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1 Preface

Robotics is a growing discipline where developers with different backgrounds and
focuses work together. Nowadays, robotic systems usually consist of particular
hardware platforms with specific software architectures. Knowledge about sensor
interaction, constraints, and further information is coded within the architecture
or certain modules. ROS is one step towards interfacing different robotic algo-
rithms, software, etc. with a unique interface. Nevertheless, information about
how to handle things is still coded in hardly re-usable solutions without harmo-
nized interfaces and model descriptions.

Model-Driven Engineering already has huge impact on other fields. Currently,
there are various approaches to the model-driven engineering of robotics appli-
cations, but widely applicable and thus accepted approaches have yet to emerge.
Improving reusability and modularity of robotics applications requires to model
the implicit knowledge encapsulated in current robotics modules and models ex-
plicitly. Applying knowledge engineering to model-driven robotics development
will ease reuse and enable more efficient robotics software engineering.

The goal of this workshop was to bring together researchers from different
fields: on the one hand languages and tools for model-driven engineering have
been developed, on the other hand robotics systems consist of an increasing
amount of heterogeneous software which contains new exploitable knowledge
about their properties and composition. Demands on robotics software regarding
reusability, reliability, expandability, and efficiency are very high, hence suitable
modeling techniques are required to achieve high quality software products. To
this end, the MDKE workshop provided a platform for presentation of novel
approaches to tackle these challenges by means of model-driven engineering and
knowledge engineering and how they reduce development cost and time. The
scope of this workshop included, but was not limited to:

– Integration of knowledge engineering with software architecture and deploy-
ment modeling;

– Composition of software modules and components with the help of knowledge
engineering;

– Modeling languages for knowledge engineering;
– Toolchains for the knowledge-aware modeling of robotic applications;
– Applications of knowledge engineering to models at run-time and self-*;
– Knowledge-Driven model transformation between different languages and

frameworks;

The workshop was co-located with the European Robotics Forum 2015, which
represents a forum for practitioners and researchers in robotics. We received five
papers out of which three papers were selected for inclusion in the proceedings.
The accepted papers covered from model-driven composition with explicated
knowledge on communication, scheduling, and computation, to knowledge en-
gineering techniques for abstracting low-level details, to abstraction of robot
capabilities for high-level plan composition.
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This was the first edition of the MDKE workshop and the attention received
in terms of submissions and participants demonstrates that the topics are rele-
vant to current robotics software engineering. Thus, we would like to thank the
authors and the program committee for their hard and precious work.

April 2015

Klas Nilsson, Bernhard Rumpe, Ulrike Thomas, and Andreas Wortmann
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The Composition Pattern for model-driven
robot application development

Dominick Vanthienen and Herman Bruyninckx

KU Leuven, Dept. of Mechanical Engineering, PMA Division
Celestijnenlaan 300B, 3001 Leuven, Belgium
dominick.vanthienen@kuleuven.be ??

Robots evolve to more autonomous systems that can operate in human-
populated environments. Moreover, these new environments and related appli-
cations expect physical and cognitive interaction capabilities of the robot. This
evolution requires the integration of many different fields of research to be carried
out by a multitude of experts. In order to bring this integration challenge to a
good end, a systematic and model-driven approach to software is needed, which
should result in flexible, reusable, and adaptable software. This paper describes
the Composition Pattern [3] as such a systematic approach to model robot appli-
cations. It is an architectural pattern to systematically structure, i.e. to contain
and connect, types of behavior. It builds on and provides a constructive way to
apply the 5C’s approach to separation of concerns [2].

The pattern can be applied to analyse, model and implement applications.
Earlier work introduced the Composition Pattern as software architectural pat-
tern [4]. The focus of this paper and presentation will be on the modeling aspect.

1 The Composition Pattern

The Composition Pattern builds on four concepts, i.e. metamodeling, composi-
tion, hierarchy, and semantic context, explained in following paragraphs.

