
Report from Dagstuhl Seminar 14412

Globalizing Domain-Specific Languages
Edited by
Betty H. C. Cheng1, Benoit Combemale2, Robert B. France3,
Jean-Marc Jézéquel4, and Bernhard Rumpe5

1 Michigan State University – East Lansing, US, chengb@cse.msu.edu
2 University of Rennes, FR, benoit.combemale@irisa.fr
3 Colorado State University – Fort Collins, US, france@cs.colostate.edu
4 University of Rennes, FR, Jean-Marc.Jezequel@irisa.fr
5 RWTH Aachen, DE, Rumpe@se-rwth.de

Abstract
This report documents the program and the outcomes of the Dagstuhl Seminar 14412 “Globalizing
Domain-Specific Languages” held in October 2014.

Complex, data-intensive, cyber-physical, cloud-based etc. systems need effective modeling
techniques, preferably based on DSLs to describe aspects and views. Models written in hetero-
geneous languages however need to be semantically compatible and their supporting individual
tools need to be interoperable. This workshop discusses possible and necessary forms of inter-
operation their benefits and drawbacks and in particular whether there is a general pattern on
coordination, composition and interoperation possible. Main goal was to establish a research
programme towards such techniques.

Seminar October 5–10, 2014 – http://www.dagstuhl.de/14412
1998 ACM Subject Classification I.6.5 [Simulation and Modeling]: Model Development – Mod-

eling methodologies, D.3.0 [Programming Languages]: General – Standards, D.2.13 [Software
Engineering]: Reusable Software – Domain engineering, Reuse models

Keywords and phrases Modelling, Domain Specific Language, Software, Coordination, Global-
ization, Heterogeneous Complex Systems, DSL, UML, Composition

Digital Object Identifier 10.4230/DagRep.4.10.32
Edited in cooperation with Katrin Hölldobler

1 Executive Summary

Betty H.C. Cheng
Benoit Combemale
Robert B. France
Jean-Marc Jézéquel
Bernhard Rumpe

License Creative Commons BY 3.0 Unported license
© Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and Bernhard
Rumpe

Model Driven Engineering (MDE) aims to reduce the accidental complexity associated with
developing complex software-intensive systems, through the development of technologies that
enable developers to systematically create, evolve, analyse, and transform various forms of
abstract system models.

Current MDE language workbenches, in both academia and industry, support the devel-
opment of Domain-Specific Modeling Languages (DSMLs) that can be used to create models

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 3.0 Unported license

Globalizing Domain-Specific Languages, Dagstuhl Reports, Vol. 4, Issue 10, pp. 32–50
Editors: Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and Bernhard Rumpe

Dagstuhl Reports
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

[CCF+15] B. H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, B. Rumpe:
Globalizing Domain-Specific Languages (Dagstuhl Seminar 14412)
In: Dagstuhl Reports, 4, pages 32–50. GI,
Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, 2015.
www.se-rwth.de/publications

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 33

that play pivotal roles in different development phases. Language workbenches such as EMF,
Metaedit+ or MPS support the specification of the abstract syntax, concrete syntax and the
static and dynamic semantics of a DSML. These workbenches aim to address the needs of
DSML developers in a variety of application domains.

The development of modern complex software-intensive systems often involves the use of
multiple DSMLs that capture different system aspects. In addition, models of the system
aspects are seldom manipulated independently of each other. System engineers are thus faced
with the difficult task of relating information presented in different models. Current DSML
development workbenches provide good support for developing independent DSMLs, but
provide little or no support for integrated use of multiple DSMLs. The lack of support for
explicitly relating concepts expressed in different DSMLs (incl., syntax and semantics) makes
it very difficult for developers to reason about information spread across models describing
different system aspects.

Supporting coordinated use of DSMLs leads to what we call the globalization of modeling
languages, that is, the use of multiple modeling languages to support coordinated development
of diverse aspects of a system.

Discussions during the seminar will focus on how multiple heterogeneous modeling
languages (or DSMLs) will need to be related to determine how different aspects of a system
influence each other. We have identified three forms of relationships among DSMLs that can
be used as a starting point for discussions: interoperability, collaboration, and composition.
These forms of language integration will need to address challenging issues that arise from
the heterogeneity of modeling languages. Relationships among the languages will need
to be explicitly defined in a form that corresponding tools can use to realize the desired
interactions. Requirements for tool manipulation is thus another topic that will be discussed
in the seminar.

The goal of the seminar was to develop a research program that broadens the current
DSML research focus beyond the development of independent DSMLs to one that provides
support for globalized DSMLs. In the globalized DSMLs vision, integrated DSMLs provide
the means for teams working on systems that span many specialized domains and concerns
to determine how their work on a particular aspect influences work on other aspects.

Working Groups
In the seminar we started the following four working groups which are producing results
during the workshop and compiling them into a State-Of-The-Art report afterwards:

Group 1a Motivating Use Cases for the Globalization of DSLs Definition of the main scenarios
motivating the globalization of DSLs

Group 1b Conceptual Model of the Globalization of Domain-Specific Languages Definition
of the common vocabulary and foundations of the globalization of DSLs

Group 2 Globalized Domain Specific Language Engineering Challenges of the globalization
of DSLs from the language designer point of view

Group 3 Domain Globalization: Using Languages to Support Technical and Social Co-
ordination Challenges of the globalization of DSLs from the language user point of
view

14412

34 14412 – Globalizing Domain-Specific Languages

2 Table of Contents

Executive Summary
Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and
Bernhard Rumpe . 32

Overview of Talks
Globalizing DSLs through Contextualized Modeling
Colin Atkinson . 36

Globalizing DSLs: overall consistency and large scale collaboration
Cedric Brun . 37

Globalization of Modeling Languages: A Formal Semantics Approach
Barrett Bryant . 38

