
Goal Modeling and MDSE for Behavior Assistance
Judith Michael, Bernhard Rumpe, Lukas Tim Zimmermann

Software Engineering
RWTH Aachen University

Aachen, Germany
{michael, rumpe}@se-rwth.de, lukas.tim.zimmermann@rwth-aachen.de

Abstract—Systems providing their end-users behavior assis-
tance must be customized to meet those users’ needs and behavior
goals. We investigate how it is possible to improve the engineering
process of such systems and provide humans better support by
using human behavior goals not only for analysis but also in
the design and run-time of a system. Current research focuses
either on the analysis phase of a system or uses goals at the
run-time of an application. They do not consider the mapping of
human behavior goals from one phase to the other one needed
for generative approaches. Within this paper, we present our
vision towards the use of goals and goal modeling for human
behavior assistance in generated systems. We show its application
by adding assistive functionalities to an existing, full-size real-
world information system. For the engineering of this system, we
follow a model-driven, generative software engineering approach.
Our prototypical implementation towards the vision of using goal
models for human behavior assistance shows the feasibility of the
approach and provides first insights into how it could improve
the assistive abilities of systems towards end-user goals.

Index Terms—Model-Driven Software Engineering, Goal Mod-
eling, Human Behavior Goals, Assistive System, Human-Centered
Engineering

I. INTRODUCTION

Motivation. Improving user support within assistive systems
requires looking at both, the behavior to be supported and
the underlying goals of each individual user to better tailor
the support to specific needs. Assistive systems and services
provide situational support for human behavior based on
information from previously stored and real-time monitored
structural context and behavior data at the moment a person
needs or asks for it [1]. They use human behavior at run-
time [2], [3] to provide support as step-by-step instructions.
We assume that using goals of each individual user helps to
better tailor the support to specific needs. We refer to such
goals as human behavior goals and use this term to refer to
desired end states of activities, e.g., a person is ready to leave
the house. Systems providing behavior assistance have to be
tailored to human behavior goals of their users which means
they have to be reflected in the implementation of the system.

To use Model-Driven Software Engineering (MDSE) helps
to reduce the resources and the development effort needed for
engineering systems [4], aspects which are crucial for creating
assistive systems. This is important because assistive systems
often target niche application areas, with only a few potential
application users with very specific needs. Delivering such

systems for niche areas is of high importance, as they provide
critical functionality such as supporting people with impair-
ments, or ensuring safety in potentially dangerous work envi-
ronments. Models used within model-based assistive systems
are, e.g., behavior models to describe human behavior [5]–[7],
context models [8], [9] or human emotion models [10].

Research gap. To the best of our knowledge no approach
exists which maps goals in Requirements Engineering (RE)
to human behavior goals used during support at run-time.
We have to consider human behavior goals from analysis
to run-time of an assistive system within a human-centered
engineering approach. Following Grundy, Khalajzadeh, and
Mcintosh [11], the mapping from higher-level abstract require-
ments models into lower-level system models (a set of models
used to design the system) is still a challenging aspect.

Current research focuses either on identification of goals in
the analysis phase or uses goals at run-time of an application
specifically in self-adaptive systems. A challenge for the use
of goals detected within RE in the analysis phase of the engi-
neering of assistive systems is that they are typically defined
on a higher level of abstraction, e.g., on the level of main
functionalities [12] or non-functional requirements. Assistive
systems require goals on a fine-grained level of detail, just
as with actions and activities [13]. Another open issue for
assistive systems is that goals have to be manually mapped
into system behavior. MDSE aims at increasing the degree of
automation which requires automated transformations. Agent-
based and self-adaptive systems use goals within the run-
time of a system. Agent-based systems use goals to define
what an agent should pursue [14]. Some of these approaches
consider human agents [15] but do not provide the fine-grained
level of assistance needed for step-by-step support of assistive
systems. Self-adaptive systems [16] use goals during run-
time to set specific goal states which should be reached by
a planner [17]. Dalpiaz et al. [18] distinguish between design-
time goal models and run-time goal models which are used
to analyze the run-time behavior of a system with respect to
its requirements. These approaches do not consider human
behavior goals but basic ideas from these approaches such
as how goals are formulated and handled at run-time can
be adapted for the use in assistive systems. The connection
between requirements models and software models is still not
a matter of research within these areas.

[MRZ21] J. Michael, B. Rumpe, L. T. Zimmermann: 
Goal Modeling and MDSE for Behavior Assistance. 
In: Int. Conf. on Model Driven Engineering Languages and Systems Companion (MODELS-C), pp. 370-379, ACM/IEEE, Oktober 2021. 
www.se-rwth.de/publications/



Research question. This papers discusses how it is possible
to improve the engineering process of assistive systems by
using human behavior goals in the analysis, design and run-
time of a generated assistive system.

Contribution. We present our vision towards the use of goals
and goal modeling for human behavior assistance in generated
systems and show a first prototype towards this vision in a full-
size real-world application. We have identified relevant human
behavior in the analysis phase, modeled them as UML Use
Case and Activity Diagrams (ADs) and identified goals. Within
the design phase, we have mapped these goals and activities
to according Domain-Specific Languages (DSLs) [19] and
introduce a goal modeling DSL. To incorporate these models
within the generation process of an assistive system, we use the
goal models as additional input for the MontiGem generator
framework [20] within a full-size real-world application. The
goals are used to show users at run-time which options they
have in using the system for two selected use cases. Our
lessons learned from this prototypical implementation are how
goals should be formulated, what main goal concepts might
be used in and together with system models and how these
concepts can be translated to code within the generation
process of assistive systems as well as how goal modeling
can be used during run-time of an assistive system.

Structure. The paper is structured as follows: Section II
describes relevant concepts for this paper such as human
behavior goals, assistive systems, goal modeling languages
and the code generator used for the prototypical implemen-
tation. Section III shows our vision from real world pro-
cesses and goals to requirements and system models used
for code synthesis. Section IV presents it’s application by
adding assistive functionalities in an existing, full-size real-
world information system. Section V relates our work to other
approaches and Section VI discusses lessons learned from this
first realization. The last section concludes.

II. PRELIMINARIES

We introduce the relationship between human activities
and goals as we believe that their use improves the assistive
capabilities of systems. We provide an overview of different
goal modeling languages and their used concepts and introduce
the generator framework MontiGem which is used for the
prototypical implementation towards our vision.

