
System Model-Based Definition of Modeling

Language Semantics

Hans Grönniger, Jan Oliver Ringert, and Bernhard Rumpe

Lehrstuhl Informatik 3 (Softwaretechnik), RWTH Aachen, Germany

Abstract. In this paper, we present an approach to define the seman-
tics for object-oriented modeling languages. One important property of
this semantics is to support underspecified and incomplete models. To
this end, semantics is given as predicates over elements of the seman-
tic domain. This domain is called the system model which is a general
declarative characterization of object systems. The system model is very
detailed since it captures various relevant structural, behavioral, and in-
teraction aspects. This allows us to re-use the system model as a domain
for various kinds of object-oriented modeling languages. As a major con-
sequence, the integration of language semantics is straight-forward. The
whole approach is supported by tools that do not constrain the seman-
tics definition’s expressiveness and flexibility while making it machine-
checkable.

1 Introduction

Modeling is an integral part of complex software system development projects.
The purpose of models ranges from assisting developers and customers commu-
nicate to test case generation or (automatic) derivation of the developed system.
A prominent example modeling language is UML [1]. Actually, it is a family
of languages used to model various aspects of a software system. While UML
is widely used, domain specific modeling languages emerged recently that allow
developers and even customers to express solutions to well-defined problems in
a concise way.

A complete definition of a modeling language consists of the description of
its syntax, including well-formedness rules and its semantics (meaning) [2]. It
is widely accepted that a commonly agreed formal semantics of a language is
advantageous because it avoids problems like misunderstandings between peo-
ple and lack of interoperability between tools. Additionally, semantics can also
be used to formally reason about system properties for verification purposes.
However, many languages are often specified through their syntax only and lack
a precise semantics beyond informal explanations. UML is again a prominent
example which has been standardized without a formal semantics, even though
debate has started more than ten years ago [3,4].

Various efforts for the definition of a formal semantics for a modeling language
like UML have shown that this really is a difficult task for the following reasons:

D. Lee et al. (Eds.): FMOODS/FORTE 2009, LNCS 5522, pp. 152–166, 2009.
c© IFIP International Federation for Information Processing 2009

[GRR09] H. Grönniger, J. O. Ringert, B. Rumpe
System Model-based Definition of Modeling Language Semantics
In: Proc. of FMOODS/FORTE 2009, LNCS 5522.
Lisbon, Portugal, 2009
www.se-rwth.de/publications

System Model-Based Definition of Modeling Language Semantics 153

– Multiple views and multiple models describe overlapping parts of the system.
Thus, fundamentally different modelling concepts for structure, behavior and
interaction have to be given an integrated semantics.

– As opposed to programming language semantics, modeling languages are
used for specification. In particular high-level, abstract models are not nec-
essarily executable. Instead, models tend to be incomplete and underspecified
and thus their semantics must allow underspecification. A semantic defini-
tion has to provide a meaning for those models that cannot be described as
an execution.

– The semantics has to be precise but not completely fixed. In UML terms,
it should support semantic variation points that allow different stakeholders
to provide a specialized interpretation for certain constructs.

Although UML is currently one of our main targets, the approach presented in
this paper is not restricted to UML. Instead, the process of defining the semantics
of a modeling language might even be more important for newly defined domain
specific languages since it guides developers through the task of developing a
formal semantics.

This paper presents our approach to define the semantics of object-oriented
modeling languages which explicitly addresses the challenges mentioned above.
The rest of the paper is structured as follows. Sect. 2 discusses our approach in
general and motivates the usage of a single semantic domain that was carefully
defined to capture the most important concepts of object-oriented systems. This
domain is introduced in greater detail in Sect. 3 which also presents an imple-
mentation in the theorem prover Isabelle/HOL [5] as part of the proposed tool
support. Sect. 4 is concerned with the precise definition of the syntax of a lan-
guage using the framework MontiCore [6]. Furthermore, an automatic derivation
of the abstract syntax as an Isabelle/HOL data type is outlined. With syntax
and semantic domain specified and implemented in Isabelle/HOL, the process
of defining the semantic mapping is described in Sect. 5. The mapping again is
formalized in Isabelle/HOL. A running example is used throughout the paper
for which a short verification application is also presented in Sect. 5. Related
work is discussed in Sect. 6 and conclusions are drawn in Sect. 7.