Hybrid systems modeling and simulation: challenges and solutions
Benoit Caillaud . 38

Application-Driven Globalization of Modeling Languages
Betty H.C. Cheng . 38

Experience integrating DSLs and Formal Methods for Coordinating Vehicles
Siobhan Clarke . 40

Globalization of Domain Specific Modelling Languages
Tony Clark . 40

Language Engineering Workbench
Benoit Combemale . 41

Golden Models in Engineering and Formal Methods
Julien DeAntoni . 41

Globalizing Domain-Specific Languages: A few thoughts on the open-world
Thomas Degueule . 42

Social Translucence
Robert B. France . 42

The Need for Multilevel DSMLs
Ulrich Frank . 43

Towards Families of DSLs
Jean-Marc Jézéquel . 43

Globalization of modeling languages: definition and challenges
Gabor Karsai . 43

Globalizing Modeling Languages
Marjan Mernik . 44

Smart Emergency Response as an Application Use Case
Pieter J. Mosterman . 44

Domain-Specific Tooling Infrastructure
Oscar M. Nierstrasz . 45

Composition of Languages
Bernhard Rumpe . 45

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 35

Globalization of DSLs or All about Boxes and Lines
Martin Schindler . 46

A benchmark for globalizing domain-specific languages
Friedrich Steimann . 46

“Globalizing DSLs”: Defining coordination among modeling languages
Juha-Pekka Tolvanen . 47

A view On the Globalization of Modeling Languages
Antonio Vallecillo . 47

Globalizing Models with the MPS Language Workbench
Markus Völter . 48

DSL related research challenges
Mark van den Brand . 49

Participants . 50

14412

36 14412 – Globalizing Domain-Specific Languages

3 Overview of Talks

3.1 Globalizing DSLs through Contextualized Modeling
Colin Atkinson (Universität Mannheim, DE)

License Creative Commons BY 3.0 Unported license
© Colin Atkinson

As software systems increase in size and complexity, and are expected to cope with ever more
quantities of information from ever more sources, there is an urgent and growing need for a
more view-oriented approach to software engineering. Views allow stakeholders to see exactly
the right information, at exactly the right time, in a way that best matches their capabilities
and goals. Domain-specific languages are a key foundation for supporting views by allowing
them to display their contents in a customized way, but the current generation of software
language engineering technologies do not go far enough. In particular, they currently lack
the ability to convey the precise relationship between the information shown in a view and
the information it is a view of. They also focus on describing how model elements should be
visualized but provide little or no support for describing how stakeholders should edit and
interact with them.

The premise of this talk is that software language engineering technologies need to evolve
to support an enhanced approach to modeling in which model content can be set in context
relative to the underlying source from which it is derived – an approach we refer to as
“contextualized modeling”. These technologies would then be more accurately characterized
as “view engineering” technologies rather than “language engineering” technologies since they
would support all aspects of view definition, including the context in which the content is to
be interpreted and the mechanisms by which model elements are to be visualized and edited.
Some of the key additional capabilities that the current generation of language engineering
technologies need to support in order to become globalized, viewpoint engineering languages
include:

Enriched Designation. The most important context information in a view is its model
elements’ location in the three key hierarchies of the underlying information model – the
classification hierarchy, the inheritance hierarchy and the containment (i. e. ownership)
hierarchy. These are supported to various degrees in today’s language engineering technologies
through a mix of explicit symbolism and location-defining designators (a.k.a. headers) in
model elements. However, they are not supported in a uniform and consistent way, and are
often severely limited in what they can express. In particular most contemporary language
engineering technologies only allow one level of classification to be expressed at a time.
Fully contextualized modeling requires a comprehensive, systematic and deep designation
notation which allows a model element’s exact location in each hierarchy to be expressed in
its designator.

Explicit Elision Symbolism. Since views almost always convey only a subset of the informa-
tion contained in the underlying model, an important requirement in viewpoint engineering is
to support the description of what things are not included in a view, as well as the description
of what things are. This is a challenging task since it involves subtle interactions between
explicit omission statements (e. g. “. . . ” in UML generalization sets), explicit completeness
statements (e. g. complete and disjoint in UML generalization sets) and background “world”
assumptions (e. g. “open world” versus “closed world” assumption). Fully contextualized
modeling therefore requires comprehensive and systematic support for elision, both in the
form of explicit elision symbols and elided model element designators.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 37

Explicit Derivation Symbolism. As well as omitting information from the underlying
subject of a view it is possible to derive new information that the subject does not explicitly
contain. Such derivation operations can be driven by the application of basic characterization
relationships such as inheritance and classification (e. g. subsumption) or by more complex
inference operations based on the principles of logic. In both cases, contextualized modeling
must incorporate the ability to express what information in a view has been derived and what
information has been explicitly asserted by a human modeller. This is important for resolving
conflicts and signalling the weight that should be given to the information represented within
views.

Language Symbiosis. Domain-specific representations of information have the advantage
that they are optimized for particular classes of stakeholders or communities of experts,
whereas general-purpose languages have the advantage that they are widely known and can
represent information in quasi-standard ways. In order to enjoy both benefits simultaneously,
contextualized models should be represented by highly flexible, symbiotic languages that
allow different visualizations of model elements to be mixed and interchanged at will.

Viewpoint Environment Definition. A user’s experience of a view is determined not only
by the way in which its contents are displayed, but also by the way in which the user can
interact with the model and, when it is editable, input information. This impacts all aspects
of the environment in which the view is displayed, including the menu items, the pallets of
predefined types and models elements and the range of operations that can be applied to the
content (e. g. checking, printing, persisting etc.). The engineering of viewpoints therefore
involves much more than just the engineering of languages it also involves the definition of
the associated interaction experience.

In this talk the vision of contextualized modeling is introduced and the key ingredients
needed to turn the current generation of software language engineering technologies into fully
globalized viewpoint-engineering technologies explained.