A. Human Behavior Goals in Assistive Systems

We understand human behavior goals are desired end
states of activities. This follows the ideas in the following
three definitions: Leon’tev [21] describes that human actions
(concrete steps) are directed towards certain conscious goals.
In philosophy, ’teleology’ [22] (from greek telos, “end,” and
logos, “reason”) states that activities or processes always have
a reference to some purpose, end, goal or function. Eccles and
Wigfield [23] define goals as desired end states which people
try to attain. This happens through the cognitive, affective,
and biochemical regulation of their behavior. We focus on

individual goals [24] (in contrast to system goals often used
in goal modeling approaches within the RE research area).

To use human behavior goals for the MDSE of assistive
systems requires that goals as well as activities are modeled
in machine understandable form either in general purpose
languages or as DSLs. Within [25], we have introduced an
idea on how behavior goals reduce the solution space for
reasoning in assistive systems during run-time. That approach
describes the process how to use sensory observations of
human behavior together with domain-specific and general
knowledge. Within this paper, we discuss the implications on
the engineering process of assistive systems and suggest to use
human behavior goals in the analysis, design and run-time of
a generated assistive system.

B. Goal modeling languages

Goal modeling is used in a broad variety of research
directions of Informatics, such as RE [26], [27] and specif-
ically Goal-Oriented RE [9] or RE for adaptive systems [28],
robotics [29], artificial intelligence [30], human-computer in-
teraction [31], [32] information systems [33], or enterprise
modeling [34], [35]. For a better understanding of the used
concepts in goal modeling languages, we have analyzed some
of the most common representatives.

The goal modeling approach i* [36] is a goal and actor
oriented goal modeling language which is used in RE and
other areas of Informatics. It contains two models to define a
scenario. The Strategic Dependency (SD) model defines actors,
their dependencies and dependencies between tasks, resources,
goals and softgoals. Actors are differentiated by type and
goals are differentiated by more or less essential goals. For
dependencies three different degrees of strength exist. The
Strategic Rationale (SR) model describes the processes in the
scenario based on the the entities namely goals, soft goals,
tasks and resources. Tasks can be decomposed and due to
relations between goals and tasks it can be described which
goal can be achieved by a task. A newer version of i* is called
iStar 2.0 and it, e.g., introduces elements, rules and constraints
on social dependencies [37], as well as types for actors [38].

Another prominent goal modeling approach is Knowledge
Acquisition in automated specification (KAOS) [39], [40]. It
uses four models related to each other to represent a scenario.
A goal model defines goals, obstacle models define obstacles
that can occur, an object model describes the agents, their
goals and their relations and the operational model represents
which action an agent has to take to reach a certain goal. Goals
are differentiated by more or less essential goals.

In the Goal-Based Requirements Analysis Method
(GBRAM), goals capture the reasons why the system must
exist [41]. Goals are divided into subgoals and similar to
KAOS obstacles exist. Requirements specify how a goal
should be achieved and constraints are formulated to specify
which conditions have to hold to reach a goal. The agents are
the participants in the system and so called scenarios describe
the behavior of the system and its environment depending on
conditions and the situation.



A goal modeling approach from agent-based systems is the
Belief, Desire and Intentions (BDI) approach [42]. Beliefs,
namely the world knowledge as facts about the environment
and the state of the agent, are stored in a knowledge database.
Desires are the goals of the agent, divisible into sub goals.
Intentions are plans to achieving a goal. Plans can be differ-
entiated by plans for sub goals, where the lowest level of the
plan consists of elementary actions the agent can take.

Tab. 1. Different goal modeling languages in comparison

This comparison shows that different types of goals, and
actions and subjects in relationship with goals are quite
common. Table 1 provides an overview of the concepts of
these goal modeling languages. There are several concepts
that are shared throughout different goal modeling approaches.
All goal modeling approaches differentiate between different
types of goals in a certain way. One way is to differentiate
goals by strength or type in for example hard and soft goals
as done in [38]. Another way is to differentiate goals and sub
goals which have to be reached to reach the parent goal as
in [42]. Another concept shared by all evaluated goal modeling
approaches is the concept of subjects or agents. Every goal
modeling language offers the option to define stakeholders in
the system. i* and GBRAM enhance this by introducing roles
as types for subjects and agents [38], [41]. The subjects and
agents are tightly bound to the goals. Except for GBRAM,
all goal modeling languages introduce the concept of actions
which are also related to the goals.

We have decided to create an own DSL based on these com-
mon concepts as (1) it can be tailored to specific needs [19] for
assistive systems, (2) it can be extended if we realize the need
for changes in an agile engineering process and (3) we need
a textual DSL to be handled within our generative approach.

C. The generator framework MontiGem and its application

The generator framework MontiGem [20] generates a run-
ning information system from a set of models in different
DSLs. The used DSLs are based on MontiCore [43], a
language workbench and development tool framework for

defining DSLs. Currently, the generator handles the following
set of models (in different modeling languages):

• the domain model (UML Class Diagram (CD) language)
including the main concepts relevant for data storage,

• several Graphical User Interface (GUI) models (GUI-
DSL, a DSL based on [44]) defining each user interface
of the application,

• data models (UML CDs) for each GUI page describing
a subset of the data displayed on a certain page, and

• optional Object Constraint Language (OCL) models for
defining data input validators, and

• tagging models (a DSL based on [45]) to add platform
specific information to the domain model.

The generated application is realized as a client-server
architecture using Java in the backend and Typescript/HTML
within the Angular 6 framework in the frontend. Following a
MDSE approach, data structures, the database connection as
well as the communication between backend and frontend are
generated. The backend contains the required business logic
and a connection to a MYSQL database managed through
Hibernate. The frontend visualizes data and handles user
interaction. The generated Java and Typescript code can be
extended by handwritten code using the TOP-mechanism [43].
This ensures that the handwritten code remains stable during
re-generation and allows for agile development processes.

We are using MontiGem in a series of projects and appli-
cation domains, e.g., energy management systems, platforms
to support the engineering of wind turbines, cockpits for self-
adaptive digital twins [46], or a platform for improving the
understandablity of privacy policies of smart watches within
the InviDas project1.