2 General Approach

As indicated in Fig. 1, the semantics of a modeling language consists of the
following basic parts [7]:

Fig. 1. Basic parts of a semantics definition

154 H. Grönniger, J.O. Ringert, and B. Rumpe

– the syntax of the language in question L – be it graphical or textual,
– the semantic domain S, a domain well-known and understood based on a

well-defined mathematical theory, and
– the semantic mapping: a functional or relational definition that connects

both, the elements of the syntax and the elements of the semantic domain.

This technique of giving meaning to a language is the basic principle of denota-
tional semantics: every syntactic construct is mapped onto a semantic construct.
As explained in [2] the semantic mapping has the form:

Sem : L → P(S)

and thus functionally relates any item in the syntactic domain to a set of con-
structs of the semantic domain. The semantics of a model m ∈ L is therefore
Sem(m) denoting a set of elements in the domain S.

Given any two models m, n ∈ L combined into a complex one m ⊕ n (for
any composition operator ⊕ of the syntactic domain), the semantics of m⊕n is
defined by Sem(m⊕n) = Sem(m)∩Sem(n). This definition also works for sets
of documents which allows an easy treatment of views on a system specified by
multiple diagrams. The semantics of several views, e.g., several UML documents
is given as Sem({doc1, . . . , docn}) = Sem(doc1)∩. . .∩Sem(docn). A set of models
docs is consistent if elements of S exist that are described by the models, so
Sem(docs) �= ∅. As a consequence, the approach supports both view integration
and model consistency verification.

In the same way, n ∈ L is a (structural or behavioral) refinement of m ∈ L,
exactly if Sem(n) ⊆ Sem(m). Hence, refinement is nothing else than “n is
providing at least the information about the system that m does”. These general
mechanisms provide a great advantage, as they simplify any reasoning about
composition and refinement operators and also work for incomplete models.

Semantic Domain. We identify a single semantic domain S used as a target
for the semantic mapping of various kinds of modeling languages. Since we are
interested in object-oriented modeling languages, the domain should provide
concepts commonly found in object-oriented systems. The system model, first
defined in [8] and extended in [9], defines these concepts. Generally, the system
model characterizes object-oriented systems using basic mathematical theories.
The semantics of a model M is hence given as a set of all systems of the system
model that are possible realizations of the model M . This way, we obtain an
adequate and relatively easy to understand semantic domain which is crucial for
the acceptance of a semantics definition.

To capture and integrate all the orthogonal aspects of a system modeled in,
e.g., UML, the semantic domain necessarily has to have a certain complexity.
Related approaches to UML semantics very often define a relatively small and
specialized semantic domain and can therefore not capture the multitude of
concepts typically found in a complex modeling language. More details on the
system model are presented in Sect. 3.

System Model-Based Definition of Modeling Language Semantics 155

Tool Support. Having the system model at hand, we could define the semantics
of a language using pencil and paper. This was done for UML class diagrams [10]
and Statecharts [11]. Tool support, however, is beneficial in two ways. First, we
specify a machine-readable, checkable semantics that can directly be used for
verification purposes. Second, the different artifacts can be better controlled
and quality checked by using standard tools, e.g., version control.

Fig. 2 gives an overview of the default approach when defining the semantics
of a language with tool support. First, the (domain specific) modeling language
concepts are specified using a MontiCore grammar. MontiCore [6] is a frame-
work for the textual definition of languages based on an extended context-free
grammar format. This format enables a modular development of the syntax of
a language by providing modularity concepts like language inheritance. Frame-
work functionality helps developers also to define well-formedness rules and, for
example, the implementation of generators.

Fig. 2. Default Approach with Tool Support

To provide the semantics developer with maximum flexibility but also with
some machine-checking (i.e., type checking) of the semantics and the potential
for real verification applications, we use the theorem prover Isabelle/HOL for

– the formalization of the system model as a hierarchy of theories,
– the representation of the abstract syntax of the language as a deep embed-

ding, and
– the semantic mapping which maps the generated abstract syntax to predi-

cates over systems of the formalized system model.

The formalization of the system model as theories in Isabelle/HOL has to
be done once and is described in Sect. 3. We have implemented a generator in
MontiCore that produces an Isabelle/HOL data type representing the abstract
syntax of the language, given a MontiCore grammar as input. Details on the
derivation of the abstract syntax are explained in Sect. 4. The semantic mapping
is also contained in Isabelle/HOL theories, an example is given in Sect. 5.

