. The
(incomplete) code snippet in Fig. 4 informally shows a possible implementation
in which an action HandlePerson is mapped to a class which has attributes for all
input pins. Setting the attribute also informs some controller that keeps track of
the state of attributes. Once all attributes are set, the controller may call method
exec that implements the actual behavior. Syntactically, all features introduced
in Sect. 2 make sense in this variant, so there are no syntax restrictions as in the
previous variant.

4 Values we are not interested in can be marked as “wild card” by ∗

5 Related Work

The common denominator of most works regarding the semantics of activity di-
agrams is the idea to define the possible orders of executions of actions. In that
respect, our semantics is not different. The UML standard defines an informal
token flow semantics with semantic variation points [1]. However, the standard
provides no means to describe realizations. In our approach, we obtain realiza-
tions by stating variants of several function definitions. A formal approach uses
procedural Petri-nets for the semantics of UML2 activity diagrams [10]. Here,
only the control flow aspect of activity diagrams is covered (including concur-
rency and procedure calls), whereas data flow is covered in our approach as well.
As an extension, the data flow in activity diagrams has been mapped to Col-
ored Petri-nets [11]. Both works do not consider a specific application domain.
Eshuis [4] develops a requirements-level and an implementation-level semantics
for activity diagrams. Both semantics are fixed and focus on workflow manage-
ment systems while we introduce an inner semantics from which variants can be
developed. Another token-based approach in the application area of workflow
management systems uses a virtual machine to execute activities [12]. Here, a
fixed semantics is defined by mapping a model to its execution in said runtime
engine. The semantics of UML actions is formally defined using the system model
as a semantic domain in [13]. An extension of this work [14] describes a virtual
machine for UML2 actions and activities based on a fixed interpretation in the
system model. Another natural candidate to formalize the semantics of activi-
ties are process calculi. For example, in [15] the µ-calculus is used. The proposed
Petri-net and process calculus semantics often have the advantage of being ex-
ecutable and analyzable but do not allow an easy understanding of models in
terms of possible implementations.

6 Conclusion

We have defined a formal semantics for a subset of UML activity diagrams. The
inner semantics was equipped with variation points that can be interpreted dif-
ferently in specific application domains. Variants are obtained by deciding which
system model entities make up a diagram instance and how their execution state
and token flow is determined. This was sketched using two example variants.

Having clarified the inner semantics of activity diagrams in terms of the sys-
tem model, we are now working towards formalizing different variants of activity
diagram interpretations. In this paper, we were mainly concerned with rather
low-level interpretations of activity diagrams as simple action or method execu-
tions. As discussed in [3], activity diagrams can be used to model simple web
page flows but also complex collaborations in web information systems. Execut-
ing an action in this context means, for example, showing a web page to a user,
waiting for a data update, and storing it in a session context or data base. An-
other interesting line of future work is to include further concepts from activity
diagrams, for example, interruptible activity regions, parameter sets, etc. How-
ever, there is the danger of cluttering the notation with constructs which are only

useful in very special situations. To avoid this, we will introduce these concepts
as syntactic variants in addition to a relatively small language core as explained
in [16]. Further, we are confident that it is possible to combine different in-
terpretations of activity diagrams when considering hierarchical decomposition.
For example, it is possible to model the content of nodes interpreted as methods
by diagrams in which nodes are interpreted as basic actions and to adopt the
diagram instance.

References

1. Object Management Group: Unified Modeling Language: Superstructure Version
2.2 (09-02-02) (2009) http://www.omg.org/spec/UML/2.2/Superstructure/PDF/.

2. International Organization for Standardization (ISO): ISO 5807:1985 Information
processing – Documentation symbols and conventions for data, program and sys-
tem flowcharts, program network charts and system resources charts (1985)

3. Koch, N., Kraus, A., Cacharo, C., Meli, S.: Integration of business processes in
Web application models. Journal of Web Engineering 3(1) (2004) 22–49

4. Eshuis, H.: Semantics and Verification of UML Activity Diagrams for Workflow
Modelling. PhD thesis, Univ. of Twente (2002)

5. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics“?
Computer 37(10) (2004) 64–72

6. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Considerations and Rationale
for a UML System Model. In Lano, K., ed.: UML 2 Semantics and Applications.
Wiley (2009)

7. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Definition of the System
Model. In Lano, K., ed.: UML 2 Semantics and Applications. Wiley (2009)

8. Grönniger, H., Ringert, J.O., Rumpe, B.: System Model-Based Definition of Mod-
eling Language Semantics. In: Formal Techniques for Distributed Systems 2009
(Proceedings). Volume 5522 of LNCS., Springer (2009) 152–166

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional (1995)

10. Störrle, H.: Semantics of UML 2.0 Acitivities. In: Intl. Symp. Visual Lan-
guages/Human Computer Centered Systems. (2004) 235–242

11. Störrle, H.: Towards a Petri-net Semantics of Data Flow in UML 2.0 Activities.
Technical Report TR 0504, University of Munich (2004)

12. Vitolins, V., Kalnins, A.: Semantics of UML 2.0 Activity Diagram for Business
Modeling by Means of Virtual Machine. In: 9th IEEE International EDOC Enter-
prise Computing Conference, IEEE Computer Society (2005) 181–194

13. Crane, M.L., Dingel, J.: Towards a Formal Account of a Foundational Subset for
Executable UML Models. In: Model Driven Engineering Languages and Systems
(MoDELS) 2008 (Proceedings). Volume 5301 of LNCS., Springer (2008) 675–689

14. Crane, M.L., Dingel, J.: Towards a UML virtual machine: implementing an in-
terpreter for UML 2 actions and activities. In: Centrer for Advanced Studies on
Collaborative Research (CASCON) 2008 (Proceedings), IBM (2008) 96–110

15. Küster, J., Koehler, J., Novatnack, J., Ryndina, K.: A Classification of UML2
Activity Diagrams. Technical report, IBM ZRL Technical Report 3673 (2006)

16. Cengarle, M.V., Grönniger, H., Rumpe, B.: Variability within Modeling Language
Definitions. In: Model Driven Engineering Languages and Systems (MoDELS)
2009 (Proceedings). Volume 5795 of LNCS., Springer (2009) 670–684