3.2 Globalizing DSLs: overall consistency and large scale collaboration
Cedric Brun (Obeo – Nantes, FR)

License Creative Commons BY 3.0 Unported license
© Cedric Brun

Domain specific languages have shown their efficiency in designing more precisely and easing
the creation of tools. The system definition ends up being split by concern which mostly
maps to the type of stakeholders involved, but in the end we need to have a view of the
consistency of the system globally.

DSLs have relationships in between them, a DSL might expose some aspects through
interfaces formalizing how others can use or extend it. This lack of formalization leads to
shortcomings in regard to the technical integrations of those DSLs and this gets even more
complex when collaboration gets involved.

As a provider of technologies enabling the use of DSLs at a large scale tackling these
challenges has a huge potential, complexity could still be managed thanks to using languages
which are domain specifics yet more stakeholders could be involved and the whole process
would require less coordination.

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

38 14412 – Globalizing Domain-Specific Languages

3.3 Globalization of Modeling Languages: A Formal Semantics
Approach

Barrett Bryant (University of North Texas, US)

License Creative Commons BY 3.0 Unported license
© Barrett Bryant

The goals of this research are to 1) formalize the semantics of Domain-Specific Modeling
Languages (DSMLs), 2) use semantic formalization for automatic generation of model-driven
engineering software tools, and 3) use semantic formalization and tool generation to facilitate
DSML composition. This will allow automating many tasks that are currently done ad hoc
in a manual hand-crafted manner.

3.4 Hybrid systems modeling and simulation: challenges and solutions
Benoit Caillaud (INRIA Bretagne Atlantique – Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Caillaud

Hybrid systems combine continuous and discrete time dynamics, expressed in a single
language, or as combination of several of several dedicated languages. Two key challenges
regarding hybrid systems are:

Integration of discrete and continuous time models at a semantics level. How can one
co-simulate a system model combining models with radically different semantics: discrete
time dynamical systems on one hand, and continuous time dynamical systems on the other
hand. The discrete time dynamics is often expressed in a data flow or automata based
language, while the continuous dynamics results from a system of ordinary or algebraic
differential equations (resp. ODEs and DAEs). Several techniques can be used to address
this problem, depending on the overall system architecture and the assumptions that can
be made on the overall system behaviour. These techniques range from simple asymmetric
co-simulation methods, where time is handled by the numeric differential equation solver,
to more involved techniques, for example, waveform relaxation.
A second challenge is compositionality and modular compilation of acausal continuous time
models. They are often expressed using algebraic differential equations (DAEs), where
the data flow orientation of an incomplete model may depend on its environment. Hence,
generating simulation code for a component, without knowing its precise environment,
is a difficult problem. The problem becomes even more severe when considering hybrid
systems with DAEs, found for example in Modelica models. The main reason is that, not
only the dataflow orientation may change dynamically, but the differentiation index may
change, depending on the discrete state of a model.

3.5 Application-Driven Globalization of Modeling Languages
Betty H.C. Cheng (Michigan State University – East Lansing, US)

License Creative Commons BY 3.0 Unported license
© Betty H.C. Cheng

Our society is now demanding software for engineered systems at levels of complexity that
transcend historical precedents and the state of the art in software development concepts,
methods and tools. Major challenges arise due to many factors: unprecedented functions

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 39

and complexity; significant uncertainty about requirements [1], designs and components;
the inability due to scale to impose centralized control on system definition, development,
deployment, operation and evolution; hard performance requirements; and continual scattered
failure due to accidents and attacks. Such systems have recently been called Ultra-Large-Scale
(ULS) Systems. New knowledge and methods are needed in both traditional and emerging
areas of software research to enable successful development of ULS systems. Neither industry
nor the academic community is well-positioned to develop this knowledge by itself.

Software and its corresponding models are key enablers of ULS systems—the source
of new behaviors as well as the flexibility to adapt under uncertainty and change —- but
also, due to shortcomings in our knowledge, the key impediment to developing such systems.
Difficulties are being experienced today in a wide range of application areas, including defense,
transportation systems, financial systems, medical-based systems, etc. Demands for function,
safety, flexibility, responsiveness, availability, security, privacy and integration far outstrip
current knowledge and engineering capabilities.

A specific subset of ULS systems are high-assurance systems (HAS), those systems
designed to tolerate component failures, and even direct attacks, in order to continue
operation and preserve system integrity. The study of high-assurance systems is inherently
multidisciplinary, requiring collaboration of educators and researchers from a wide variety of
scientific disciplines and application domains [5]. Moreover, academic researchers need to
work closely with industrial partners to ensure that solutions address the scale and complexity
found in the real world, and to facilitate the transition of research results into practice.

Designing and implementing high-assurance systems typically requires the integration
of several enabling computing technologies (e. g., model-driven software engineering [2, 9],
sensor networks, autonomic computing [7]) within a particular application domain (e. g.,
transportation systems, telecommunication networks, electronic medical records, digital
supply chain). In addition, human factors play a critical role, since most realistic applications
involve a blend of humans and machines. Each of these orthogonal dimensions may involve a
wide range of modeling languages, all of which need to be integrated in order to provide the
overall functionality with the required assurance [4, 6]. Model integration challenges exist at
the structural, semantic, and application domain levels [3]. Beyond the technical challenges,
it is important for the research to address the usability of the model-based systems for
a wide range of stakeholders, from domain experts to policy analysts and other types of
decision-makers [8].