We use the application developed in the Management Cock-
pit for University Chair Controlling project2 to show a first
prototypical implementation of our vision. It is the largest
application developed with MontiGem with a size of app. 9000
lines of code (LOC) in models, 115.000 LOC hand-written and
390.000 LOC generated. MaCoCo allows university chairs to
manage and control their finances including public budgets
and third party funding, staff with, e.g., contracts and salary
bookings and projects with, e.g., work packages and effort
planning [47]. App. 160 out of 400 chairs at RWTH Aachen
university use it. We have extended this application by adding
assistive functionalities.

III. THE VISION: USING GOAL MODELING FOR BEHAVIOR
ASSISTANCE

As already discussed in [25], we assume that the use of
goals and goal modeling improves human behavior assistance
in generated systems. Our vision covers real world processes
and human goals which are transformed into analysis models,
have to be mapped to system models and are then transformed
into software code in an automated way within agile MDSE
processes. Figure 1 provides an overview of this idea.

1https://www.se-rwth.de/projects/#InviDas
2https://www.se-rwth.de/projects/#MaCoCo

https://www.se-rwth.de/projects/#InviDas
https://www.se-rwth.de/projects/#MaCoCo


Fig. 1. From real world processes and goals to requirements and system models used for code synthesis

Starting from the real world, we want to create a software
system that aims at supporting human processes i.e. we need to
include assistive services. Engineering such systems requires
to move from the problem domain (Figure 1 on the left) to
the solution space (Figure 1 on the right). As methods to
reduce the gap between the problem domain and the software
implementation domain, we use agile MDSE approaches [48].

Within the analysis phase knowledge of domain experts
from the real world needs to be transformed into scenarios,
domain, behavior, and goal models. The analysis phase in-
cludes the elicitation of relevant domain concepts and context
concepts. These can be collected as glossaries and further
described in domain models using underspecified UML CDs.

According to Rolland and Salinesi [49], it is difficult for
domain experts to deal with the fuzzy concept of goals.
The use of scenarios supports their understanding. Thus,
they propose to use goals to support scenario discovery and
scenarios to help in goal discovery [49]. As their approach
uses activities as goals and our approach requires states as
goals, their approach might be used in an adapted way. We
suggest to define specific scenarios as high level use cases
and further detail it in behavior models such as UML ADs
or BPMN models to get a better idea of the related processes
which an assistive service should support.

Within the design phase, we have to transform and map
RE models to system models. This requires, e.g., that UML
CDs are further specified to be useable for code synthesis,
exemplary UML Object Diagrams (ODs) can be defined to
provide realistic test and dummy data, GUI models have to be
created using information from scenarios, or input validators
have to be specified for input forms. For goals identified in
the analysis phase three possibilities exist (see Figure 2):

1) Goal concepts from the RE phase are transformed into
concepts of a goal modeling language which combines
goals and processes: This requires less DSL maintenance
as there exists only one language. This risks that goal and
process concepts are mixed and it reduces the reuseability

Fig. 2. Variants to use goals in MDSE

of the DSL as it is purpose-specific.
2) Goal concepts from the RE phase are transformed into

models in an own goal modeling language with con-
nections to concepts in models of a process modeling
language: This requires the maintenance of two different
DSLs and a tagging language able to connect concepts
from models of two different languages. Positive aspects
are the reuseability of the DSLs and a clear assignment
of language concepts.

3) Goal concepts from the RE phase are added as tags to
concepts in models of a process modeling language: This
requires a DSL for process modeling and a tagging DSL
which allows to add statements to concepts of models in
one DSL. This approach is not feasible if the structure of
the concept goal is more complex, e.g., several attributes
and types, and relationships between goals have to be
modeled as well.

All three possibilities allow for MDSE approaches to take
these system models and synthesize code for assistive services
or whole assistive systems.



During run-time of the software system, goals and their
connected activities in system processes can be tracked. Some
goal-related functionalities of an assistive system are:

1) Continuously monitor and evaluate goals: This requires
an intelligent monitoring component being able to handle
models at run-time or at least a component which checks
the current states of a set of goals. For activities, compo-
nents such as process engines fulfill this functionality.

2) Provide structures to store a set of goals: This internal
structure is needed to handle monitored goals.

3) Provide UI for goal overviews: This allows to show
users unobtrusively what goals they could reach within
a system.

4) Provide UI for support steps on each affected functional-
ity: Assistance for end-users has to be integrated within
the UIs providing functionalities such as to fill in a
timesheet. This could be realized in various ways, e.g.,
own boxes, overlays or tooltip texts in GUIs, or additional
acoustic information.

5) Provide UI to set, change or reject goals (optional): This
depends on the degree of freedom of the processes within
a generated application. It might be necessary that a user
has to pursue certain goals to reach next ones.

This vision allows various design decisions which have to
be further investigated and compared. The following section
shows one possible implementation and Section VI discusses
lessons learned.

IV. PROTOTYPICAL IMPLEMENTATION TOWARDS OUR
VISION

We show the prototypical realization towards our vision
within the full-size real-world application developed in the
MaCoCo project, where assistive functionalities are added.

A. Considered Use Cases

The MaCoCo project uses an agile, MDSE approach which
includes iterative requirements elicitation. Starting with a
rough concept of the functionality to be realized, interviews
with various end-users from different chairs as well as involved
departments from the central university administration lead
to better specifications and more detailed use cases in every
iteration. The scenarios are described as use cases including
textual descriptions, sketches of the graphical user interface,
detailed descriptions of displayed and calculated data and
process models for more complex functionalities with different
participating roles. There is no explicit focus on workflows or
process descriptions for all aspects as a main system aim is
to provide users as much freedom as possible.

For the prototypical realization towards our vision, two use
cases in MaCoCo were chosen: to match bookings between an
external (SAP) account and an internal account and to keep
timesheets for funded projects. To match bookings between
these two systems is relevant because it is possible to plan
bookings within the MaCoCo application which are realized
at a later stage. To update this internal plans with the actual

bookings within the SAP system requires comparison abilities
and manual effort.

Fig. 3. Managing project timesheets in the MaCoCo application presented as
an UML AD

The second use case is the timesheet process (see the UML
AD in Figure 3). For universities, ensuring the correctness
of timesheets is highly relevant, as errors can lead to less
project funding being paid out than approved, funds having
to be repaid, or in the worst case, the entire university being
excluded from entire research funding programs.