156 H. Grönniger, J.O. Ringert, and B. Rumpe

This approach of using a deep embedding has mainly two advantages over a
shallow embedding. First, we can benefit from the sophisticated mathematical
notation in Isabelle/HOL for defining the semantic mapping. Second, since both,
the syntax and the mapping are formalized, we are able to reason about syn-
tactic properties of concrete models and, more importantly, about properties of
the mapping itself. This is in contrast to a shallow embedding where we would
generate predicates directly from concrete models. This approach has some ad-
vantages when reasoning about concrete model properties but does not allow
reasoning about the syntax or the mapping at all. Furthermore, we would have
needed to invent another mathematical language to express the predicates out-
side Isabelle/HOL. As an extension to this approach (not shown in the figure),
not only the abstract syntax data type is generated but also another generator
that is able to translate concrete models to the abstract syntax representation
as an instance of the generated data type. This is very useful when verifying
properties of models and will be shown with the help of an example in Sect. 4.

Handling Semantic Variations. As mentioned in the introduction, the se-
mantics of a modeling language should not be fixed but there should be explicit
points where the interpretation of constructs can be specialized. These semantic
variation points can be found in the system model but also in the semantic map-
ping or syntax. Variation points do not necessarily contradict interoperability:
A comprehensive list of realization choices may serve tool builders as a definite
reference when stating compliance to a given language.

In the system model [9] a large number of variation points has already been
made explicit and different alternative configurations for variation points have
been defined. Examples are the existence of multiple inheritance between classes,
different realization strategies for associations, or different notions of type-safe
overriding of methods. These semantic variations can be constrained prior to the
semantic mapping but can also be left open.

For handling semantic variations in the syntax or in the mapping we propose
to model these variations as stereotypes known from UML and to explicitly con-
sider these stereotypes in the semantic mapping. The decisions of how particular
syntactic elements should be interpreted can then be made by the modeler and
need not be fixed beforehand. Additionally, there are dependencies between se-
mantic variation points that have to be considered. A more complete account on
how to handle semantic variations is however outside the scope of this paper.

3 System Model and Its Formalization

The system model is the universe of all possible object systems that can be mod-
eled using an object-oriented modeling language like UML. It describes amongst
other aspects the structural part of such systems, i.e., types, values, classes,
objects and associations. Besides reasoning about the structure of systems it
is also possible to specify or analyze behavior. The control part of the system
model covers events and flow of information as well as execution of methods.

System Model-Based Definition of Modeling Language Semantics 157

All systems are interpreted as timed or untimed global state machines (STS).
Using the power of underspecification and variation points, the system model
becomes very comprehensive but versatile in use. Due to space restrictions, we
only present a small portion of structural definitions. To get a more complete
picture of the system model features, the reader is referred to [9].

Main concepts of object-oriented modeling languages like types or classes
appear in the system model grouped in corresponding universes, e.g., UTYPE or
UCLASS. The universes contain only abstract identifiers. For example, classes are
identified by elements of UCLASS and are only described by functions that yield
information about their attributes, methods, or super-classes. They are never
constructed from records or constructively represented in similar structures.

The system model itself is built in a modular and hierarchical way starting
with a base theory about simple types and values. On top of this theory fur-
ther theories define classes and objects as well as formalizations of the state of
systems. The basic theories of the system model can be seen in Fig. 3.

Fig. 3. Theories that constitute the system model

To support reasoning in the system model and the construction of the semantic
mapping by tools, the proof assistant Isabelle is used for an implementation
based on Isabelle/HOL. Isabelle’s logic HOL [5] offers an implementation of
functional programming and set theory.

Universes of the system model are implemented by corresponding data types
since functions in Isabelle/HOL operate on data types. All introduced universes
are universes of specific instances (systems) of the system model. They are

158 H. Grönniger, J.O. Ringert, and B. Rumpe

retrieved from an instance of the system model with functions similar to selection
functions on records [12]. For example, the function

consts UTYPE :: "SystemModel ⇒ iTYPE set"

maps systems to their universe UTYPE which is a set of type names from iType.
Universes can comprise different sets of data type elements for concrete sys-
tems. An underlying data type (here iTYPE), is necessary since HOL sets have
to be typed. Some universes contain others (e.g., UCLASS ⊆ UTYPE) which is
modeled using wrapping constructors in the underlying type:

datatype iType = ...| TClass iClass | ...