References
1 Jon Whittle, Pete Sawyer, Nelly Bencomo, Betty H.C. Cheng and Jean-Michel Bruel,

RELAX: a language to address uncertainty in self-adaptive systems requirement, In Re-
quirements Engineering, Vol. 15, Issue 2, pages 177–196, Springer London, 2010

2 Heather Goldsby and Betty H.C. Cheng, Automatically Discovering Properties That Spe-
cify the Latent Behavior of UML Models, MoDELS (1), pages 316–330, 2010

3 B.H.C. Cheng, A. Ramirez, and P.K. McKinley, Harnessing evolutionary computation to
enable dynamically adaptive systems to manage uncertainty, Combining Modelling and
Search-Based Software Engineering (CMSBSE), Keynote for 2013 1st International Work-
shop on, 2013

4 Andres J. Ramirez, Betty H.C. Cheng, Nelly Bencomo, and Pete Sawyer, Relaxing Claims:
Coping with Uncertainty While Evaluating Assumptions at Run Time., MoDELS, 2012

5 Robert B. France, James M. Bieman, Sai Pradeep Mandalaparty, Betty H.C. Cheng, and
Adam C. Jensen, Repository for Model Driven Development (ReMoDD)., ICSE,2012

14412

40 14412 – Globalizing Domain-Specific Languages

6 Andres J. Ramirez, Erik M. Fredericks, Adam C. Jensen and Betty H.C. Cheng, Automat-
ically RELAXing a Goal Model to Cope with Uncertainty., SSBSE,2012

7 Philip K. McKinley, Betty H.C. Cheng, Andres J. Ramirez, and Adam C. Jensen, Applying
evolutionary computation to mitigate uncertainty in dynamically-adaptive, high-assurance
middleware., In J. Internet Services and Applications, pages 51–58, 2012

8 Gunter Mussbacher, Daniel Amyot, Ruth Breu, Jean-Michel Bruel, Betty H.C. Cheng,
Philippe Collet, Benoit Combemale, Robert B. France, Rogardt Heldal, James H. Hill, Jörg
Kienzle, Matthias Schöttle, Friedrich Steimann, Dave R. Stikkolorum, and JonWhittle, The
Relevance of Model-Driven Engineering Thirty Years from Now, Model-Driven Engineering
Languages and Systems – 17th International Conference, MODELS 2014, Valencia, Spain,
September 28 – October 3, 2014. Proceedings pages 183–200, 2014

9 Adam C. Jensen, Betty H.C. Cheng, Heather Goldsby, and Edward C. Nelson, A Toolchain
for the Detection of Structural and Behavioral Latent System Properties, Model Driven
Engineering Languages and Systems, 14th International Conference, MODELS 2011, Wel-
lington, New Zealand, October 16–21, 2011. Proceedings, pages 683–698,2011

10 Peter H. Feiler, Kevin Sullivan, Kurt C. Wallnau, Richard P. Gabriel, John B. Goodenough,
Richard C. Linger, Thomas A. Longstaff, Rick Kazman, Mark H. Klein, Linda M. Northrop,
and Douglas Schmidt, Ultra-Large-Scale Systems: The Software Challenge of the Future,
Software Engineering Institute, Pittsburgh, 2006

3.6 Experience integrating DSLs and Formal Methods for Coordinating
Vehicles

Siobhan Clarke (Trinity College Dublin, IE)

License Creative Commons BY 3.0 Unported license
© Siobhan Clarke

Our overall research goal was to define a Domain Specific Language for applications that
would take advantage of a middleware that caters for vehicles coordinating in real-time. We
wanted to allow an application developer build an application (e. g., an intersection collision
avoidance system or a managed highway) using our vehicle coordination protocol where we
could then verify the safety of the application. It was intended that the safety checking would
be achieved by integrating a formal method language. However, in our experience, this was
challenging primarily because our requirements were not matched by any potentially related
formal language. This is a general challenge for globalising languages, as their integration
may still not address all requirements in the “new”, global context.

3.7 Globalization of Domain Specific Modelling Languages
Tony Clark (Middlesex University, GB)

License Creative Commons BY 3.0 Unported license
© Tony Clark

The globalisation of domain specific modelling languages can be achieved through an un-
derstanding of language composition. This involves the specification, implementation and
deployment of multiple languages and their associated artefacts including syntax, semantics,
documentation, methods etc. In order to understand and achieve globalisation it is fruitful to

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 41

take a component-based view of languages where a language component defines a collection
of interfaces that expose those parts of a language specification or implementation that are
necessary to integrate it with other languages. At the time of writing it is not clear how to
express or use such language components and this is an important research are that needs
to be addressed. A useful approach may be to develop a common meta-language that can
be used to articulate languages as components. Furthermore, a common framework based
on such meta-concepts may be useful for globalisation where existing languages and their
models can be wrapped in order to conform to the requirements of the framework.

3.8 Language Engineering Workbench
Benoit Combemale (University of Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Benoit Combemale

In the software and systems modeling community, research on domain-specific modeling
languages (DSMLs) is focused on providing technologies for developing languages and tools
that allow domain experts to develop system solutions efficiently. Unfortunately, the current
lack of support for explicitly relating concepts expressed in different DSMLs makes it very
difficult for software and system engineers to reason about information spread across models
describing different system aspects. Supporting coordinated use of DSMLs leads to what we
call the globalization of modeling languages. I present a research initiative that broadens the
DSML research focus beyond the development of independent DSMLs to one that supports
globalized DSMLs, that is, DSMLs that facilitate coordination of work across different
domains of expertise.

3.9 Golden Models in Engineering and Formal Methods
Julien DeAntoni (INRIA Sophia Antipolis – Méditerranée, FR)

License Creative Commons BY 3.0 Unported license
© Julien DeAntoni

In many disciplines and for several years, models have been used to abstract the system
under study. Depending on the model and its purpose, it brings very different properties
ranging from re-usability to analyzability. Consequently, there is usually no single golden
model of a system, but there are good models of a system where different dedicated models
abstract the system for different purpose. Real time embedded systems are interesting
candidates for modeling for two main reasons. On the one hand many properties like timing
performance, time-to-market or safety are early and mandatory requirements to be satisfied
at all steps of the design. On the other hand, the deployment of such system can target
various heterogeneous platforms and this deployment strongly impacts the previously stated
requirements.