The first concept is metamodeling [1], an approach from Model Driven
Engineering (MDE) which separates domain knowledge from its software im-
plementation, and formalizes this knowledge in a meta-model. The meta-model
forms a Domain Specific (modeling) Language (DSL) to describe specific mod-
els. The conformance of a model to one or more meta-models can be verified.
From a model, an implementation in the software framework of choice can be
hand-coded or generated.

The second concept is composition. The Composition Pattern defines a
structure to compose entities (i.e. models in the context of this paper). Each of
these entities is of one of the following types (of behavior).

– Functional Entities model continuous time and space behavior, i.e. ‘data pro-
cessing’ or ‘computations’. A Functional Entity can be a composite (Func-

?? All authors gratefully acknowledge the financial support by the Flemish FWO project
G040410N, KU Leuven’s Concerted Research Action GOA/2010/011, and European
FP7 project Factory-in-a-Day (grant agreement no. 609206).
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tional Entity), composing other Functional Entities and ‘support entities’.
The latter consist of entities of the types listed below.

– Monitors model conditions to verify on data and the events to raise based
on these conditions.

– A Coordinator models the actions to command from the other entities within
a composite. It gives the composite the autonomy to handle certain situations
locally. It is a pure ‘event processor’, it receives events from the other entities
and triggers (commands) other entities with events.

– A Scheduler models the resource access and timing constraints on the dif-
ferent entities within a composite.

– Configurators model different sets of settings, i.e. data and parameters to
apply to an entity when triggered by the Coordinator. In that sense it ‘trans-
lates’ the event to the parameters to apply. A Configurator forms the point
where knowledge from a knowledge base can be introduced.

– A Composer models how the entities within a composite are connected.
– Communicators model constraints on how entities exchange data and events

over these connections. Data and event communication is not limited to the
boundaries of a composite.

Figures 1 and 2 detail how these entity types (behavior) is structured by the
Composition Pattern.

The third concept is hierarchy. Since each Functional Entity can be (re-
placed by) a composite Functional Entity, a tree of entities emerges with a
recurring structure. The tree depth level does not have to be identical for all
branched of the tree. The composition is hierarchical, however data and event
communication is not hindered by the hierarchy: events are broadcast and data
is communicated through the boundary of a composite.

The fourth concept is semantic context. The entities within a composite
need to use a shared vocabulary, i.e. its semantic context, to be able to interact.
Making this context explicit is important to apply knowledge driven approaches.
The support entities handle the translation from the context of a composite to
its child functional entities. The composite and its semantic context forms a
boundary to what the support entities have to ‘know’ and manage. However, this
boundary does not imply information hiding; child entities can be introspected
and hence reasoned about.

2 Use cases and discussion

In following example we model the ‘reaching task’ part of a robotic pick and place
application using the Composition Pattern. This reaching task is a Functional
Entity which is part of an application composite. It is in itself a composite Func-
tional Entity, composing a controller (composite) Functional Entity, a trajectory
planner (composite) Functional Entity, and ‘support entities’. For example fol-
lowing support entities and example interactions of their implementations: A
Monitor monitors the control error and signals when it reaches a certain limit.
The Coordinator reacts on this event and sends out an event to adapt the gains
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Fig. 1: Entity types within the Composition Pattern. A Functional Entity can com-
pose a number of entities of each type, indicated by the arrow and the cardinality. A
Functional Entity can be a composite Functional Entity, composing other Functional
Entities, as indicated by the reflective arrow.
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Fig. 2: Structure of the Composition Pattern. Blocks indicate entities, block colors
indicate entity types, and darker shades of grey indicate deeper levels in the hierarchy.
Arrows indicate data communication and double lines indicate event broadcasting over
a ‘bus system’ (only partially drawn).

of the controller. The Configurator on its turn reacts to the event of the co-
ordinator by setting a new control gain. The Scheduler of the reaching task
composite first triggers the planner to generate a new setpoint or a complete
trajectory, before it triggers the controller to track the setpoint or trajectory.
The Composer models that the planner setpoint should be communicated to the
controller. The Communicator models that the setpoint of the planner needs to
be communicated in real-time (assuming online trajectory generation).