The elements and sub-universes of a universe are defined as parametrized
data type constructors yielding concrete values. This makes it possible to create
and identify certain instances by names (here lists of characters). A class name
in the system model can be created using the constructor Class Name of type
iClass (with Name = "char list"). When reasoning about concrete instances this
facilitates the creation and referencing of explicit names for elements.

All functions in Isabelle/HOL have to be total. Partial functions can be mim-
icked via the special type a’ option = Some a’ | None where a’ is a type vari-
able. Underspecified functions of the system model are introduced as constants
of corresponding function types in Isabelle/HOL. Properties of functions or uni-
verses are given in definitions or predicates over systems. As an example, the
underspecified function CAR is introduced as

consts CAR :: "SystemModel ⇒ (iTYPE ⇒ iVAL set)"

For every type name in UTYPE the function CAR yields all possible values an entity
of the type can have in an instance of the system model. In its mathematical
definition the function CAR fulfills the property

∀u ∈ UTYPE : CAR(u) �= ∅
This is realized by the predicate pCAR Type1 that needs to hold for all valid
systems sm of the system model:

pCAR Type1 sm = (∀ u ∈ UTYPE sm . CAR sm u �= {})

The Isabelle implementation of the system model is split up in theories ac-
cording to the structure in Fig. 3. Properties of system model instances as well
as additional properties imposed by, e.g., variation points are declared in cor-
responding theories. These declarations have to be included as predicates when
reasoning about instances. Predicates for elements of systems always have the
signature "SystemModel ⇒ bool" (see Fig. 4 for a transitivity definition of the
sub class relation) and thus are predicates on systems rather than on single
functions or elements. This makes the combination and reuse of predicates much
simpler.

System Model-Based Definition of Modeling Language Semantics 159

1 constdefs pSubTrans :: "SystemModel ⇒ bool"

2 "pSubTrans sm == (

3 ∀ a b c . the (sub sm a b) −→ the (sub sm b c)

4 −→ the (sub sm a c))"

Fig. 4. Definition of a predicate about transitive sub class relations

To capture all systems sm ∈ SystemModel with non-empty universes UTYPE
and a transitive sub class relation sub one has to write:

{sm. pCAR Type1 sm ∧ pSubTrans sm}

The use and combination of theories and variation points is thus a partially
manual composition task. This may be improved in the future when focusing
more on the usability part of our implementation.

4 Concrete Syntax and Derivation of Abstract Syntax

In this section we briefly introduce MontiCore grammars to specify the syntax
of a modeling language, explain its modularity concepts, and show how to derive
the Isabelle/HOL abstract syntax data type. We present matters with the help
of UML-like class diagrams as a shortened example sufficient to show the main
concepts. Please note that the general idea can also be transferred to other tools
that process context-free grammars or even metamodels.

In MontiCore, modeling languages are syntactically defined with context-free
grammars like the one in Fig. 5. By language inheritance, the grammar re-uses
productions of a super-grammar Common (l. 1) where, e.g., the commonly used
non-terminals IDENT or Type are defined. The keyword external (l. 4) indicates
that a second language for invariants is embedded. Later, this production can
be mapped to any invariant language. Interface productions (l. 3) state that any
implementing production (lines 10 and 18) can be parsed when the interface
is expected (l. 8). Enumerations (l. 14) list possible alternative terminal sym-
bols. Other than that, MontiCore grammars have terminal symbols enclosed in
quotes (e.g., l. 7), alternatives (|), iteration (*), and optional elements (?). Fig. 6
contains two simple concrete models that conform to the grammar of Fig. 5.

The MontiCore generator basically derives a set of Java classes representing
the abstract syntax and an ANTLR-based parser that can process the models
from Fig. 6. For our purpose, an additional generator has been implemented
that produces an Isabelle/HOL theory that holds the abstract syntax as a set of
data type definitions, see Fig. 7. The theory imports data types generated from
super-grammars and the theory that fills the language parameters for externals
(l. 2). Recursively dependent types are computed and generated as a single data
type (not shown in this example). Iteration is translated to the built-in type
list, optional elements to type option. The interface CDElement leads to a

160 H. Grönniger, J.O. Ringert, and B. Rumpe

1 grammar CDSimp extends mc.umlp.common.Common {

2

3 interface CDElement;

4 external Invariant;

5

6 CDDefinition =

7 "classdiagram" Name:IDENT

8 "{" (CDElement | Invariant ";")* "}";

9

10 CDClass implements CDElement =

11 "class" Name:IDENT ("extends" scl:IDENT ("," scl:IDENT)*)?