Within this process, the employee has the option to enter
his or her worked hours for one or more third party funded
projects into a digital timesheet. After doing so, the timesheet
can either be automatically checked or directly submitted to
the chair administration. The chair administration examines
the timesheet and returns it to the employee either for editing
if it is incorrect or for printing and signing it. Incorrectness can
be, e.g., caused by including more than the allowed working
hours or work time entries during vacations or illnesses. The
chair administration sends the printed and signed version
to the central administration, which is in case of RWTH
Aachen university the third party funding department. After
the examination of the timesheet, the central administration
returns it to the chair administration. If the timesheet was
approved by the central administration, it is archived at the
chair in two ways, namely physically and digitally within the
MaCoCo application. If the timesheet is not approved, it can
be returned to the employee for editing.

Considering these two use cases, we have identified possible
user goals as states to reach for each activity, e.g., ’no errors
in the check’ for the activity ’check’.

B. System Design and the newly developed Goal DSL

Using the information from the scenario descriptions, pro-
cesses, and human behavior goals, we define system models
used as part of the generation process. As the described use
cases are an addition to existing functionalities, the domain
model already exists as UML CD and has to be extended, GUI



models have to be extended to represent support functionalities
and goals have to be included. We have decided to realize
variant 1 described in the vision, namely to use a goal
modeling language which combines goals and processes.

This goal modeling language (in short GoalDSL) was
newly designed for its use in this prototypical realization.
A goal model consists of three different components: The
stakeholders, the goals and the actions. To describe rela-
tionships in-between them, links connect goals and relations
connect actions. Actions contain pre-conditions which have
to be met before action execution, as well as post-conditions,
which apply after action execution. Conditions may relate to
stakeholder properties. A stakeholder is an actor in the system,
for example represented by a class in MaCoCo defined in
the domain UML CD. These concepts can be imported and
addressed in the goal model by its relative names. For defining
a sequence of actions for a scenario the goal model must
include start and end points for the action relations.

To show text for user assistance in the frontend, goals and
actions have to contain a text field with a specified text shown
(1) if a goal is reachable, (2) an action is executable or (3)
after a certain goal was reached, or (4) a certain action was
executed. Depending on the use case, it might be necessary to
not only use variables from classes in the backend in a goal
model, but also frontend variables to assist the user regarding
user input. Therefore, the GoalDSL offers the possibility to
import frontend variables and use them in the conditions.

Now that we have this DSL, a goal model can be derived
from the UML AD. Listing 1 shows an excerpt of the GoalDSL
timesheet goal model which was derived from the AD in Fig-
ure 3. For every activity in the AD, an action in the goal model
is derived. In this example the actions enter (ll. 21-24),
check (ll. 25-28) and submit (ll. 29-32) are derived from
the activity diagram. Every action has a goal which is reached
when the action is executed. The stakeholders in Listing 1 are
the TimeSheet (l. 8) and the TimeSheetStatus (l. 9)
classes from the MaCoCo system. The order of events from
the AD is represented through the action relations (ll. 36-39)
with a start (l. 34) and an end point (l. 35).

1 package de.monticore.lang.goaldsl.timesheet;
2 import de.macoco.be.domain.cdmodelhwc.classes
3 .timesheet.TimeSheet;
4 import de.macoco.be.domain.cdmodelhwc.classes
5 .timesheetstatus.TimeSheetStatus;
6 goalmodel TimeSheet {
7 stakeholder{
8 TimeSheet z;
9 TimeSheetStatus TimeSheetStatus;

10 }
11 goal TimeSheetEntered{
12 action: enter
13 }
14 goal TimeSheetAutomaticallyChecked{
15 action: check
16 }
17 goal TimeSheetSubmitted{
18 action: submit
19 }
20 ...
21 action enter{
22 pre: true
23 post: z.getStatus == TimeSheetStatus.IN_ACQUISITION
24 }
25 action check{

26 pre: z.getStatus == TimeSheetStatus.IN_ACQUISITION
27 post: z.getStatus == TimeSheetStatus.IN_ACQUISITION
28 }
29 action submit{
30 pre: z.getStatus == TimeSheetStatus.IN_ACQUISITION
31 post: z.getStatus == TimeSheetStatus.INTERNAL_REVIEW
32 }
33 ...
34 start Start
35 end End
36 relation Start -> enter
37 relation enter -> enter ˆ check ˆ submit
38 relation check -> enter ˆ check ˆ submit
39 relation submit -> ...
40 }

Listing 1. Excerpt of the timesheet goal model derived from Fig. 3

C. Code Generation and Handling Goals during Run-Time

The MaCoCo application had to be extended to be able
to use goal models for user assistance. We had to adapt
the generator, the domain, data and GUI models and some
handwritten parts of the system. Figure 4 shows the abstract
data structure of the goal model logic in the backend.

Fig. 4. Goal related system classes of MaCoCo (inspired by [47])

Domain Model. We extend the domain CD for the classes
Goal and Action with the attributes name, type, status and
an instanceID as well as the enumerations GoalStatus and
ActionStatus. The status of goals or actions contains the
information whether they have been (last) reached or (last)
executed. Domain CD classes result in the database schema
during the generation process and generated Data Access
Object (DAO) classes allow to access instances of goals and
actions during run-time. Handwritten code for specifying the
methods extend the generated GoalDAO class.

Generator. We extend the main generator to create
an ActionClass and a GoalClass for each goal
model to maintain the stored goals for each instance. The
GoalClasses contain methods to create, delete, load and
mark goals as reached for an instance, as well as getter
methods for the goal links, goal texts and other static infor-
mation related to the goals independent of their instance. The
ActionClasses contain methods to maintain the actions



for an instance and get, e.g., action texts or relations. The
ActionClass also contains the logic to check the conditions
for an action to determine whether it is executable or not,
which the user can be informed about.

GUI Generator and frontend variables. Additionally, we
adapt the generator for the GUI to be able to handle frontend
variables, as they are not yet included in models. E.g., for each
variable an attribute was generated into the ActionClass.
This requires also to extend the model defining the commands
between frontend and backend, where a command for each
frontend variable was defined.

