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Abstract

Modeling variability in Matlab/Simulink becomes
more and more important. We took the two vari-
ability modeling concepts already included in Mat-
lab/Simulink and our own one and evaluated them
to find out which one is suited best for modeling vari-
ability in the automotive domain. We conducted a
controlled experiment with developers at Volkswagen
AG to decide which concept is preferred by develop-
ers and if their preference aligns with measurable
performance factors. We found out that all existing
concepts are viable approaches and that the delta
approach is both the preferred concept as well as the
objectively most efficient one, which makes Delta-
Simulink a good solution to model variability in the
automotive domain.

1. Introduction

The configurations of modern cars are highly
variable. This variability concerns all aspects of
the vehicle functionality from technical base func-
tionality to comfort functionality like vehicle speed
based steering support. Managing this variability
is essential. Customers wish to tailor their car to
their own preferences, e.g. in regard to comfort,
safety, or sportiness. This often leads to sport and
limousine versions of one and the same car. An-
other factor is the reuse of identical hardware parts
within one corporate group with different software.
Audi and Porsche are, for example, part of the
Volkswagen group. The Audi A6 and the Porsche
Macan, therefore, use a similar steering box assem-
bly, the difference is mainly in the software they
use. However, in order to realize this variability, the
different variants of the vehicle functions have to
be planned and realized during development. This
requires to be able to handle variability in all devel-
opment phases by adequate means. To manage this
variability and the potential reuse of components,

Software Product Line Engineering (SPLE) meth-
ods are used. In the automotive domain, functions
of a system are often developed in Matlab/Simulink
[3], which offers built in support to manage variants.
Since 2007 Simulink itself has been providing an
annotative variability modeling approach [17] where
a model contains all Simulink blocks that may be
contained in any variant such that it is also called
a 150%-Model. Simple variant management can be
done by using conditional blocks like if, switch, and
action blocks that are either active or inactive. An-
other annotative approach using variant subsystems
was introduced to Simulink in release R2009b and
R2010b [19]. These two concepts are limited and a
new variability modeling method for Simulink was
developed which is based on delta modeling [13].
This new concept of variability in Simulink, is called
Delta-Simulink [5]. We want to compare 150%-
models with a transformational variability approach
in Simulink to answer the question which modeling
approach is suited best with the focus being on
the automotive domain. In order to answer this
question, we conduct a controlled experiment as well
as a survey with developers at Volkswagen. The
contribution of this paper is an in-depth compar-
ison of variability modeling concepts in Simulink.
The concepts are compared by a set of tasks and
scenarios. In an evaluation at an OEM (original
equipment manufacturer) all concepts are measured
and validated in a real development situation.
The paper is structured as follows: In Sect. 2, we

describe the concepts used to model variability in
Simulink. We explain in Sect. 3 how we designed the
study to compare the variability concepts. In Sect. 4
we show the results of our study. Threats to validity
of our study are discussed in Sect. 5. Sect. 6 reviews
related work and Sect. 7 concludes this paper.

2. Variability Concepts

In the following section, we give an overview of
the variability concepts we evaluate.
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Figure 1: 150%-Model with ”If-action” subsystem [5]

2.1. 150%-Models

The already available concepts to model variabil-
ity in Simulink use an annotative variability mod-
eling approach [17] where all possible variants are
described in the same model. The models contain
all Simulink blocks that may be used in a variant
hence these concept are also called 150%-Models. In
the following we describe the two available concepts
to create 150%-Models. This differentiation was also
used by the evaluation in [19].

150%-Models with Conditional Model Ele-
ments (CME). In models with conditional model
elements each variant is encapsulated in a separate
subsystem as shown in Figure 1. Each of these
“If-action”-subsystems contains an extra activation
port to enable or disable it. In addition an extra
“if-block” or “switch-block” evaluates a condition
based on a configuration variable. The outputs are
connected to the activation port of an ”If-action”-
subsystem. As the subsystem blocks generate the
same signal a merge block is necessary for each
output signal.