12 ("{" (CDAttribute)* "}" | ";");

13

14 enum CDModifier = "public" | "private";

15

16 CDAttribute = CDModifier? Type Name:IDENT ";";

17

18 CDAssociation implements CDElement =

19 "association" Left:IDENT "--" Right:IDENT ";";

20 }

Fig. 5. MontiCore grammar of class diagrams

1 classdiagram ABC { classdiagram CA {

2 class A; class C;

3 class B extends A; class A extends C;

4 class C extends B; }

5 }

Fig. 6. Two simple class models

data type with alternative constructors, one for each implementing type (l. 18).
Enumerations become types with an alternative constructor for each possible
value (l. 5).

The generated theory now holds a deep embedding of the syntax in Isabelle/
HOL and can be used to define the semantic mapping. Since we also want to be
able to reason about concrete models, we also have to translate these to instances
of the data type. For that purpose, our MontiCore generator additionally pro-
duces a specific generator that translates concrete models. Applied to the model
ABC we obtain the theory shown in Fig. 8. The constant abc (l. 4) is a class
diagram that has name ABC, an empty list of invariants, and three class diagram
elements which are all classes. All classes have no attributes but some have a
super-class, e.g., CDClass ’’C’’ has super-class ’’B’’.

Please note that the generator actually produces separate constants for each
data type. It has been in-lined here for the sake of brevity.

System Model-Based Definition of Modeling Language Semantics 161

1 theory CDSimpAS

2 imports "$UMLP/abstractSyntax/external/ExternalCDSimpAS" CommonAS

3 begin

4

5 datatype CDModifier =

6 CDModifierPRIVATE

7 | CDModifierPUBLIC

8

9 datatype CDAttribute =

10 CDAttribute "CDModifier option" Type IDENT

11

12 datatype CDClass =

13 CDClass IDENT "IDENT list" "CDAttribute list"

14

15 datatype CDAssociation =

16 CDAssociation IDENT IDENT

17

18 datatype CDElement =

19 CDElementCDClass CDClass

20 | CDElementCDAssociation CDAssociation

21

22 datatype CDDefinition =

23 CDDefinition IDENT "Invariant list" "CDElement list"

24

25 end

Fig. 7. Abstract syntax data type in Isabelle/HOL

1 theory ABC

2 imports "$UMLP/abstractSyntax/gen/CDSimpAS"

3 begin

4 constdefs "abc == CDDefinition ’’ABC’’ []

5 [CDElementCDClass (CDClass ’’C’’ [’’B’’] []),

6 CDElementCDClass (CDClass ’’B’’ [’’A’’] []),

7 CDElementCDClass (CDClass ’’A’’ [] [])]"

8 end

Fig. 8. Concrete model representation

5 Semantic Mapping and Its Formalization

All necessary components for semantic mappings are now available for the use
in Isabelle: the language itself as a data type and a formalization of the system
model. Functions in Isabelle/HOL can be used to define mapping functions from
the implementation of the abstract syntax to the system model implementation.
Features like recursion, constructor pattern matching and functional decompo-
sition can be incorporated. The domain of the mapping function is the gener-
ated top-level data type of the language to be mapped. Its range is the power

162 H. Grönniger, J.O. Ringert, and B. Rumpe

set of systems of the system model. Instances of systems are of the data type
SystemModel in the Isabelle implementation.

From the UML class diagram grammar the data type CDDefinition in Fig. 7
is generated. The corresponding mapping function has the signature

mCDDefinition :: "CDDefinition ⇒ SystemModel set"

What the mapping function basically does is adding constraints to a set of
systems. I.e., the mapping describes properties of the elements in its returned set
of systems. Essential constraints are that every system has to fulfill a set of basic
predicates like pCAR Type1 and pSubTrans from Sect. 3. This way the mapping only
renders valid instances of the system model. Further constraints depend on the
mapped modeling language. The mapping function can be decomposed to many
short and compact functions each mapping one aspect of the abstract syntax.
The function to map the data type CDClass (l. 15, Fig. 7) is shown in Fig. 9.