Data Transport. For data to be shown in the frontend,
we create data models defining which data is loaded out of
the database. For example on request of the frontend, the
XGoalTextDTOLoader (see Figure 4) loads specific goal
text (i.e. executable actions and last reached goals) for an
instance of a goal model X from the database. The Data
Transfer Object (DTO), which is filled with the data, is then
sent to the frontend, where the data will be displayed.

Additionally, existing GUI models and pages were adapted
to show support information, e.g., see help texts in Figure 6.

D. Assistance in the GUI

We use goal models as additional input for the generator
and generate user assistance within the GUI of the MaCoCo
application. Users get support for specific functionalities of the
application: We show additional information about possible
process steps and goals to reach.

Fig. 5. MaCoCo dashboard excerpt with user assistance

Figure 5 shows an excerpt of the MaCoCo dashboard. We
show the user all open assignments, represented as goal model
instances in the system, that can or have to be fullfilled by
the user. Area A in Figure 5 shows an example table which
contains an overview over all the open goal instances in the
system. There are 41 accounts where bookings have to be

Fig. 6. Match bookings between an external (SAP) and an internal account
with user assistance

matched and three timesheets that have not yet been submitted
within a specific month. Area B shows the help text for an
open goal, which guides the user to another page where he
has to initialize the connection to the external accounts.

Figure 6 area A shows a help text which assists the user to
match bookings between an external (SAP) account (area B)
and an internal account (area C). Depending on the bookings
that the user has chosen, different options for the matching
exist which influence the list shown in area A. In the help
text, the user is informed about these options, as each option
is represented by a goal in the goal model. In this concrete
example in Figure 6, the user has selected external bookings
in area B and in area C no booking is selected. Thus, the
help text in area A informs the user, e.g., about the option
of copying selected external bookings to the internal bookings
because the conditions for executing this action are met.

V. RELATED WORK

To the best of our knowledge, there is no approach that uses
goal modeling to generate assistive systems, and there is no
approach that maps goals in RE to human behavioral goals
used for support at run-time.

Goal modeling in requirements engineering. Goal modeling
and goal modeling languages are especially used in RE but the
mapping from higher-level abstract requirements models into
lower-level system models is hardly considered up to now.

Sutcliffe and Sawyer [33] introduce a theoretical framework
for the conceptual modeling of personalized and context-
aware systems and demonstrate it in a healthcare case study.
They propose a user characteristics layer to model needs of
individual users and generic user characteristics as well as



a personal goals layer including attitudes and preferences by
individuals. Aspects of the approach can be considered for
our vision as goals are represented as states and could be
used as a base for a model-driven approach. The relationship
between our approach and a Bayesian Network representing
motivations, emotions and values is not considered yet.

There exist approaches to map goal models to BPMN
processes [50] or align goals and business processes [51].
However, their focus is on organizational goals, which differ
from our understanding of human behavior goals. Ghasemi and
Amyot [52] investigate approaches for goal-oriented process
mining. Whereas one of the identified categories of goal
modeling and requirements elicitation seems to be promising
to consider, the level of used goals is again too far away from
defining goals as reachable states for activities.

Goal modeling for assistive systems. Baska et al. [15]
implement the BDI framework [53] and introduce a multi-
purpose goal model for a team of assistive agents in a digital
coaching system. They assess user information via forms in
seven categories of motives, e.g., maintaining physical strength
and physical health, or having fun and being entertained.
Additionally three questions are asked for each motive, namely
the degree of importance for a user, to which extend the
activity is currently performed in a satisfactory way and if an
intervention by an agent is wanted (which results in defining
a goal relating to this activity). This results in one goal with
a certain rank which is related to each upper-level activity. In
contrast to our approach, the activities are defined too general
and such system would not be able to provide a fine-grained
step-by step support based on human behavior goals.

Rafferty, Chen and Nugent [54] propose a goal recogni-
tion system together with an action planning mechanism as
part of an assistive living solution to support inhabitants.
Whereas their idea to use a goal repository, a goal recognition
component, a specific goal generation mechanism, an activity
planning component and an assistance provisioning component
seems to be promising, they define goals as if they are
activities, e.g., “get cup” or “make tea”, and do consider goals
as states which would be, e.g., “user has a cup in his hand”
or “user has a cup or tea in his hand”. To consider goals as
reachable states is an important aspect of our approach.

Goal modeling in generative approaches. There exist several
approaches for goal-oriented generation, e.g., [18], [55]–[58],
touching other system architectures and application domains,
however, they do not focus on human behavior assistance.

[55] and [56] describe a goal-oriented approach where goal
models are used to generate code for a self-adaptive system.
It uses and extends the software engineering methodology
TROPOS to model goals and an own tool to analyze and
translate the models into Java code, in form of a BDI-agent.
In difference to our approach, they differentiate between hard-
and softgoals and by goal types and do not support end-users
in own behavioral steps.

Anda and Amyot [57] present an approach where goal
models are used to generate arithmetic functions in a cyber-
physical system. Similarly to our paper, all entities from the

goal model are used for generation. The authors state that
goal models often allow invalid combinations for alternatives
and, thus, the goal models are not directly used for generation
but combined with feature models. What they generate highly
differs from what we aim to generate for end-users.

[58] describes an approach for the goal and knowledge-
driven generation of neural dialogues which should allow
machines to have conversations which are similar to human
conversations. The machine creates an answer in a dialog
for a specific topic and a given course of the conversation
which keeps the conversation running and which is informative
towards a specified goal. Unlike in our paper, goals have to
be achieved in a limited number of steps. Goals are modeled
as paths which connect two topics of a conversation that are
then used to continue the conversation based on a knowledge
graph.

Dalpiaz et al. [18] present an approach that uses goal models
during the run-time of a self-adaptive system instead of using
them for generation. The purpose of using the goal models
during run-time is the diagnosis and monitoring of run-time
behavior of the system. Similarly to our approach, the goal
models are also presented by goal model instances during run-
time. The authors state that common goal modeling approaches
are too abstract for the use in a system during run-time and
thus the goal modeling approach was extended to control
the course of actions during run-time. In difference to our
paper, the approach differentiates between design-time and
run-time goal models. Design-time goal models are processed
and refined to run-time goal models. This for example includes
adding restrictions on run-time behavior to the design-time
goal model.