150%-Models with Model Elements for
Model Adaptation (MEMA). This approach
uses special blocks which are variation points for
subsystems or model references. They contain in-
puts for all possible input signals over all variants
and outputs for all possible output signals. Inside
the variant subsystem, each variant is encapsulated
in a single subsystem. The active variant is de-
termined by conditions that are attached to each
block and the corresponding connections are created
during the simulation. Only one variant can be
active.

Figure 2: Base model as used with Delta-Simulink [5]

2.2. Transformational Models

Transformational variant modeling approaches
modify a base system to build variants. In the
following, the own-developed Simulink extension
Delta-Simulink is described.
Delta-Simulink. Delta-Simulink introduced in

[5] is a transformational approach for modeling
software variability. This variability modeling mech-
anism consists of deltas which are applied to a
base model. The deltas are Simulink models where
elements may be annotated with delta operations.
These operations are encoded by colours in a sep-
arate delta model view. Therefore, it is possible
to use the colours as before in the “normal view”.
Green elements are added in the delta, red elements
are removed, orange elements are replaced and blue
elements are modified (for example, subsystems).
A specific variant can be obtained by applying a
series of deltas to the base model. The order of
the deltas can be arranged with application order
constraints. To make this more clear, we go through
an example step by step. In our example, we have
the base functionality given in Figure 2. The vari-
ant is modeled in a separate model file, the delta
model. In our case, we want to replace the model
reference of the brakefunction with the reference for
the ABS function and we want to add the needed
ports. In order to model this variant, we add the
reference to the ABS model to our delta model and
annotate it with a replace operation. We add the
ports and connections and annotate them with the
add operation. The delta, for our example, is shown
in Figure 3.

Figure 3: Delta-Simulink model (The add operations
are marked green and the replace operation is marked
orange.) [5]

The delta can then be applied to the base model



and the variant with ABS functionality is generated.
A more detailed description of Delta-Simulink and
its functionality is given in [5].
For this evaluation, we used a version of Delta-

Simulink that is able to model deltas for arbitrary
blocks and not just for models or subsystems as in
the original publication.

3. Study Design

This section explains how we designed the study
and the goals we want to achieve. The study consists
of a survey and a controlled experiment.
We designed the study to answer the following

research questions:

RQ1.1: With which concept can developers
model variability the fastest? A concept is
chosen if it takes a minimum of time to apply it.

RQ1.2: Which concept is accepted best by
the developers? A concept is accepted if the
developers prefer one concept to the other ones
and actually want to use it in their daily work.

The answer is also derived from sub questions.

RQ2.1: Which approach yields the smallest
models? Small models are better to maintain.
Variability concepts with a lower quantity of
blocks and connections are less error-prone upon
modification.

RQ2.2: In which concept are the features
encapsulated best? Encapsulation means sep-
arating the variable parts (e.g. in own artifacts,
or in own blocks) to clarify the variability and to
support reuse of features in other contexts.

RQ2.3: Which concept yields the most well
structured models? Well structured models
are easy to read. This is what we want to assess
with ”clearness”. This supports the developer to
comprehend the model and to identify the vari-
ability.

3.1. Self-assessment and Introduction to
the Concepts

At the beginning of the study the developers self
assess their experience in model based development.
Then they watch a video that explains the three
modeling concepts. After that the developers are
asked to self assess their experience with Simulink
and to decide how easily understandable the three
concepts are. The study participants have been
instructed to rate the understandability of the con-
cepts here not how well the concepts are presented
in the video.
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Figure 4: The experience of the participants

We tried to get a good representation of the devel-
oper population at Volkswagen and took a random
sample of two divisions to achieve this. It wasn’t
possible to check whether this random sample is a
perfect representation of the overall developer pop-
ulation as the privacy policy of Volkswagen made it
impossible to measure it. Figure 4 shows the work
experience as well as the Simulink experience of our
study participants.

3.2. Objective Assessment

The second part of the study consists of an
objective assessment as a controlled experiment. In
the controlled experiment the participants had to
complete four tasks which were given in the form of
change requests (CRs). This is the standard format
of tasks at the surveyed divisions of Volkswagen AG.