For some years in the AOSTE team, I am studying how engineering models (e. g., based
on UML or Ecore) and formal models (e. g., automaton or marked graph) can take benefits
one from the other in order to improve the modeling of real time embedded systems. More
precisely my current research focuses on two related topics. First, to enable reasoning
on engineering models I put efforts to provide formal models that describe the behavioral

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

42 14412 – Globalizing Domain-Specific Languages

semantics of a language. This means providing an adequate meta-language to specify an
explicit entity that represents the behavioral semantics and can thus be manipulated. Second,
because different models are used to specify correctly a single system, it is important to
understand the interaction among these different models and more precisely to understand
how the explicit semantics can be used to provide a behavioral interface of the language
amenable to reasoning, composition and generative techniques.

3.10 Globalizing Domain-Specific Languages: A few thoughts on the
open-world

Thomas Degueule (University of Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Thomas Degueule

In the past few years, the development of model-driven engineering and associated tools has
strengthened the trend supporting domain-specific language development by enabling domain
experts to design their own DSL without requiring strong skills in languages or compilers
construction. This has led to a widespread use of DSL in many areas, including software and
system engineering.

While the facilities available for engineering isolated DSLs are getting closer to maturity,
there is little support for comprehension on the interactions between several languages that
are used within a single system or software. In an open world, where DSLs are designed
independently by (possibly small) groups of developers, the need for “globalization” is
increasingly felt.

To support the globalization of DSLs, we advocate the design of precise language interfaces.
Language interfaces allow to abstract some of the complexity carried in the implementation
of languages, by exposing meaningful information concerning a given aspect of a language
and for a specific purpose (e. g. composition or coordination) in an appropriate formalism.
We strongly believe that such interfaces will ease the cognitive and technical effort necessary
for lifting the limitations of current approaches.

3.11 Social Translucence
Robert B. France (Colorado State University, US)

License Creative Commons BY 3.0 Unported license
© Robert B. France

We are interested in designing systems that support communication and collaboration among
large groups of people over computer networks. We begin by asking what properties of
the physical world support graceful human-human communication in face-to-face situations,
and argue that it is possible to design digital systems that support coherent behavior by
making participants and their activities visible to one another. We call such systems “socially
translucent systems” and suggest that they have three characteristics-visibility, awareness,
and accountability-which enable people to draw upon their social experience and expertise to
structure their interactions with one another. To motivate and focus our ideas we develop a
vision of knowledge communities, conversationally based systems that support the creation,
management and reuse of knowledge in a social context. We describe our experience in

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 43

designing and deploying one layer of functionality for knowledge communities, embodied in a
working system called “Babble,” and discuss research issues raised by a socially translucent
approach to design.

3.12 The Need for Multilevel DSMLs
Ulrich Frank (Universität Duisburg-Essen, DE)

License Creative Commons BY 3.0 Unported license
© Ulrich Frank

The construction of DSMLs is facing an essential challenge: On the one hand, it makes
sense to develop very specific languages that serve the particular needs of one organization
only, because then we can expect it to effectively promote model quality and modelling
productivity. On the other hand, global DSMLs promote economies of scale by enabling a
wider range of reuse and integration. A multilevel hierarchy of DSML, which is inspired by
the actual use of technical languages, enables to successfully address this challenge. On the
top level, which corresponds to the concepts introduced in textbooks, global DSML would
capture commonalities of a range of more specific DSML. Depending on the size and diversity
of the domains to be covered, the number of required levels may vary. Realizing respective
hierarchies of DSMLs convincingly demands for adequate modelling concepts and – more
challenging – for multilevel (meta) programming languages. In addition to linguistic and
technical considerations, there is need to build effective incentives for contributing to the
development of DSML hierarchies.

3.13 Towards Families of DSLs
Jean-Marc Jézéquel (University of Rennes, FR)

License Creative Commons BY 3.0 Unported license
© Jean-Marc Jézéquel

The engineering of systems involves many different stakeholders, each with their own domain
of expertise. Hence more and more organizations are adopting Domain Specific Languages
(DSLs) to allow domain experts to express solutions directly in terms of relevant domain
concepts. This new trend raises new challenges about designing DSLs, evolving a set of DSLs
and coordinating the use of multiple DSLs. In this talk we explore various dimensions of
these challenges, and outline a possible research roadmap for addressing them. We detail
one of these challenges, which is the safe reuse of model transformations.

3.14 Globalization of modeling languages: definition and challenges
Gabor Karsai (Vanderbilt University, US)

License Creative Commons BY 3.0 Unported license
© Gabor Karsai

The problem of globalization of modeling languages can be viewed as a system integration
problem for modeling languages and tools. Integration of modeling languages deals with the

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

44 14412 – Globalizing Domain-Specific Languages

composition of heterogeneous modeling languages, so that the composite has a clear semantics
– i. e. the composed models have a meaning, possibly beyond that of the component models.
Integration of modeling tools deals with the orchestration of complex tool use cases, where
heterogeneous tools work together to execute a complex tasks, e. g. co-simulation, formal
verification across multiple models, etc. There three fundamental challenges associated
with these topics: (1) determining the relevant properties of the modeling languages and
tools that need to be captured in some formalism (e. g. metamodels), (2) determining
the composition operators for metamodels that facilitate integration, and (3) assigning
operational semantics to the composition of the modeling languages and tools. The first
problem deals with developing the structural semantics of a model (or tool) integration
language, the second deals with the specific composition operators available in the language,
and the third addresses the operational semantics of the model integration language.