1 fun mCDClass :: "CDClass ⇒ SystemModel ⇒ bool"

2 where

3 "mCDClass (CDClass name supers attrs) sm = (

4 ∃ c ∈ UCLASS sm .

5 c = Class (mIDENT name) ∧
6 gall supers (mSuperClass c sm) ∧
7 gall attrs (mCDAttribute c sm)

8)"

Fig. 9. Mapping of data type CDClass

This predicate on systems enforces that a class exists in UCLASS which has the
specified class name and also fulfills further constraints given by the mapping of
the super-classes mSuperClass and the mapping of the attributes mCDAttribute.
The function gall feeds all elements of the list supers as a third parameter to
the function mSuperClass which is called with the current class and system as
parameters. These functional decompositions of the mapping make it easier to
write comprehensible and maintainable code.

5.1 Example: Cyclic Inheritance Problem

To demonstrate the use of our implementation of the system model and the
generation of instances from concrete models we present a short example. The
textual models for this example were already given in Fig. 6. The semantic map-
ping renders a set of systems that fulfill the specifications given by the textual
class diagrams. If a system complies to both specifications it is contained in the
intersection of both mappings. Following the paradigm convention over configu-
ration classes with same names in different systems share the same identity. Thus
all systems in the intersection of the mappings contain a circular inheritance,
i.e., A extends C extends B extends A.

System Model-Based Definition of Modeling Language Semantics 163

1 constdefs pSubNonCirc :: "SystemModel ⇒ bool"

2 "pSubNonCirc sm ==

3 (∀ c1 c2 . (the (sub sm c2 c1) ∧ the (sub sm c1 c2)

4 −→ c1 = c2))"

Fig. 10. Definition of a predicate for non-circular inheritance of classes

1 lemma SubNonCirc:

2 "�pSubNonCirc sm;the (sub sm c2 c1);the (sub sm c1 c2)�
3 =⇒ c1 = c2"

4 by (unfold pSubNonCirc-def, auto)

Fig. 11. Rule to apply the predicate for non-circular inheritance

In this example we show a proof in our system model implementation that
no system from the combined specification in Fig. 6 is compatible with the
specification of non-circular inheritances given in Fig. 10. The lemma and the
corresponding proof can be found in Fig. 12. The additional lemma in Fig. 11
is used to utilize the definition of pSubNonCirc in a more convenient way. The
same is done for the definition pSubTrans from Fig. 4 in a corresponding lemma
SubTrans.

1 lemma ABC-CA-circ: "mCDDefinition ABC.abc ∩ mCDDefinition CA.ca

2 ∩ {sm . pSubNonCirc sm} = {}"
3 apply(unfold abc-def ca-def,auto)

4 apply(frule SubTrans, auto)

5 by(frule SubNonCirc,auto)

Fig. 12. Lemma and proof using generated UML models

First the definitions ABC.abc def and CA.ac def are unfolded replacing ABC.abc

and CA.ac by their values (shown in Fig. 8 for the first model). To complete the
proof the transitivity of the sub class relation (lemma SubTrans) is employed
yielding that Class ’’A’’ is a sub class of Class ’’B’’. Afterwards the rule
SubNonCirc leads to Class ’’B’’ = Class ’’C’’ which is an obvious contradiction
here. Automatic simplification is done by the proof command auto throughout
the proof.

In the example, two models of the same language are used. However, handling
models of different languages is done in exactly the same way, since the semantics
of a model is always given as predicates over the same type SystemModel.

6 Related Work

Quite a number of approaches to define a formal semantics for programming
and modeling languages exist; a survey is given in [13,14]. These works deal with

164 H. Grönniger, J.O. Ringert, and B. Rumpe

formalisms and mathematical frameworks that tend to be too complex or cum-
bersome to use for industrial applications. Efforts to bridge this gap led to rea-
soning tools to support using these formal/mathematical frameworks. Prominent
works have shown that proof assistants can be used to define and verify se-
mantics of programming languages [15,16,17,18]. But as discussed the execution
semantics of programming languages is not directly suitable for underspecified
modeling techniques.

Works around Java compilers [19] and virtual machines [20] show that the
embedding of languages and the derivation of a proof environment are a tedious
but crucial task. We automate the task of embedding modeling languages in a
proof environment and offers the system model as a reasoning framework.