3.2.1. How we Chose the Tasks for the Ex-
periment. In order to make our results transfer-
able to other settings in the automotive domain as
well as to make them meaningful within the tested
setting and to prevent the introduction of biases we
attached great importance to choosing the tasks for
the controlled experiment.
We didn’t choose the tasks completely ourselves

as this could introduce a selection bias (e.g. we could
choose tasks that benefit one particular modeling
concept). Instead we talked with three domain ex-
perts at Volkswagen that did not know the modeling
concepts and asked them about potential tasks.
Together with these domain experts we analysed
past tasks in the change management system. We
looked for past tasks that would also make sense as
variable features in a product line.
Two tasks have been directly derived from pre-

vious tasks, while the third represents a future
task in an actual project and the fourth one was
constructed.
The Tasks/CRs are the following:



Task 1: Adding a filter for an existing output port.
This requires the addition of a filter block which
is placed before the output port. Two variants,
one with filter and one without filter, should be
supported.
Task 2: Changing several fixed factors to different
lookup tables in subsystems. For this, an additional
input must be added to parameterize the lookup
tables. Two different subsystems must process the
new input and be modified by adding lookup tables
which use the new input. The resulting variants
are one with lookup tables and one without lookup
tables.
Task 3: Changing the output data type of a port
while adding a logging mechanism in another part of
the model. This task requires similar actions as Task
1 as well as an output port addition. This task mod-
ifies different model parts. Thus, the corresponding
variants must cover both changes simultaneously or
none of them.
Task 4: Reading an existing signal from a bus and
adding new functionality for this signal including a
new output. This change needs the modification of
Simulink properties of an existing model part as well
as the addition of the new port. The variants are
one with the realization of the task and one without
its realization. In case the tested concept does not
allow interface changes the study participants were
allowed to put a ground signal on a port in the
variant the port is not used.

In order to further validate our choice of tasks
we asked the participants within the study itself
whether the task is representative for the automo-
tive domain. We present these results in section 5.

3.2.2. Data Analysis. Our experimental setup is
a Cross balanced repeated measures within subject
design [16] which means that we use the same sub-
jects in every branch of our experiment. Each par-
ticipant repeats the same tasks with every method.
In order to prevent biases, like a learning effect in
which a study participant is faster when he does the
same task a second time, we use counterbalanced
measures. In this kind of experiment design the
order in which the concepts have to be executed
changes between subjects. We evaluate 3 concepts
which leads to 6 different possible orders and there-
fore 6 groups each with a different order. Each group
consists of 4 developers giving us a sample size
N = 24.

For each task we measure the following variables:

1) Time and effort (mouse movement) the task

takes.
2) Number of blocks in the resulting model.

Modeling a variation consists of two different
kinds of work, the manual work (mouse movements
and clicks) and the mental work (creating the model
in one’s mind). Time accounts for manual and
mental work while mouse movements only accounts
for manual work.

3.3. Subjective Assessment

Our study participants have a considerable ex-
perience in the automotive domain and in using
Simulink. In order to choose the most appropriate
method for modeling variability, we asked the par-
ticipants for a subjective assessment of the concepts.
The study participants have been asked to answer

the following questions for each concept:

SQ1: How easy to understand are the concepts?
This describes how easy it is for a developer
to get familiar with the concept in case he has
never used it.

SQ2: How clear are the models of the concepts?
The participants have been instructed that
they should evaluate how easy it is to spot
important parts of the model.

SQ3: How well do the concepts encapsulate the
features? The participants have been instructed
that they should evaluate how well the variable
parts are separated from the rest of the model.

SQ4: How well is the modeling concept suited for
the automotive domain?

The exact definition of what we mean with encap-
sulation or clearness as explained in our research
questions has been made clear to the participants
by using examples. They have been encouraged to
ask questions in case one of the terms was unclear.
We are aware that this subjective assessment on

its own is not an adequate measurement to make
the final decision on which concept is suited best.
It is merely a second validation of our objective
measurements in the controlled experiment.

4. Results

In the following section we present the results of
our study.