VI. DISCUSSION AND LESSONS LEARNED

The prototypical implementation has provided us first in-
sights on how it is possible to improve the engineering process
of assistive systems by using human behavior goals in the anal-
ysis, design and run-time of a generated information system.
Our implementation is just one possible way of realization, as
indicated in the description of the vision (Section III), but it
gives us a better idea of which ways of realization work better
than others.

Define goals as end states of activities. In the analysis phase,
we have also realized, that goals are not an easy concept
to describe (cf. [49]). Approaches such as [14] distinguish
between procedural (action-based) goals and declarative (state-
based) goals, which seemed to be promising. However, their
definition mixes the concepts goal and activity [2]. Especially
such approaches, which do not differentiate between activities
and goals, provide no improvement in comparison to systems
handling only behavior models at run-time.

What helped us the most was to clearly distinguish between
activities and goals and to understand goals as desired end
states of activities (following [23]). This approach helps to
identify if a goal is reached. Such identifiable states are,
e.g., concrete sensor values or for “virtual sensors” values of
attributes in the frontend of an application. We use frontend



and backend variables of the system as conditions together
with a concrete “name” for a goal and/or text which is
understandable for the users. Depending on user input and
system state during run-time of the assistive system, different
actions are possible and displayed to the user.

Considering further goal-related concepts and goal at-
tributes. Currently, we do not consider other concepts from
existing goal modeling approaches for translation into soft-
ware code or system behavior during run-time. This includes,
e.g., attributes for describing goals in BDI approaches [59],
or domain assumptions, obstacles or soft goals [33]. Our
approach still lacks further investigation on the relevance
of connections (positive and negative influence, hierarchies)
between goals and how this influence should be reflected
within the implementation. A first idea for negative influences
on goals could be to show warnings for users, that other
activities are not fulfillable if a certain activity was performed.

Relation between goals and subjects. To support subjects/a-
gents in the assistive system, our GoalDSL offers the stake-
holder concept. Stakeholders can be defined in the GoalDSL
by importing classes from other models. The stakeholders in
the generated MaCoCo system are in the current implemen-
tation objects of classes such as the TimeSheet-class in the
previous example. Depending on the current state of an object,
it is determined which actions can be executed in the system.
We consider this approach as useful and suggest it for other
realizations of the vision as well.

Relation between goals and actions. Our current implemen-
tation of the GoalDSL follows variant 1 in Figure 2 which
still has the risk to mix goals and action concepts within
the visualization. This leaves the impression that a process
model and process engine would have also been sufficient.
This impression would not occur, if end-users are, e.g., able
to select certain goals in later stages of a process (not only
the first reachable ones), see goals of the whole process or can
further navigate through goals. In a further implementation we
would rather use variant 2 in Figure 2 (a separate goal and
behavior DSL with tagging inbetween concepts), as reuseable
languages are better useable in future applications.

Ideas from the application perspective. The realized pro-
totype could be further improved: (1) Consider the existing
role system: It might be interesting for users to share goals
with other users of that role or switch perspectives. (2) What
to show users: There may be goals or sub-goals that are not
relevant to a user and therefore should not be displayed to
them. Users might decide this or it might be already captured
in the goal model. (3) Formulating help texts: The displayed
textual information must be formulated more clearly towards
goals as reachable states and should exist in addition to task
lists known from workflow systems. (4) Cover specific user
needs: The prototype and used examples does not yet show
the full potential of our vision.

When to use goal modeling at all. Our prototypical imple-
mentation has shown, that a realization is interesting if users
are able to select and deselect certain goals. It makes less
sense, if they have to reach a certain goal without alternative,

as in this case a process/workflow model with a process engine
would be a more feasible realization. The other aspect where
realization makes sense is when there are different alternatives
on how to reach a certain goal, i.e. the user can choose between
alternative ways.

VII. CONCLUSION

The use of goal modeling enables person-specific support
in assistive systems and services. The prototypical implemen-
tation has helped us to move one step forward towards the
vision of using goal models for human behavior assistance,
show its feasibility and provide first insights. It improved
our understanding of how to formulate goals, what are the
necessary concepts within a goal modeling language, and how
these concepts can be translated to code within the generation
process of assistive systems.

Future research in MDSE requires (1) to reconsider which
parts of current the implementation might be realized as a
part of the run-time environment of the application and not
generated, (2) what further concepts might be relevant in
existing goal modeling approaches and could be used for
code generation and (3) how goals of different users and
user groups can be efficiently handled during run-time. In a
broader perspective, it would be interesting to cooperate with
RE researchers to further investigate the relationship between
models used within the analysis phase and system models to
reduce the conceptual gap between the problem domain and
the software implementation domain [48].

REFERENCES

[1] K. Hölldobler, J. Michael, J. O. Ringert, B. Rumpe, and A. Wortmann,
“Innovations in Model-based Software and Systems Engineering,” The
Journal of Object Technology, vol. 18, no. 1, pp. 1–60, 2019.

[2] J. Rafferty, C. D. Nugent, J. Liu, and L. Chen, “From Activity Recogni-
tion to Intention Recognition for Assisted Living Within Smart Homes,”
IEEE Trans. on Human-Machine Systems, vol. 47, no. 3, 2017.

[3] F. Al Machot, H. C. Mayr, and J. Michael, “Behavior Modeling and
Reasoning for Ambient Support: HCM-L Modeler,” in Int. Conf. on
Industrial, Engineering & Other Applications of Applied Intelligent Sys.
(IEA-AIE 2014), ser. Lecture Notes in Artificial Intelligence, 2014.

[4] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki,
Model-Driven Software Development: Technology, Engineering, Man-
agement, ser. Wiley Software Patterns Series. Wiley, 2013.

[5] J. Michael and H. C. Mayr, “Conceptual modeling for ambient as-
sistance,” in Conceptual Modeling - ER’13, ser. LNCS, vol. 8217.
Springer, 2013, pp. 403–413.

[6] M. Giersich, P. Forbrig, G. Fuchs, T. Kirste, D. Reichart, and H. Schu-
mann, “Towards an Integrated Approach for Task Modeling and Human
Behavior Recognition,” in Human-Computer Interaction. Interaction
Design and Usability, J. A. Jacko, Ed. Springer, 2007, pp. 1109–1118.