The presentation will detail this and other examples of the application of the
Composition Pattern and its advantages over classical (e.g. layered) architectures
to address the integration challenge in robotics. The Composition Pattern has
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been applied to model robot applications that make use of constraint-based
programming, for which a DSL is made available [3].
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Abstracting Away Low-Level Details
in Service Robotics with Fuzzy Fluents

Stefan Schiffer1, Alexander Ferrein2, and Gerhard Lakemeyer1

1 Knowledge Based Systems Group (KBSG)
RWTH Aachen University, Aachen, Germany
{schiffer,gerhard}@cs.rwth-aachen.de

2 Mobile Autonomous Systems & Cognitive Robotics Institute (MASCOR)
FH Aachen University of Applied Sciences, Aachen, Germany

ferrein@fh-aachen.de

Abstract. In domestic service robotic applications, complex tasks have
to be fulfilled in close collaboration with humans. We try to integrate
qualitative reasoning and human-robot interaction by bridging the gap
in human and robot representations and by enabling the seamless inte-
gration of human notions in the robot’s high-level control. The developed
methods can also be used to abstract away low-level details of specific
robot platforms. These low-level details often pose a problem in re-using
software components and applying the same programs and methods in
different contexts. When combined with methods for self-maintenance
developed earlier these abstractions also allow for seamlessly increasing
the robustness and resilience of different robotic systems with only little
effort.

1 Introduction

In our previous work we focused on the design of intelligent behaviours in do-
mestic service robotics applications. We developed the logic-based high-level
robot programming and plan language Readylog [2, 1], which allows for spec-
ifying complex behaviours in a quite intuitive fashion. Readylog supports, for
instance, decision-theoretic planning, online-passive sensing and is able to deal
with uncertainty. It is a member of the GOLOG language family and is based
on the Situation Calculus [5, 6]. We successfully applied Readylog in dynamic
real-time domains such as robotic soccer and also on a domestic service robot
platform; in particular we participated successfully at RoboCup@Home compe-
titions in the past [8, 12].RoboCup@Home [15, 16, 14] is a robot competition for
domestic service robots under the roof of the RoboCup Federation. The robots
have to fulfill tasks ranging from rather simple functions such as guiding a hu-
man through an apartment over serving drinks to complex missions like cooking
meals or acting as a host at a party. Robots in @home are fully autonomous
and they must be accessible and usable by non-expert users; this is most often
realized via natural language-based control.
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2 Qualitative Notions and Self-Maintenance

When operating in human-populated environments in collaboration with hu-
mans, it becomes obvious that numeric representation of the robot cannot quite
be understood by a human. Humans rather tend to use qualitative representa-
tions of space than numerical ones. While humans are very good at interpreting
qualitative distances such as “far” or “close” or orientations such as “the cup
is left on the table behind the coffee pot” robots are not. One possibility (for
robots) to deal with such qualitative notions is to use fuzzy predicates. A fuzzy
predicate associates a number of quantitative values from a given domain (e.g.
distances 1, 2, . . .) to a linguistic term (e.g. “far” or “close”). The association of
quantitative and qualitative values is specified with a so-called membership func-
tion. Each quantitative value has a membership value, which defines, to what
degree a value falls into a certain fuzzy category. An example of a membership
function for qualitative unit distance is depicted in Figure 1. We extended the
language Readylog with qualitative notions to be able to instruct the robot with
command such as “get me the left cup on kitchen table”. To this end, we devel-
oped fuzzy representation in the Situation Calculus [3, 11, 10] and integrated a
control strategies into Readylog [9, 4].