4.1. Results of the Objective Assessment

We start with the objective assessment of the
modeling concepts.



4.1.1. Time Measurements. In order to answer
RQ1.1 we need to test the following hypothesis for
every concept:

H1.1: In concept X the tasks can be fulfilled faster.

Where X is one of the concepts we evaluate.
In the objective assessment we measure the time

each participant needs for each of the tasks. We use
each task-subject pair as a data point.
We analyse our data using a linear mixed model

as described in [7], [18]. We decided against using
a repeated measures analysis of variance (rAnova)
on the data because rAnova is vulnerable against
unequivalent time points and we would need to
assume sphericity or compound symmetry [11].
The linear mixed model does not have these

problems but like rAnova it adjusts for the between
subjects error.
This between subjects error is for example the

difference between two developers A and B which is
independent of the modeling concepts. If subject A
is always faster by a constant factor than subject B
then this difference is not caused by the modeling
concepts but by the subjects themselves. Linear
mixed models account for this error and it is ex-
cluded to yield results independent of the differences
between individual subjects.
We fit a linear mixed model for each task over

all concepts. We got significant results for all tasks
except for the influence of the MEMA concept
on Task 2 (see first block of Table 1). Significant
results in our case mean that there is a statistically
measurable difference with a confidence level of at
least 95%.
We are interested in how big this influence is

and therefore conducted a post-hoc analysis of our
results using the Tukey HSD Test [6]. The time
row of Table 2 shows the time differences needed
to complete each task adjusted for between subject
errors.
We test for the Null-Hypothesis given in Table 3

that the difference between each concept pair is

Table 1: P-values for the insignificance of the factors
in the linear mixed model

Task1 Task2 Task3 Task4

T
im

e
[s
]

Delta 0.0008 0.0000 0.0000 0.0000

MEMA 0.0132 0.1172 0.0002 0.0007

CME 0.0000 0.0001 0.0000 0.0000

P
ix
e
l Delta 0.0002 0.0000 0.0000 0.0000

MEMA 0.0173 0.0073 0.0004 0.0001

CME 0.0000 0.0000 0.0000 0.0001

B
lo
ck

s Delta 0.0000 0.0000 0.0000 0.0000

MEMA 0.0083 0.0071 0.0000 0.0000

CME 0.0153 0.2217 0.0000 0.0000

smaller than 0 and calculated the p-values for each
task. They are close to zero which means that
the difference is bigger than zero with statistical
significance. With one exception for Task 2 we see
only the qualitative result that the hypothesis can
be rejected but it cannot be rejected with statistical
significance.

Table 3: P-values for linear hypothesis
Hypothesis Task1 Task2 Task3 Task4

T
im

e
[s
]

MEMA - Delta ≤ 0 0.0138 0.1371 0.0001 0.0004

CME - Delta ≤ 0 0.0000 0.0000 0.0000 0.0000

CME - MEMA ≤ 0 0.0000 0.0137 0.0512 0.2569

P
ix
e
l MEMA - delta ≤ 0 0.0184 0.0068 0.0001 0.0000

CME - Delta ≤ 0 0.0000 0.0000 0.0000 0.0000

CME - MEMA ≤ 0 0.0012 0.0702 0.2836 0.8260

B
lo
ck

s MEMA - delta ≤ 0 0.0080 0.0069 0.0000 0.0000

CME - Delta ≤ 0 0.0165 0.2509 0.0000 0.0000

CME - MEMA ≤ 0 0.9129 0.9999 0.5424 0.0617

We are also interested in the absolute numbers of
this difference and calculated the estimates for this
difference and the corresponding error margins (see
Table 2).
This means that our initial hypothesis H1.1 is

true for the Delta-Simulink approach in 3 out of 4
tasks to the 95% confidence interval while we see
positive but not statistically significant results in
Task 2.