3.15 Globalizing Modeling Languages
Marjan Mernik (University of Maribor, SI)

License Creative Commons BY 3.0 Unported license
© Marjan Mernik

The globalization of modeling languages is a newly emerged term defining a situation where
multiple heterogeneous modeling languages are used for describing different aspects of a
complex system. These aspects may or may not (partially) overlap. Moreover, there is an
urgent need that these heterogeneous modeling languages interact to each other. Therefore,
the syntax and semantics of modeling languages must be precisely defined. One form
of interaction known from programming languages is language composability, which is a
property of language specifications rather than a property of a language itself. They are
several known forms of programming language composition: language extension (which
subsumes also language restriction), language unification, self-extension, and extension
composition. However this classification needs to be extended and adopted for globalization
of modeling languages.

3.16 Smart Emergency Response as an Application Use Case
Pieter J. Mosterman (The MathWorks Inc. – Natick, US)

License Creative Commons BY 3.0 Unported license
© Pieter J. Mosterman

Main reference P. J. Mosterman, D.E. Sanabria, E. Bilgin, K. Zhang, J. Zander, “A Heterogeneous Fleet of
Vehicles for Automated Humanitarian Missions,” Computing in Science & Engineering,
16(3):90–95, IEEE, 2014.

URL http://dx.doi.org/10.1109/MCSE.2014.58

This presentation explores the cyber-physical systems paradigm in humanitarian missions, in
particular in emergency response to natural disasters such as earthquakes. A smart emergency
response system is presented to illustrate opportunities and challenges in cyber-physical
system applications.

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1109/MCSE.2014.58
http://dx.doi.org/10.1109/MCSE.2014.58
http://dx.doi.org/10.1109/MCSE.2014.58
http://dx.doi.org/10.1109/MCSE.2014.58

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 45

3.17 Domain-Specific Tooling Infrastructure
Oscar M. Nierstrasz (Universität Bern, CH)

License Creative Commons BY 3.0 Unported license
© Oscar M. Nierstrasz

Globalization of modeling languages is about enabling the shared use of such languages for
domains of common interest. We are working on better tools to rapidly extract models from
source code, techniques to adapt development tools to specific domains, and generic DSLs
that can be adapted to a variety of different analysis tools. The key challenges we identify
are: (1) better environments and workbenches to support DSL engineering, (2) techniques
to rapidly develop or adapt tools to specific domains, and (3) techniques to support the
integration and coordination of multiple DSLs into software systems.

3.18 Composition of Languages
Bernhard Rumpe (RWTH Aachen, DE)

License Creative Commons BY 3.0 Unported license
© Bernhard Rumpe

DSLs need to be modular, reusable and composable. Otherwise we will get a plethora of
incompatible and complex languages that are expensive to develop, maintain and evolve. We
therefore take the view of component based design, by adapting the mechanisms of modular
components and their composition to languages. This means that a “language component”
should have a crisp boundary, that encapsulates internals of the language and makes the
language accessible only through its interface.

The notion of “language interface” is not easy to assess. Languages certainly exhibit parts
of their abstract syntax, which is the main carrier for a language, for composing sub-languages
together into more complex ones. However the concrete syntax needs also to be composed if
applicable. Furthermore for a precise understanding of the emerging composed language, the
semantics, which we like to be given as denotational semantics with semantics domain and
semantics mapping needs to be composed as well. This is tricky, as semantics domains can
be completely disjoint, overlapping or even identical, but encoded in different carriers. Last
but not least, additional information about the symbols defined in a sub-model and exported
to another part of a model, which is defined in another sub-language, must be transferable
through the language interface.

While we do have a relatively good understanding of concrete compositions of computer
languages, I useful and general theory for language composition, adaptation and thus their
reuse is still in infancy. We discuss some results and more problems on the concepts of
language engineering, including syntax, semantics and tooling that we made while our
development of and with the MontiCore language workbench.

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

46 14412 – Globalizing Domain-Specific Languages

3.19 Globalization of DSLs or All about Boxes and Lines
Martin Schindler (MaibornWolff GmbH – München, DE)

License Creative Commons BY 3.0 Unported license
© Martin Schindler

Main reference M. Schindler, “Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P,” Dissertation,
RWTH Aachen, Aachener Informatik-Berichte – Software-Engineering, Vol. 11, 370 pages, Shaker
Verlag, 2012.

URL http://dx.doi.org/10.2370/9783844008647

Globalization of DSLs means composing languages including all involved artifacts. For this a
clear definition of a language component and its interface is needed. A language component
has to encapsulate all parts of a language like concrete and abstract syntax, validation (e. g.,
context conditions), and transformations (e. g., code generators). On the other hand, a
language interface only includes the necessary information needed for composing a language
with other languages.

In [1] it is shown how the UML/P, which is a subset of the UML including Java as an
action language, can be developed in such a component based way. All languages of the
UML/P (Classdiagrams, Statecharts, Objectdiagrams, Sequencediagrams, OCL, a language
for testcases and Java) were developed completely independently of each other including
a definition what is required from or provided for other languages. These required and
provided interfaces were finally used to compose the UML/P keeping the language components
unchanged. In this way the languages of the UML/P can be easily replaced by or reused
with other languages.

The UML/P is just an example of language composition. However, at the end the
composition of different DSLs should be just about connecting provided and required
interfaces of the involved languages and should be as easy as drawing boxes and lines.

References
1 Eine Werkzeuginfrastruktur zur agilen Entwicklung mit der UML/P (A Tooling Infrastruc-

ture for the Agile Development with the UML/P) Martin Schindler Shaker Verlag, ISBN
978-3-8440-0864-7. Aachener Informatik-Berichte, Software Engineering Band 11. 2012.
http://dx.doi.org/10.2370/9783844008647

3.20 A benchmark for globalizing domain-specific languages
Friedrich Steimann (Fernuniversität in Hagen, DE)

License Creative Commons BY 3.0 Unported license
© Friedrich Steimann

The globalization of domain-specific languages (DSLs) has been achieved if we are able to
refactor across DSLs. This is so because refactoring, i. e., the behaviour-preserving change
of a system, requires full anticipation of the effect of every change on the behaviour of the
system, and hence the joint semantics of the DSLs that are being used.