One of the earliest frameworks for designing and analyzing domain specific
programming languages (DSPLs) is the CENTAUR system [21]. It is a combi-
nation of different tools to define the syntax, transformations and an expression
evaluation and reasoning framework using Prolog and Coq [15].

Semantic anchoring is a more recent approach for defining semantics of mod-
eling languages [22]. The semantics is defined based on semantic units which are
minimal languages with well-defined semantics for models of computations. The
abstract syntax of domain-specific modeling languages is transformed to the ab-
stract syntax of a semantic unit. In [22] an example of semantic anchoring with
tool support for defining and transforming models is given. The work also covers
similar topics and tool support addressed in this paper but is primarily about
giving operational semantics through generated AsmL [23] sources. Other ap-
proaches, e.g, [24] are based on MOF [25] for which formal semantics exist [26].
In [27] the authors propose a composition of semantic units when modeling het-
erogeneous systems that do not match a single semantic unit. The composition
is not supported by tools yet. Heterogeneous UML semantics approaches such
as [28] also use a posteriori composition of semantics. In our approach we cir-
cumvented this problem by starting with a powerful enough system model.

A completely integrated approach to define a formal language and its se-
mantics is shown in [29]. The abstract syntax and static semantics of modeling
languages can both be expressed in one Alloy [30] model. A major advantage is
the integrated development of all parts of the language using only one formalism.
Alloy relies on the small scope hypothesis and uses only a bounded search space
to find counterexamples.

7 Conclusion and Future Work

The main contribution of this work is the provision of a flexible tool support
for system model-based semantics definitions. The predicative semantic map-
ping helps us to cope with underspecified models. We provide the system model
as a predefined and rather general semantic domain that can be reused in var-
ious semantics definitions for structural, behavioral and interaction concepts.
Furthermore, the form of semantics definition based on sets allows for an easy
explanation of composition and refinement of models.

System Model-Based Definition of Modeling Language Semantics 165

The syntax and semantics can fully be defined using the tools MontiCore
and Isabelle/HOL. Using a theorem prover allows us to define semantics in a
very flexible and modular, yet machine-readable way. A MontiCore generator is
used to deeply embed the abstract syntax of a language defined in MontiCore
into Isabelle/HOL. Based thereon, also concrete models can be translated into
Isabelle theories that provide means to directly use the semantics for verification
purposes. The whole approach was shown for a simple example.

Using a theorem prover gives us great power and flexibility to handle all kinds
of verification problems. But clearly, automation is rather poor compared to, e.g.,
model checking, since proofs have to be conducted manually. Future work will
therefore be concerned with the question how to improve automation, e.g., by
generating a set of helpful auxiliary lemmas and definitions. The identification,
management, and consistent configuration of variation points has not been dis-
cussed in detail, this will be a matter of future work, too. Finally, we plan to
further investigate which conclusions we can draw from the integrated semantics
of languages, hoping to find new insights of how different languages interact with
each other.

References

1. Object Management Group: Unified Modeling Language: Superstructure Version
2.1.2 (07-11-02) (2007), http://www.omg.org/docs/formal/07-11-02.pdf

2. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of “Semantics”?
Computer 37(10), 64–72 (2004)

3. France, R., Evans, A., Lano, K., Rumpe, B.: The UML as a Formal Modeling
Notation. Computer Standards & Interfaces 19, 325–334 (1998)

4. Breu, R., Grosu, R., Huber, F., Rumpe, B., Schwerin, W.: Towards a Precise Se-
mantics for Object-Oriented Modeling Techniques. In: Kilov, H., Rumpe, B. (eds.)
Proceedings ECOOP 1997 Workshop on Precise Semantics for Object-Oriented
Modeling Techniques, Technische Universität München, TUM-I9725, pp. 53–59
(1997)

5. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

6. Krahn, H., Rumpe, B., Völkel, S.: Monticore: Modular development of textual
domain specific languages. In: Proceedings of Tools Europe (2008)

7. Winskel, G.: The Formal Semantics of Programming Languages. Foundations of
Computer Science Series. MIT Press, Cambridge (1993)

8. Rumpe, B.: Formale Methodik des Entwurfs verteilter objektorientierter Systeme.
Doktorarbeit, Technische Universität München (1996)

9. Broy, M., Cengarle, M.V., Grönniger, H., Rumpe, B.: Modular Description of a
Comprehensive Semantics Model for the UML (Version 2.0). Informatik-Bericht
2008-06, Technische Universität Braunschweig (2008)