4.1.2. Measuring Mouse Movements. We also
measured the mouse movements of the study par-

Table 2: Linear mixed model estimates with confidence intervals to the 95% confidence level
Task1 Task2 Task3 Task4

Estimate lwr upr Estimate lwr upr Estimate lwr upr Estimate lwr upr

T
im

e
[s
]

MEMA - Delta 67.83 6.16 129.51 47.71 -22.32 117.74 84.61 36.34 132.88 60.65 21.57 99.74

CME - Delta 209.71 148.03 271.38 124.83 54.80 194.87 127.88 78.97 176.79 81.04 41.96 120.13

CME - MEMA 141.88 80.20 203.55 77.13 7.09 147.16 43.27 -5.64 92.18 20.39 -18.69 59.48

P
ix
e
l MEMA - delta 27906.61 1495.69 54317.53 31350.41 5298.22 57402.60 32780.64 13007.37 52553.91 28936.86 13769.89 44103.84

CME - Delta 66040.73 39320.95 92760.51 52811.55 26759.35 78863.74 42535.27 22762.00 62308.54 29054.95 13887.98 44221.93

CME - MEMA 38134.12 11414.34 64853.90 21461.14 -4591.06 47513.33 9754.64 -10018.63 29527.91 118.09 -15048.88 15285.06

B
lo
ck

s MEMA - delta 84.54 12.75 156.33 86.50 14.52 158.48 14.61 12.61 16.61 10.09 8.75 11.42

CME - Delta 77.17 5.38 148.96 38.04 -33.94 110.02 15.13 13.13 17.13 11.22 9.89 12.55

CME - MEMA -7.38 -79.16 64.41 -48.46 -120.44 23.52 0.52 -1.48 2.53 1.13 -0.20 2.46



ticipants in pixel. The mouse movements in pixel is
a performance measurement like the time measure-
ments but it is independent of thinking processes
(the time the participant needs to think to come up
with a solution) and only accounts for the manual
steps needed to model the solution. We measured
it as it shows, whether most time is spent doing
manual work (moving the mouse) or thinking.
We used the same statistical methods to analyse

the results as in subsubsection 4.1.1. The p-values
for the significance of each factor are shown in the
second block of Table 1. We also conducted a post
hoc analysis, we tested against the null hypothesis
that the difference between the concepts is lower
than zero as shown in Table 3. The p-values for this
hypothesis are close to zero, which means that we
can reject it and that the difference is in fact positive
with statistical significance.
The mouse movements show statistically clearer

results as the time measurements. Here, we can
conclude that delta modeling needs less mouse
movements for every single task. That means, in
comparison to the time measurements, that more
time was spent doing manual work in the CME and
MEMA approaches. The estimates for the difference
are given in the pixel row of Table 2.

4.1.3. Measuring the Size of the Resulting
Models. We used the same approach for the anal-
ysis of the model size as for the time and the mouse
movements. The analysis answers RQ2.1 and we
test for the hypothesis:

H2.1: In concept X the resulting models have the
smallest number of blocks.

The p-values for the significance of each factor
are shown in the third block of Table 1. Our post
hoc analysis showed that Delta-Simulink has the
smallest model size estimates for all 4 tasks (see
Table 2) but statistical significance could only be
achieved in 3 of them (see Table 1). The model
size is an indicator for the clearness of a model. For
Delta-Simulink, the number of blocks includes the
blocks of the base model as well as the blocks of
the delta model, that means the number of blocks
of the delta model itself is even smaller as it only
contains the difference to the base model.

4.2. Results of the Subjective Assess-
ment

In our study we had the privilege to work with
subjects that have experience in the automotive
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Figure 5: Subjective assessment along various variables

domain. This means that the subjects themselves
can look at the modeling concepts and give us their
educated view on how they perform.

4.2.1. Assessment of the Concepts. We pre-
sented several models to our subjects and had them
evaluate the concepts according to understandabil-
ity, clearness, and encapsulation as described in
subsection 3.3. This allows to test the following
hypotheses which answer RQ2.2 and RQ2.3:

H2.2 For one concept X the feature encapsulation
is regarded better by the subjects than for the
others.

H2.3 For one concept X the models are regarded
as clearer than for the others.