While being able to refactor across DSLs may seem like a high hurdle, we have found
that, once behaviour-preserving changes are mastered in each participating language, cross-
language refactoring is little more than identifying the (model or program) elements through
which interaction occurs, and translating the changeable properties of these elements from
one language to another (so that changes can be propagated).

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.2370/9783844008647
http://dx.doi.org/10.2370/9783844008647
http://dx.doi.org/10.2370/9783844008647
http://dx.doi.org/10.2370/9783844008647
http://dx.doi.org/http://dx.doi.org/10.2370/9783844008647
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 47

It seems that the globalization of DSLs requires the same: identification of the elements
through which interaction occurs, and full awareness of what changes of these elements
translate to in each language. This can be greatly simplified by using a language interoper-
ability infrastructure on which all participating languages are built; in absence of such an
infrastructure, it will be much harder (and likely requires effort quadratic in the number of
participating languages).

3.21 “Globalizing DSLs”: Defining coordination among modeling
languages

Juha-Pekka Tolvanen (MetaCase – Jyväskylä, FI)

License Creative Commons BY 3.0 Unported license
© Juha-Pekka Tolvanen

Domain-Specific Modeling has become increasingly popular in the past decade. These
languages allow raising the level of abstraction away from the solution domain (code) to
the problem domain with obvious benefits such as improved development productivity and
product quality. While typically the domains- specific modeling languages are built for a
narrow area within a company the next obvious step is to “globalize” languages so that
coordinated use of domain- specific languages becomes possible. We identify some key
challenges for research in three contexts: organization, language and technology. In the
organizational context often already a single DSL may change organizational tasks, roles
and structures. How multiple coordinated ones while influence to organizations and to
development processes. In the language context, the coordination must be specified at the
level of language specification but it is not clear how currently used metamodeling languages
allow to do that. For example OMG’s MOF does not even identify “language” so it is
questionable how it can then integrate a number of them? Finally, and within the technology
context, it is not realistic to expect that all languages can be coordinated within a single
tool so what kind of tool integration approach would work among a set of tools?

3.22 A view On the Globalization of Modeling Languages
Antonio Vallecillo (University of Malaga, ES)

License Creative Commons BY 3.0 Unported license
© Antonio Vallecillo

DSLs are proliferating, as system modelers and designers are finding them useful for their
purposes, and as tool support starts to be readily available for them (editors, validators,
code generators, etc.). The previous “one language fits all” approach (e. g. Java, UML) has
given path to “one language for each purpose”, and this is where the need to make public,
coordinate and combine languages (i. e., globalize them) has risen.

“Globalizing modeling languages” was defined in the original GEMOC paper as “The
use of multiple languages to support coordinated development of diverse systems aspects”.
However, I only agree in part with such definition. First, I see it is more adequate for defining
what Multi-Viewpoint Modeling is/should be about: “The combination of multiple languages
to support coordinated specification, analysis and development of diverse systems aspects”

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

48 14412 – Globalizing Domain-Specific Languages

Thus, in my view, “Globalizing a Modeling Language” means “Making a Modeling Language
amenable for integration into a (standard) Multi-Viewpoint Modeling environment.”

In this context, it is important to note that (a) Globalized MLs need to be combinable
and integrable (b) Interfaces at different levels should be defined , and (c) Standardization
should play a key role here.

In our group we have been working in this area, in the context of the Reference Model
for Open Distributed Processing (RM-ODP), an ISO & ITU-T international standard that
provides a mature framework for the specification of large complex systems, using viewpoints.
RM- ODP defines five viewpoints and their associated Viewpoint Languages (VPL), as well
as explicit correspondences between the VPLs. This is an example of the coordination and
integration of separate languages, focusing on disparate concerns, and using correspondents
to relate them.

In addition, we have been working on the combination of DSMLs, studying the problems,
issues and challenges involved in this area.

The three major challenges that we see in the globalization of modeling languages are
the following. First, there is the need for defining mechanisms, process and tools for the
Combination/Integration/Unification of languages (which needs establishing correspondences
between them, at all levels: Abstract Syntax, Concrete Syntax and Semantics); and needs to
deal with heterogeneous (and not always combinable) semantics. Second, correspondences
between metamodels, and between models, needs to be specified in an efficient, correct,
usable and maintainable manner, and using different approaches (depending on the use we
want to make of them). The third challenge that we want to highlight is about being able to
reason about the information expressed across the different models, so that properties of the
overall system (including emergent properties) can be inferred, proved or denied.

Tool support is essential in this context for achieving these goals, given the complexity of
the domain and of the systems being specified. Without tools any proposed solution will be
useless.

3.23 Globalizing Models with the MPS Language Workbench
Markus Völter (Völter Ingenieurbüro, DE)

License Creative Commons BY 3.0 Unported license
© Markus Völter

Developing software often requires using a number of tools and languages. In embedded
software, for example, it is common to use C and its IDE, Matlab/Simulink, a number of
custom XML files, a requirements management tool such as DOORS and possibly a UML
tool and a variant management tool. The integration of such a zoo of tools is often a major
source of (accidental) complexity in development projects. The GEMOC initiative addresses
this challenge.

Back in the ’good old days’ when everything was text files and command line executables
running on the unix shell. This approach had two important properties: the infrastructure
was extremely generic (unix shell, pipes, text editors) and the actual contents were easily
extensible and composable (new text file formats/languages and new command line tools); a
productive environment for a given project or domain could easily be built from the generic
infrastructure plus a few custom extensions.