[7] P. Parvin, F. Paternò, and S. Chessa, “Anomaly Detection in the Elderly
Daily Behavior,” in 14th Int. Conf. on Intelligent Environments (IE’18),
2018, pp. 103–106.

[8] J. Michael and C. Steinberger, “Context modeling for active assistance,”
in Proc. of the ER Forum 2017 and the ER 2017 Demo Track at ER’17.
CEUR, 2017, pp. 221–234.

[9] R. Ali, F. Dalpiaz, and P. Giorgini, “A goal-based framework for con-
textual requirements modeling and analysis,” Requirements Engineering,
vol. 15, no. 4, pp. 439–458, 2010.

[10] M. R. Elkobaisi, H. C. Mayr, and V. A. Shekhovtsov, “Conceptual Hu-
man Emotion Modeling (HEM),” in Advances in Conceptual Modeling,
G. Grossmann and S. Ram, Eds. Springer, 2020, pp. 71–81.



[11] J. Grundy., H. Khalajzadeh., and J. Mcintosh., “Towards Human-centric
Model-driven Software Engineering,” in 15th Int. Conf. on Evaluation
of Novel Approaches to Software Engineering (ENASE’20), INSTICC.
SciTePress, 2020, pp. 229–238.

[12] M. K. Curumsing, N. Fernando, M. Abdelrazek, R. Vasa, K. Mouzakis,
and J. Grundy, “Emotion-oriented requirements engineering: A case
study in developing a smart home system for the elderly,” Journal of
Systems and Software, vol. 147, pp. 215–229, 2019.

[13] C. Steinberger and J. Michael, “Towards Cognitive Assisted Living 3.0,”
in Int. Conf. on Pervasive Computing and Communications Workshops
(PerCom Workshops 2018). IEEE, 2018, pp. 687–692.

[14] M. B. van Riemsdijk, M. Dastani, and M. Winikoff, “Goals in Agent
Systems: A Unifying Framework,” in 7th Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS ’08), 2008, p. 713–720.

[15] J. Baskar, R. Janols, E. Guerrero, J. C. Nieves, and H. Lindgren, “A
Multipurpose Goal Model for Personalised Digital Coaching,” in Agents
and Multi-Agent Systems for Health Care. Springer, 2017, pp. 94–116.

[16] T. Bolender, G. Bürvenich, M. Dalibor, B. Rumpe, and A. Wortmann,
“Self-Adaptive Manufacturing with Digital Twins,” in 2021 Int. Sympo-
sium on Software Engineering for Adaptive and Self-Managing Systems
(SEAMS). IEEE, 2021, pp. 156–166.

[17] M. Fox and D. Long, “pddl2.1 : An Extension to pddl for Expressing
Temporal Planning Domains,” Journal of Artificial Intelligence Re-
search, vol. 20, pp. 61–124, 2003.

[18] F. Dalpiaz, A. Borgida, J. Horkoff, and J. Mylopoulos, “Runtime goal
models: Keynote,” in IEEE 7th Int. Conf. on Research Challenges in
Information Science, 2013, pp. 1–11.

[19] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop
domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, 2005.

[20] K. Adam, J. Michael, L. Netz, B. Rumpe, and S. Varga, “Enterprise
Information Systems in Academia and Practice: Lessons learned from a
MBSE Project,” in 40 Years EMISA (EMISA’19), ser. LNI, vol. P-304.
GI e.V., 2020, pp. 59–66.

[21] A. N. Leont’ev, Activity, Consciousness, and Personality. Englewood
Cliffs, NJ: Prentice-Hall, 1978.

[22] Teleology, Encyclopaedia Britannica, 2016, last access: 15.7.2021.
[Online]. Available: https://www.britannica.com/topic/teleology

[23] J. S. Eccles and A. Wigfield, “Motivational beliefs, values, and goals,”
Annual review of psychology, vol. 53, pp. 109–132, 2002.

[24] A. van Lamsweerde, “Goal-oriented requirements engineering: a guided
tour,” in 5th IEEE Int. Symposium on Requ. Eng., 2001, pp. 249–262.

[25] J. Michael, B. Rumpe, and S. Varga, “Human behavior, goals and
model-driven software engineering for assistive systems,” in Enterprise
Modeling and Information Systems Architectures (EMSIA 2020), vol.
2628. CEUR Workshop Proceedings, 2020, pp. 11–18.

[26] C. Rolland and C. Salinesi, “Modeling Goals and Reasoning with
Them,” in Engineering and Managing Software Requirements, A. Aurum
and C. Wohlin, Eds. Springer, 2005, pp. 189–217.

[27] J. Horkoff, N. Maiden, and J. Lockerbie, “Creativity and Goal Modeling
for Software Requirements Engineering,” in Proc. ACM SIGCHI Conf.
on Creativity and Cognition, ser. C&C ’15. ACM, 2015, pp. 165–168.

[28] M. Morandini, L. Penserini, A. Perini, and A. Marchetto, “Engineering
requirements for adaptive systems,” Requirements Engineering, vol. 22,
no. 1, pp. 77–103, 2017.

[29] R. Heim, P. Mir Seyed Nazari, J. O. Ringert, B. Rumpe, and A. Wort-
mann, “Modeling Robot and World Interfaces for Reusable Tasks,” in
Intelligent Robots and Systems Conference (IROS’15). IEEE, 2015.

[30] L. Braubach, A. Pokahr, D. Moldt, and W. Lamersdorf, “Goal Represen-
tation for BDI Agent Systems,” in Programming Multi-Agent Systems.
Springer, 2005, pp. 44–65.

[31] V. Kaptelinin, “Activity theory: implications for human-computer in-
teraction,” in Context and consciousness. Activity theory and human-
computer interaction. MIT Press, 2001, pp. 103–116.

[32] D. S. McCrickard, C. M. Chewar, J. P. Somervell, and A. Ndiwalana, “A
model for notification systems evaluation—assessing user goals for mul-
titasking activity,” ACM Transactions on Computer-Human Interaction
(TOCHI), vol. 10, no. 4, pp. 312–338, 2003.

[33] A. Sutcliffe and P. Sawyer, “Modeling Personalized Adaptive Systems,”
in Advanced Information Systems Engineering. Springer, 2013.