The results of this evaluation are shown in Fig-
ure 5 and correspond to SQ1-SQ3. The Delta-
Simulink approach leads in clearness and encapsu-
lation while the CME approach is the easiest to
understand.
In order to answer H2.2 and H2.3 with sta-

tistical significance we used the Wilcoxon-Mann-
Whitney two-sample rank-sum test [9] and com-
pared the concepts pairwise. We chose this test as
our data is pairwise (the data pairs come from the
same subject who grades the concepts on the same
scale) and ordinal [10].
We tested against the following hypotheses:
H0a : Y1 − Y2 = 0;

H1a : Y1 − Y2 �= 0;

H0b : Y1 − Y2 > 0;

H1b : Y1 − Y2 ≤ 0;
In the first test the null hypothesis is H0a, i.e. the
median of the assessment is equal to the one of
the other concept. The second Null-Hypothesis is
H0b, i.e. the difference between the medians of the
assessments of two concepts is bigger than 0. In this
case, the second concept would perform worse than
the first, as a higher value means a better rating.
Table 4 shows the p-values of our hypotheses. All

the p-values for the pairs with Delta-Simulink are
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close to zero and smaller than the significance level
of 0.05 which means that we can reject H0a and
H0b, thus the alternatives H1a and H1b are true we
can therefore validate H2.2 and H2.3 for Delta-
Simulink.

Table 4: Results Wilcoxon-Mann-Whitney Two-Sample
Rank-Sum for Clearness and Encapsulation

Hypothesis H0a H0b

Clearness
CME - Delta 2.361E-02 1.181E-02
MEMA - Delta 4.664E-02 2.332E-02
CME - MEMA 2.644E-01 1.322E-01

Encapsulation
CME - Delta 4.692E-05 2.346E-05
MEMA - Delta 1.250E-03 6.249E-04
CME - MEMA 3.378E-04 1.689E-04

4.2.2. Overall Impression of the Subjects.
The developers are the people who have to work
with the modeling concept. Their impression is,
therefore, important as a successful concept needs
to be accepted by the developers. In order to answer
RQ1.2, we need to test the following hypothesis:

H1.2: Concept X is better accepted by the devel-
opers than the other concepts.

We asked our subjects to rate the modeling con-
cepts with regard to suitability in the automotive
domain (SQ4) with grades from excellent to very
poor (1 = Excellent; 2 = Very good; 3 = Good; 4
= Fair; 5 = Poor; 6=Very poor). The results are
presented in Figure 6.
We used the Wilcoxon-Mann-Whitney two-

sample rank-sum test again with a similar null
hypotheses as in the previous section. With one
difference the second hypothesis is not H0b but H0c

as in this case a lower rating is the better one.
H0c : Y1 − Y2 < 0; H1c : Y1 − Y2 ≥ 0;

Table 5 shows that the p-values are again small
which means that we can reject both null hypothe-
sis. Thus H1a and H1c are true, which means that
the median grade for Delta-Simulink is smaller and
therefore better than for the other concepts thereby
validating H1.2.

Table 5: Results Wilcoxon-Mann-Whitney Two-Sample
Rank-Sum

Hypothesis H0a H0c

1 CME - Delta 2.285E-03 1.143E-03
2 MEMA - Delta 2.209E-04 1.105E-04
3 CME - MEMA 2.285E-03 1.143E-03

4.3. Summary

In general the Delta approach is faster, needs less
mouse movements and leads to smaller models and
was better accepted by the subjects.
The only metric which was rated less positive was

understandability. In our opinion that is not that
problematic, as it only suggests that delta modeling
has a steeper learning curve then the two other
concepts. In the following, we answer the research
questions to give a short summary.