Another challenge for robots working in human environments is that they
need to operate for extended periods of time. Therefore, they need to be robust
against internal shortcomings and they should continue to be functional even
in the face of failures. More precisely, robots should be able to handle and deal
with as many errors by themselves as possible. For that purpose, we developed
a method to realize a limited form of self-maintenance [13]. It uses explicitly
formulated constraints that associate actions with desired internal states of the
robot. Before executing an action the robot checks whether the constraints are
met and it schedules appropriate counter measures if this is not the case. For
example, one could specify that the robot should only drive around if the collision
avoidance module is running and in working condition. If then, the robot’s next
action is to move to a certain position but the collision avoidance component
is non-functional, the system would restart it before attempting to execute the
move action.
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Fig. 1. Membership function for qualitative (unit) distance
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3 Fuzzy Fluents for Abstracting Away Low-level Details

The basic motivation behind using fuzzy fluents in the high-level controller of
our domestic service robots was to express qualitative facts about the world and
reason with them. For translating qualitative notions “left of” or “close” into a
quantitative representation that the low-level robot control system can use to
perform its actions, we use fuzzy predicates for dividing continuous spaces (e.g.
distance and orientation) into a number of equivalence classes. An additional
nice feature of fuzzy predicates is that certain quantitative values can belong to
more that one class at a time and that complex queries can be evaluated (see [3,
11, 10] for technical details). The linguistic classes and the membership functions
can also be used to model different contexts. For instance, “fast” may mean 100
km/h in a self-driving car, while for a humanoid robot it means “100 cm/s”. With
modelling the membership function differently in different contexts, these details
can he hidden away from the high-level reasoning system. This allows for using
the same high-level controller in different contexts and on different platforms by
simply providing an appropriate membership function of the qualitative terms
used in the program. Extending this concept of “abstracting away” quantita-
tive details of the low-level system can also be used to model self-properties of
the robot or to allow a form of hardware abstraction of the low-level hardware
system.

As an example application, consider a delivery robot scenario. Two different
robot platforms might be equipped with different drive concepts, different pay-
load capabilities, and different energy components. As a result, these two robots
will have different maximum speed and they will be able to travel different to-
tal distances before they need to recharge. With our qualitative abstractions in
place, both robots could use the same control program to conduct their delivery
service. The only difference would be the individual membership functions for
relating numerical values to their qualitative counterparts that are being used
in the high-level program. Also, different payloads would automatically be ac-
counted for when the control programs and constraints mentioned above would
be using notions such as “heavy” by appropriate membership functions for dif-
ferent hardware platforms.

4 Discussion

In this paper we illustrated the use of qualitative notions for abstracting away
low-level details in service robotic applications. Qualitative notions are realized
by fuzzy fluents using membership functions that specify how much a numerical
value belongs to a qualitative category. By using only qualitative terms in high-
level control programs and also for formulating constraints that exist between
actions and internal states of the robot, differences for varying platforms can
be accounted for by just using different membership functions. This facilitates
creating high-level control that is easily transferable from one robot platform
to another. The proposed method could also be used with learning individual
qualitative abstractions for different persons [7] or platforms.
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Architecture for Efficient Reuse in Industrial
Settings
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Abstract. In this work we introduce the architecture used in the DTI
Robot CoWorker, which is a flexible robotics software platform support-
ing easy extension of functionality, flexible component integration and
intuitive human robot interaction – all with a strong focus on reusability.
We employ a knowledge-based approach through a hierarchical Hardware-
Independent Capability Representation, with which we are able to create
reusable and hardware-independent process descriptions.

Keywords: Hardware-Independent Capability Representation, Reuse in
Robotics, Robotic Architecture

1 Introduction

To strengthen the competitiveness of small and medium enterprises (SMEs),
the creation of agile robots, which can easily be reconfigured for new tasks and
operated by existing personnel, is needed and therefore system architectures
supporting this are needed, so that flexible and assistive robotic installations
will become viable in SMEs.

We here present our approach for realising such an architecture, namely the
architecture of the DTI Robot CoWorker, which is a flexible robotics integration
platform supporting flexible component integration and intuitive human robot
interaction, and enables reuse of (sub-)process descriptions between hardware to
solve different tasks. We use ROS [3] as middleware in the current implementa-
tion but from a design perspective, the architecture is middleware-independent.