[34] S. Overbeek, U. Frank, and C. Köhling, “A language for multi-
perspective goal modelling: Challenges, requirements and solutions,”
Computer Standards & Interfaces, vol. 38, pp. 1–16, 2015.

[35] A. Bock and U. Frank, “MEMO GoalML: A Context-Enriched Modeling
Language to Support Reflective Organizational Goal Planning and

Decision Processes,” in Conceptual Modeling, ser. LNCS. Springer
Int., 2016, vol. 9974, pp. 515–529.

[36] E. Yu, “Modeling Strategic Relationships for Process Reengineering,”
in Social Modeling for Requirements Engineering, 2011.

[37] L. Liu, “From i* to istar 2.0: An evolving social modelling.”
[38] F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,” 05

2016.
[39] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed require-

ments acquisition,” Science of Computer Programming, vol. 20, no. 1,
pp. 3 – 50, 1993.

[40] O. Respect-IT, “A KAOS Tutorial,” 2007.
[41] A. I. Antón, “Goal-Based Requirements Analysis,” in Int. Conf. on

Requirements Engineering (ICRE ‘96), 1996, pp. 136–144.
[42] F. Schönmann, “BDI-Architektur (Beliefs – Desires – Intentions),” 2003.
[43] K. Hölldobler and B. Rumpe, MontiCore 5 Language Workbench Edition

2017, ser. Aachener Informatik-Berichte, Software Engineering, Band
32. Shaker Verlag, December 2017.

[44] A. Gerasimov, J. Michael, L. Netz, and B. Rumpe, “Agile Generator-
Based GUI Modeling for Information Systems,” in Modelling to
Program (M2P), A. Dahanayake, O. Pastor, and B. Thalheim, Eds.
Springer, March 2021, pp. 113–126.

[45] T. Greifenberg, M. Look, S. Roidl, and B. Rumpe, “Engineering Tagging
Languages for DSLs,” in Conf. on Model-Driven Engineering Languages
and Systems (MODELS’15). ACM/IEEE, 2015, pp. 34–43.

[46] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann,
“Towards a Model-Driven Architecture for Interactive Digital Twin
Cockpits,” in Conceptual Modeling, G. Dobbie, U. Frank, G. Kappel,
S. W. Liddle, and H. C. Mayr, Eds. Springer, 2020, pp. 377–387.

[47] A. Gerasimov, P. Heuser, H. Ketteniß, P. Letmathe, J. Michael, L. Netz,
B. Rumpe, and S. Varga, “Generated Enterprise Information Systems:
MDSE for Maintainable Co-Development of Frontend and Backend,” in
Comp. Proc. of Modellierung 2020 Short, Workshop and Tools & Demo
Papers. CEUR Workshop Proceedings, 2020, pp. 22–30.

[48] R. France and B. Rumpe, “Model-driven Development of Complex Soft-
ware: A Research Roadmap,” Future of Software Engineering (FOSE
’07), pp. 37–54, May 2007.

[49] C. Rolland and C. Salinesi, Supporting Requirements Elicitation through
Goal/Scenario Coupling. Springer, 2009, pp. 398–416.

[50] N. Kraiem, H. Kaffela, J. Dimassi, and Z. Al Khanjar, “Mapping from
MAP Models to BPMN Processes,” Journal of Software Engineering,
vol. 8, no. 4, pp. 252–264, 2014.

[51] R. Guizzardi and A. N. Reis, “A Method to Align Goals and Business
Processes,” in Conceptual Modeling, ser. LNCS, P. Johannesson, M. L.
Lee, S. W. Liddle, A. L. Opdahl, and Ó. Pastor López, Eds. Springer
International Publishing, 2015, vol. 9381, pp. 79–93.

[52] M. Ghasemi and D. Amyot, “From event logs to goals: a systematic
literature review of goal-oriented process mining,” Requirements Engi-
neering, vol. 25, no. 1, pp. 67–93, 2020.

[53] C. Castelfranchi and R. Falcone, “Founding Autonomy: The Dialectics
Between (Social) Environment and Agent’s Architecture and Powers,”
in Agents and Computational Autonomy, ser. LNCS. Springer, 2004,
vol. 2969, pp. 40–54.

[54] J. Rafferty, L. Chen, and C. Nugent, “Ontological Goal Modelling
for Proactive Assistive Living in Smart Environments,” in Ubiquitous
Computing and Ambient Intelligence. Context-Awareness and Context-
Driven Interaction, ser. LNCS. Springer, 2013, vol. 8276, pp. 262–269.

[55] M. Morandini, L. Penserini, and A. Perini, “Automated Mapping from
Goal Models to Self-Adaptive Systems,” in 23rd IEEE/ACM Int. Conf.
on Automated Software Engineering, 2008, pp. 485–486.

[56] L. Penserini, A. Perini, A. Susi, M. Morandini, and J. Mylopoulos,
“A Design Framework for Generating BDI-Agents from Goal Models,”
in 6th Int. Joint Conf. on Autonomous Agents and Multiagent Systems
(AAMAS ’07). ACM, 2007.

[57] A. A. Anda and D. Amyot, “Arithmetic Semantics of Feature and
Goal Models for Adaptive Cyber-Physical Systems,” in IEEE 27th Int.
Requirements Engineering Conference (RE’19), 2019, pp. 245–256.

[58] A. Luo, C. Su, and S. Pan, “Goal-Oriented Knowledge-Driven Neural
Dialog Generation System,” in Natural Language Processing and Chi-
nese Computing. Springer, 2019, pp. 701–712.

[59] A. Pokahr, L. Braubach, and W. Lamersdorf, “Jadex: A BDI Reasoning
Engine,” in Multi-Agent Programming, ser. Multiagent Systems, Arti-
ficial Societies, and Simulated Organizations. Boston, MA: Springer
US, 2005, vol. 15, pp. 149–174.

https://www.britannica.com/topic/teleology

	Introduction
	Preliminaries
	Human Behavior Goals in Assistive Systems
	Goal modeling languages 
	The generator framework MontiGem and its application

	The Vision: Using Goal Modeling for Behavior Assistance
	Prototypical Implementation Towards our Vision
	Considered Use Cases
	System Design and the newly developed Goal DSL
	Code Generation and Handling Goals during Run-Time
	Assistance in the GUI

	Related work
	Discussion and Lessons Learned 
	Conclusion
	References