RQ1.1: Which concept enables the developers
to model variability the fastest?
Answer: The tasks could be fullfilled the fastest
using Delta-Simulink. The results are statistically
significant for Task 1, Task 3, and Task 4. For Task
2 we still get the result that it is likely that Delta-
Simulink is the fastest yet we could not achieve
statistical significance with our sample size. The
differences are small but they are consistent which
means that they will have a measurable cost impact
as single tasks need more time. This impact is small
for a single task but projects can consist of a huge
number of variable features that also change over
time beause of this a small but consistent difference
per task will have an increasing impact over the
liefetime of a project.
RQ1.2: Which concept is accepted best by the
developers?
Answer: The Delta-Simulink approach is accepted
best as it gets the best grading by the developers.
The results are statistically significant.
RQ1: Which of the concepts is suited best to
model variability in the automotive domain,
from a developer/modeling perspective?
Answer: Based on the answers of RQ1.1 we con-
clude that Delta-Simulink is the most efficient tool
it as the developers have been able to solve the
tasks the fastest and with the least mouse move-
ments. It was also accepted best by the developers
(see RQ1.2) and the developers found the Delta-
Simulink models were the clearest.
RQ2.1: Which approach yields the smallest
models?
Answer: The average of the block size of the Delta-
Simulink models is the smallest. The results are



statistically significant for Task 1, Task 3 and Task
4, while for Task 2 we get the qualitative result
that the Delta-Simulink models are estimated to
be smaller yet it cannot be shown with statistical
significance as our sample was too small.
RQ2.2: In which concept are the features
encapsulated best?
Answer: The developers think that the features
are encapsulated the best in Delta-Simulink (sta-
tistically significant).
RQ2.3: Which concept yields the most well
structured models?
Answer: The study participants think that Delta-
Simulink yields the clearest models. (statistically
significant)
RQ2: Which concept has the best maintain-
ability?
Answer: Based on the answers of RQ2.1, RQ2.2
and RQ2.3, we conclude that it is very likely
that Delta-Simulink leads to models with the best
maintainability as clear and small models that
encapsulate variability and therefore allow reuse
are key factors of maintainability.

5. Threats to Validity

The literature mentions four main threats to em-
pirical research in software engineering [20]. These
are threats to: Conclusion validity, Internal validity,
Construct validity, External validity.
In the following section we address each threat

individually.

5.1. Threats to Conclusion Validity

Conclusion validity concerns the question: “Does
the treatment/change we introduced have a statisti-
cally significant effect on the outcome we measure?”
[2].
We calculated the corresponding p-value for all

of our statistical conclusions. We also gave error
margins to a 95% confidence level, if possible. The
small sample size prevented significant results in
some cases. In these cases we could only show
qualitative tendencies. These cases would have to be
repeated with a bigger sample size to get significant
results.

5.2. Threats to Internal Validity

Internal validity refers to the question: “Did the
treatment/change we introduced cause the effects
on the outcome? Can other factors also have had an
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Figure 7: The experience of the participants with the
variability concepts in months

effect?” [2]. We tried to exclude as many external in-
fluences as possible. There are two potential biases,
the selection bias and the so called learning bias.
The learning bias is the potential learning curve of
the study participants. This is a major threat as
there is the potential that the first concept tested
teaches the participants something that they could
use in the second or third concept. We tried to tackle
this threat by the choice of our study design we had
6 groups which allowed us to change the order of the
concepts in each group. This minimizes the threat
that a learning bias introduces a significant external
influence.
Another threat is the previous knowledge of de-

velopers that already worked with some sort of
variability concept in Simulink. Those developers
likely have a bias towards that concept and they
would also be better in an objective assessment
as they have more experience and training in that
concept. We therefore asked our study participants
how much experience they had with each of the
presented concepts. Figure 7 shows a summary of
the answers. We don’t think that the prior experi-
ence had a significant influence as the concept which
leads in our objective as well as in the subjective
results is the one in which all study participants
had no prior experience and because a large number
of participants had no experience in any of the
concepts.