We employ a knowledge-centred approach, by grounding system function-
ality following a hardware-independent representation. We call these grounded
capabilities Actions. We have previously introduced this Action Framework in
[1]. Actions serve to ground capabilities and abstract low-level complexities so
that end-users and system operators need only worry about what is essential for
them: the process. Additionally we use a centralized Knowledge Base, storing
and processing all semantically annotated information within the system.
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2 Architecture Description

We propose a 4-layered architecture which has been designed with attention to
the principle of “separation of concerns” introduced by Radestock and Eisenbach
[4] such that independent system concerns are addressed explicitly. Communi-
cation, Computation, Configuration and Coordination were originally identified
as the essential concerns and later Composition was added by Prassler et al. [2]
as a fifth concern, which is likewise addressed at design time. We consider all
five concerns in our architecture.

An overview of the architecture is given in Fig. 1, from which it is evi-
dent that the four layers of the architecture are Computation, Configuration,
Coordination and User Interaction. A top-down hierarchical dependency ex-
ists between the layers, which ensures a proper division of responsibilities, and
enables easy updates and extensions of individual layers.

In addition to the four separated layers, a Knowledge Base is present which
is directly accessible from the Configuration and Coordination layers. User In-
teraction and Computation have access through these, to sustain separation.
The Knowledge Base (KB) is the central information storage and interpretation
module. All persistent information generated within the system is stored in the
central KB, which handles the translation between raw-data and semantic data,
ensuring that all modules have a common interpretation of raw data.
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Fig. 1. The layered architecture of the DTI Robot CoWorker platform. The architec-
ture consists of four layers and a shared Knowledge Base.
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Computation is the layer in which all functionality performing actual com-
putations is located, including hardware drivers, software interfaces, algorithms
and so forth. Functionality is made available to the system through Computa-
tional Units by use of a service-based capability registration process provided by
the Configuration Layer.

Coordinated execution and monitoring is addressed in the Coordination layer
as well as error recovery in unexpected situations. The hardware-independent
process descriptions, expressed as a graph of Actions, are executable through an
online symbolic interpreter, which we call the Robot Virtual Machine (RVM).
The RVM translates the symbolic Actions to specific capabilities provided by the
connected units. At the top most level, we have the User Interaction Layer, which
is the place where process descriptions are created through various interaction
interfaces. The interfaces in the Interaction Layer are developed following the
Model-View-Control pattern.

3 Discussion

We have successfully deployed the proposed architecture to more than seven
different hardware platforms, in both commercial and research related activities,
working with industrial manipulators and mobile platforms. We have tested more
than 20 different tasks, and while doing so we have integrated a large amount of
sensors and actuators, all supporting the dynamic registration process.

Fig. 2. An example of an end-user based instruction interface.

Reusability has been a main concern, and is two-fold within the architec-
ture. One aspect focusses on reusing the actual functionality between plat-
forms/installations, while the other focusses on reusing hardware independent
Actions between tasks. Functionality reuse has been addressed by utilizing the
grounded system capabilities provided by the Action Framework, such that ex-
ternal modules can easily be interchanged between physical platform configu-
rations. This greatly reduces the integration efforts. Action reuse is realized by
creating a hierarchy of the hardware independent actions, thus decoupling Ac-
tions from hardware, which can therefore be reused between tasks when parts
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of the process are the same (even though the hardware is not). This reduces the
required instruction time as the available library of Actions increases over time.

We enable non-technical end-users to intuitively specify new processes using
the grounded capabilities without having to consider all complexities as these
have been abstracted away, by using an intuitive end-user oriented GUI (an
example of an end-user interface is given in Fig. 2. By simply arranging the
available Actions in the desired order, a complete process description can be
created without concerning one-selves with the underlying technical challenges
of the connected hardware. At the same time expert users can create, via a
different interface, very complicated applications beyond the scope of the end-
user interface, thereby the system empowers experts as well as non-technical
end-users.

The architecture facilitates end-user driven application-development, sup-
ports fast reconfiguration and enables adaptation to changes in production.
Thereby it addresses many of the needs in modern robotic applications. By
the realization of such intuitive and flexible robotic system, it becomes viable
to automate high-mix low-volume production, which traditionally has not been
automated.
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