10. Cengarle, M.V., Grönniger, H., Rumpe, B.: System Model Semantics of Class Di-
agrams. Informatik-Bericht 2008-05, Technische Universität Braunschweig (2008)

11. Cengarle, M.V., Grönniger, H., Rumpe, B.: System Model Semantics of State-
charts. Informatik-Bericht 2008-04, Technische Universität Braunschweig (2008)

12. Naraschewski, W., Wenzel, M.: Object-oriented verification based on record sub-
typing in higher-order logic. In: Grundy, J., Newey, M. (eds.) TPHOLs 1998. LNCS,
vol. 1479, pp. 349–366. Springer, Heidelberg (1998)

http://www.omg.org/docs/formal/07-11-02.pdf

166 H. Grönniger, J.O. Ringert, and B. Rumpe

13. Zhang, Y., Xu, B.: A survey of semantic description frameworks for programming
languages. SIGPLAN Not. 39(3), 14–30 (2004)

14. Mosses, P.D.: Formal Semantics of Programming Languages: An Overview. Elec-
tronic Notes in Theoretical Computer Science 148(1), 41–73 (2006)

15. Terrasse, D.: Encoding natural semantics in coq. In: Alagar, V.S., Nivat, M. (eds.)
AMAST 1995. LNCS, vol. 936, pp. 230–244. Springer, Heidelberg (1995)

16. Nipkow, T.: Winskel is (almost) right: Towards a mechanized semantics textbook.
Formal Aspects of Computing 10, 171–186 (1998)

17. van Oheimb, D.: Analyzing Java in Isabelle/HOL: Formalization, Type Safety and
Hoare Logic. Ph.D thesis, Technische Universität München (2001)

18. Bertot, Y.: Theorem proving support in programming language semantics (July
2007)

19. Berghofer, S., Strecker, M.: Extracting a formally verified, fully executable compiler
from a proof assistant. Electronic Notes in Theoretical Computer Science 82(2),
377–394 (2004); COCV 2003, Compiler Optimization Meets Compiler Verification

20. Leroy, X.: Java bytecode verification: Algorithms and formalizations. Journal of
Automated Reasoning 30(3), 235–269 (2003)

21. Borras, P., Clement, D., Despeyroux, T., Incerpi, J., Incerpi, J., Kahn, G., Lang,
B., Pascual, V.: Centaur: the system. SIGPLAN Not. 24(2), 14–24 (1989)

22. Chen, K., Sztipanovits, J., Abdelwahed, S., Jackson, E.K.: Semantic anchoring
with model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA
2005. LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

23. AsmL Website, http://www.research.microsoft.com/fse/asml
24. Wachsmuth, G.: Modelling the Operational Semantics of Domain-Specific Mod-

elling Languages. In: 2nd Int. Summer School on Generative and Transformational
Techniques in Software Engineering (GTTSE 2007). LNCS, vol. 5235, pp. 506–520.
Springer, Heidelberg (2008)

25. Object Management Group: MOF Specification Version 2.0 (2006-01-01) (January
2006), http://www.omg.org/docs/ptc/06-05-04.pdf

26. Boronat, A., Meseguer, J.: An Algebraic Semantics for MOF. In: Fiadeiro, J.L.,
Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg
(2008)

27. Chen, K., Sztipanovits, J., Neema, S.: Compositional specification of behavioral
semantics. In: DATE 2007: Proceedings of the conference on Design, automation
and test in Europe, San Jose, CA, USA, EDA Consortium, pp. 906–911 (2007)

28. Cengarle, M.V., Knapp, A., Wirsing, A.T.M.: A Heterogeneous Approach to UML
Semantics, pp. 383–402 (2008)

29. Kelsen, P., Ma, Q.: A Lightweight Approach for Defining the Formal Semantics of
a Modeling Language. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 690–704. Springer, Heidelberg (2008)

30. Jackson, D.: Alloy: a lightweight object modelling notation. Software Engineering
and Methodology 11(2), 256–290 (2002)

http://www.research.microsoft.com/fse/asml
http://www.omg.org/docs/ptc/06-05-04.pdf

	System Model-Based Definition of Modeling Language Semantics
	Introduction
	General Approach
	System Model and Its Formalization
	Concrete Syntax and Derivation of Abstract Syntax
	Semantic Mapping and Its Formalization
	Example: Cyclic Inheritance Problem

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