5.3. Threats to Construct Validity

Construct validity answers the question: “Does
the treatment correspond to the actual cause we are
interested in?” [2].
The study evaluates three modeling concepts for

variability in Simulink. We compare them by mea-
suring performance metrics (e.g. time used for the
task, mouse movements) as well as metrics for the
model size (number of blocks and connections).
We also compare the subjective judgments of the



Table 6: Representativity of the chosen tasks for the
automotive domain with error margins to the 95%
confidence interval

Not Represative

Hardly Representative

Representative

Very Representative

Task1 resp. in % 0.0 4.2 41.7 54.2
error 0.0 8.2 20.1 20.4

Task2 resp. in % 0.0 0.0 29.2 70.8
error 0.0 0.0 18.6 18.6

Task3 resp. in % 4.2 8.3 45.8 41.7
error 8.2 11.3 20.4 20.1

Task4 resp. in % 4.2 4.2 41.7 50.0
error 8.2 8.2 20.1 20.4

participants. Our study design ensures that each
participants does the same tasks and answers the
same questions which leaves only the modeling con-
cepts as a cause for the different measurements.
Therefore, we believe we’ve achieved a considerably
high construct validity for a study of this kind.

5.4. Threats to External Validity

External validity concerns the question: “Is the
cause and effect relationship we have shown valid
in other situations?”[2]. Therefore external validity
or transferability decides whether our results can
be transferred to other languages or to a different
setting [15].
In our case this means do our results also hold

true for other Simulink models and other tasks. We
tried to ensure this by talking with domain experts
to get a good selection of tasks and models, we
worked with external domain experts to ensure that
we don’t introduce a bias and we had the survey
participants validate our choice by asking them how
representative our choice is. Table 6 shows that in
all cases more than 90% of the participants shared
our notion that the chosen tasks and models are
representative for the automotive domain. We also
calculated errors to the 95% confidence interval
which accounts for the random sampling error in
our survey. Even when we assume the maximum
error to the 95% confidence interval at least two
thirds of our participants would still rank our tasks
as representative.

6. Related Work

An overview of variability modeling in the so-
lution space is given in [14]. The commonly
used approaches are annotative, compositional and
transformational variability modeling. Models with

annotative approaches contain all variability in
one model. Compositional models combine several
model parts to one model variant [17]. In transfor-
mational approaches model variants are developed
by transforming a base model [12]. The application
of variability modeling in Simulink is discussed in
[19]. Mainly annotative approaches are presented
and their quality aspects, binding times, supported
feature types and granularity are summarized. In
contrast to our evaluation the concepts are not
evaluated in a practical study. A detailed descrip-
tion of the Delta-Simulink approach is described
in [5]. [1] shows how the concepts with standard
Simulink blocks can be used with the variant man-
agement system pure:variants. This is done with
variation points for binding the variable features.
The application of external tools was not covered
by our evaluation due to the variety of tools and
concepts to bind variability outside of Matlab. [21]
presents an decision-oriented approach for modeling
variability in Simulink. Similar model parts are
extracted and the variability is bound by decisions.
The Simulink internal implementation isn’t different
to the CME-concept. [8] presents a concept for mod-
eling variability in Simulink based on a 3 layered
template approach. The concept enhances the us-
ability of existing Simulink variability mechanisms
by adding another layer of abstraction. It also adds
an additional binding time. [4] presents another
concept for modeling variability in Simulink but
only a description of the concept itself is published.
It aims at removing the shortcomings of variant
subsystems, like problems with interface changes.
It is very similar to the MEMA concept but adds
a special input and output signal processing to
cope with interface changes. We decided to not
include [8] and [4] in our study as both are similar
to the MEMA concept and because there was no
implementation of the concepts available to us.

7. Conclusion

In this paper we compare and evaluate variability
modeling concepts for Simulink in the automotive
domain. Delta modeling shows very promising re-
sults in this evaluation as it leads in the subjective
as well as objective measurements.
Delta-Simulink strong feature encapsulation leads

to smaller models and this smaller models can be
created faster and are more clear than complex
150%-Models. This evaluation is also a further val-
idation for the approach of graphical delta mod-
eling which was introduced with Delta-Simulink.



This study only evaluates the modeling concept
which is the way the variability is presented and
modeled. For the automotive domain other features
are important as well like the binding time of the
variability but these have not been part of this study
as we solely focus on the modeling perspective.
In the future we want to conduct a second study

which will compare the properties of 150%-Models
and delta models further. Then we want to give
a more fine grained overview on how the different
concepts perform in real world scenarios.
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