Language Workbenches can be used to create (domain-specific) development environments

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

B.H. C. Cheng, B. Combemale, R. B. France, J.-M. Jézéquel, and B. Rumpe 49

that results in many of the same advantages that we all valued in the unix shell-world. A
language workbench is an extremely generic infrastructure that is easily extensible with new
languages. It is easy to create domain-specific development tools that can address different
concern of the system with suitable abstractions, but are nonetheless very well integrated in
terms of syntax, semantics and tooling.

JetBrains MPS is such a language workbench; over the last few years we have used it to
build mbeddr, an open source environment optimized for embedded software development. It
consists of a set of 50+ C extensions as well as languages for requirements and documentation.
It also directly integrates formal verification tools. Connecting to artifacts outside of mbeddr
is possible via external references.

Language Workbenches, MPS and systems like mbeddr can be an important contribution
for managing the overall complexity of Globalized DSLs.

3.24 DSL related research challenges
Mark van den Brand (TU Eindhoven, NL)

License Creative Commons BY 3.0 Unported license
© Mark van den Brand

Model Driven Software Engineering is extremely popular in the High Tech Industry. They
are facing two challenges. The first challenge is to increase the quality of the code, an ongoing
quest. The second challenge is to get grip on the rapidly increasing amount of software. The
high tech companies are exploring all options that model driven software engineering offers.
Domain specific languages (DSLs) is one of the explored routes. Some of these companies
have a whole range of DSLs. So far, these DSLs are developed in house, using different
technologies, although that EMF and related technologies is the most important platform
being used. Although that the high tech industry is a software intensive industry they do
consider themselves not a software industry. They are DSL users and not DSL developers, or
formulated differently they are tool users and not tool developers. Some of the high tech
companies outsource the DSL and supporting tooling to suppliers.

The DSLs are used to describe different aspects of the high tech systems that are being
produced. This means equivalent concepts used in the different DSLs have to be the same
over these DSLs. One way of doing this is have a common semantic framework. In close
cooperation with ASML we are developing a semantic framework (semantics based language
workbench) based on Event-B. This semantic framework is used to give a formal for one of
the DSLs used within ASML. The goal of the project is to use this framework to develop new
DSLs in the future, in order to ensure the consistency of semantic concepts. The identification
of common semantic concepts and capturing them in a semantics based workbench is the first
challenge. Related challenges are the correctness of model transformations and modularity
of meta models. Each of these challenges is related to the globalization of domain specific
languages.

14412

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

50 14412 – Globalizing Domain-Specific Languages

Participants

Colin Atkinson
Universität Mannheim, DE

Cedric Brun
Obeo – Nantes, FR

Barrett Bryant
University of North Texas, US

Benoit Caillaud
INRIA Bretagne Atlantique –
Rennes, FR

Betty H.C. Cheng
Michigan State University –
East Lansing, US

Tony Clark
Middlesex University, GB

Siobhán Clarke
Trinity College – Dublin, IE

Benoit Combemale
University of Rennes, FR

Julien Deantoni
INRIA Sophia Antipolis –
Méditerranée, FR

Thomas Degueule
University of Rennes, FR

Robert B. France
Colorado State University, US

Ulrich Frank
Universität Duisburg-Essen, DE

Jean-Marc Jézéquel
University of Rennes, FR

Gabor Karsai
Vanderbilt University, US

Ralf Lämmel
Universität Koblenz-Landau, DE

Marjan Mernik
University of Maribor, SI

Pieter J. Mosterman
The MathWorks Inc. –
Natick, US

Oscar M. Nierstrasz
Universität Bern, CH

Bernhard Rumpe
RWTH Aachen, DE

Martin Schindler
MaibornWolff GmbH –
München, DE

Friedrich Steimann
Fernuniversität in Hagen, DE

Eugene Syriani
University of Alabama, US

Janos Sztipanovits
Vanderbilt University, US

Juha-Pekka Tolvanen
MetaCase – Jyväskylä, FI

Antonio Vallecillo
University of Malaga, ES

Mark van den Brand
TU Eindhoven, NL

Markus Völter
Völter Ingenieurbüro, DE

	Executive Summary Betty H.C. Cheng, Benoit Combemale, Robert B. France, Jean-Marc Jézéquel, and Bernhard Rumpe
	Table of Contents
	Overview of Talks
	Globalizing DSLs through Contextualized Modeling Colin Atkinson
	Globalizing DSLs: overall consistency and large scale collaboration Cedric Brun
	Globalization of Modeling Languages: A Formal Semantics Approach Barrett Bryant
	Hybrid systems modeling and simulation: challenges and solutions Benoit Caillaud
	Application-Driven Globalization of Modeling Languages Betty H.C. Cheng
	Experience integrating DSLs and Formal Methods for Coordinating Vehicles Siobhan Clarke
	Globalization of Domain Specific Modelling Languages Tony Clark
	Language Engineering Workbench Benoit Combemale
	Golden Models in Engineering and Formal Methods Julien DeAntoni
	Globalizing Domain-Specific Languages: A few thoughts on the open-world Thomas Degueule
	Social Translucence Robert B. France
	The Need for Multilevel DSMLs Ulrich Frank
	Towards Families of DSLs Jean-Marc Jézéquel
	Globalization of modeling languages: definition and challenges Gabor Karsai
	Globalizing Modeling Languages Marjan Mernik
	Smart Emergency Response as an Application Use Case Pieter J. Mosterman
	Domain-Specific Tooling Infrastructure Oscar M. Nierstrasz
	Composition of Languages Bernhard Rumpe
	Globalization of DSLs or All about Boxes and Lines Martin Schindler
	A benchmark for globalizing domain-specific languages Friedrich Steimann
	``Globalizing DSLs'': Defining coordination among modeling languages Juha-Pekka Tolvanen
	A view On the Globalization of Modeling Languages Antonio Vallecillo
	Globalizing Models with the MPS Language Workbench Markus Völter
	DSL related research challenges Mark van den Brand

	Participants

