
Engineering Tagging Languages for DSLs
Timo Greifenberg, Markus Look, Sebastian Roidl, Bernhard Rumpe

Software Engineering
RWTH Aachen University
http://www.se-rwth.de/

Abstract—To keep a DSL clean, readable and
reusable in different contexts, it is useful to define a
separate tagging language. A tag model logically adds
information to the tagged DSL model while technically
keeping the artifacts separated. Using a generic tagging
language leads to promiscuous tag models, whereas
defining a target DSL-specific tag language has a high
initial overhead. This paper presents a systematic ap-
proach to define a DSL-specific tag language and a cor-
responding schema language, combining the advantages
of both worlds: (a) the tag language specifically fits
to the DSL, (b) the artifacts are kept separated and
enabling reuse with different tag decorations, (c) the
tag language follows a defined type schema, and (d)
systematic derivation considerably reduces the effort
necessary to implement the tag language. An example
shows that it can at least partially be realized by
a generator and applied for any kind of DSL. Index
Terms—Software Engineering, Modeling, MDE, GSE

I. Introduction
Model-Driven Software Engineering (MDE) [1] makes

use of models written in domain specific languages (DSL)
as primary development artifacts. It tries to abstract
from technical configurations in order to focus on the
application domain itself. Generative Programming [2] uses
those models as input for code generators which in turn
are able to generate most parts of the software system.
Nevertheless, some parts of the software system cannot be
generated from only the domain model. Further adaptations
of the generated system might be needed which can be
done by integration of handwritten code [3] or by using
configurable generators [4]. For configurable generators,
the domain model on its own is often not sufficient as
input. Additionally, further data, e.g. platform specific
information needs to be provided.
There are mainly two approaches to provide this addi-

tional data: the domain model is enriched by additional
information or the additional information is stored in
separated artifacts. While the former has the drawback of
polluting the domain model by mixing domain information
with additional data, the latter has the drawback that
different artifacts need to be synchronized over time due
to model evolution. Model pollution is especially bad when
models are supposed to be reused within several projects
using different generators. Moreover, if different technical
aspects must be covered, a lot of additional information is
needed, which easily raises the degree of model pollution.

Nevertheless a DSL cannot incorporate all additional
information, since it is typically outside of the domain but
required for code generation. To keep a DSL clean, readable
and reusable in different contexts, it is useful to define a
separate tagging language. The drawback of the second
case may be overcome by automated transformations which
are used and successfully applied [5] in Model Driven
Architecture (MDA) [6]. But still each kind of additional
information has to be considered on the model level,
resulting in huge additional effort. In an agile development
process, models are often reused and information may
change frequently, further increasing the cost of adopting
the transformations.

We present our approach for adding additional informa-
tion to existing models via a separate tagging language
without polluting the models and without neccessary model
transformations. A tag model logically adds information
to the tagged DSL model, respectively its model elements,
while technically keeping the artifacts separated. Using a
generic tagging language leads to promiscuous tag models,
whereas defining a target DSL-specific tag language has a
high initial overhead. To reduce this overhead and to avoid
promiscuous models, we present a systematic approach to
define a DSL-specific tag language and a corresponding
schema language, combining the advantages of both worlds.
This pair is called tagging languages.

We formalize the specification of additional information
and explicitly model it by using tagging languages fitted
specifically to the existing modeling language. Additional
data is defined within external tag models, preventing
model pollution. Moreover, data from different domains
like persistency configuration, security configuration or
GUI style configuration can be defined in separate tag
models. In this way the corresponding domain experts
are given a model-based possibility to attach additional
information and can work independently from each other
given only the information necessary for their work, thus
focussing completely on their domain. The situation is
even further improved by the second DSL, the tagschema
language, allowing for the definition of tag types for a
given tag language leading to a type system for tags. Thus,
the domain expert, modelling the additional information
can be efficiently supported by tools utilizing tagschema
models to validate corresponding tag models. Additionally
the generator developer is given the possibility to define
the kinds of additional information the generator is able

[GLR15] T. Greifenberg, M. Look, S. Roidl, B. Rumpe:
Engineering Tagging Languages for DSLs.
In: Conference on Model Driven Engineering Languages and Systems (MODELS),
pp. 34-43, Ottawa, Canada, ACM New York/IEEE Computer Society, 2015
www.se-rwth.de/publications

http://www.se-rwth.de/

Start

<<monitored>>

Active

<<monitored>>

Busy
[status = isActive]

<<monitored>>

Call
[status = !isActive]

dial()

<<log=timestamp>>

hangUp()

<<method=
“App.call()”>>

SC

Done

Rating

<<log=timestamp>>

hangUp() send()

<<exception=“NetworkException:

Problems connecting to the network”>>

ConnectionProblems

ɛ

Fig. 1: A graphical representation of a Statechart that models a method of a Voice over Internet (VoiT) App.

to handle. This is similar to the dynamic features pattern
presented in [7]. By providing the possibility to separate
additional information from each other and from the
domain model, we are able to follow the concept of
separation of concerns [8]. Consistency problems can be
avoided as the specification of additional information takes
place at the model level. Thus, tooling can be used to ensure
the consistency between models of all involved languages.
As both of the mentioned DSLs somehow depend on the
existing modeling language, a methodology for creating the
corresponding tagging languages is provided. This supports
the language developer since we assume that by such rules,
the specific language can be created faster and with better
quality. Therefore the derivation rules have to be kept as
easy as possible. The methodology can be implemented as
a derivation algorithm and generated automatically.
The paper is organized as follows. In Section II an

example is introduced. In Section III used techniques
and technologies are introduced. The overall approach is
presented in Section IV. Here, common language parts,
derivation rules for the source language specific language
parts and necessary context conditions are explained. The
derivation process is applied exemplarily in Section V.
Related work is presented in Section VI before the paper
closes with the conclusion in Section VII.

II. Tagging Statecharts

To illustrate our methodology, we start out with an
example where we tag a Statechart (SC) with additional
information. We use Statecharts as predefined in our
language family UML/P [4], [9], [10]. The UML/P consists
of structural as well as behavioural languages, such as
Classdiagramms (CD), Objectdiagrams (OD), Statecharts
(SC), Sequencediagrams (SD) and a test case language
(TC). The UML/P is close to the UML [11] containing
extensions especially suited for being used in a generative
software engineering context. Most of these extensions
consider the use of the models in combination with a
code generator. Thus, concepts such as underspecification,
resolving non-determinism or flattening of SCs are directly
incorporated in the language family. Furthermore, the
syntax of the UML/P is textual, whereas the UML provides

a graphical syntax. Nevertheless, we use the graphical UML
notation also for visualising UML/P diagrams.

Figure 1 shows a graphical representation of a Statechart
that models a method of a Voice over Internet (VoiT) App.
When the user wants to make a call, the application starts
dialing. If there is currently a call, active the current call
cannot be established because the phone is busy. If the
called person is not busy, the call is established. After
finishing the established call, the user gets the possibility
to rate the quality of the call. The rating is sent and
the overall method terminates. After a non established
call, the method terminates directly. In case there are
any problems with the current network connection, the
method throws an exception. The modeled SC consists of
states and transitions as top level elements. States have
a name, may contain substates to support hierarchy and
invariants. Transitions connect a source state with a target
state. Furthermore, actions are modeled. Figure 1 does not
contain all elements but a subset necessary to understand
our methodology. A complete overview of all SC elements
is provided in [4], [9], [10]. Every element, even the SC
itself, may also be extended by stereotypes.

The stereotype «monitored» is added to the Active
state and its substates, signalling that certain monitoring
functions should be available in a respective implemen-
tation. The stereotype «log=timestamp» defines that
every time the transition is active, a timestamp is written
to the log. The state ConnectionProblems serves as
an exception state. Every time an exception occurs, this
state becomes the active state of the SC. This is implicitly
expressed by the stereotype exception, specifying that
there is an implicit transition from every state to the
exception state. The value of the stereotype specifies
the exception type and a message. Due to the limited
expressiveness, this is modeled via a single String separated
by a colon. The definition of the SC itself is enriched
by a stereotype, as shown in Figure 1, modeling that
the SC is used to specify the behaviour of the method
App.call(). Although the SC is quite small, it shows
the problems of using stereotypes in the modeling process:
The technology agnostic part of the model is polluted
with technology specific information and thus one of the
key strengths of model driven development, getting an

1 package mobile;
2 statechart Mobile {

4 initial state Start;

6 state Active {
7 state Call{
8 [status=!isActive];
9 }

10 state Busy {
11 [status=isActive];
12 }
13 }

15 state ConnectionProblems;

17 final state Done;

19 Start -> Active : dial() ;
20 ...
21 }

Listing 1: Textual UML/P notation of the SC shown in
Figure 1.

easy overview of the domain, is lost. Obviously, this gets
worse when more additional information is required, the
modelled system is more complex or when multiple roles
or concerns are involved. To overcome this problem, the
additional information is externalized into a separate tag
model. Listing 1 conveys the same information as Figure
1 in the textual syntax of the UML/P without additional
information, which is shown in Listing 2 as an external,
textual tag model.
Listing 2 shows a valid tag model, written in a textual

language derived using our proposed methodology. Like
the SCs, each tag model starts with a package declaration
that establishes a namespace, followed by the keyword
conforms to and a reference to a tagschema, shown in
Listing 3. Note that the tagschema also contains a package
delcaration that establishes a namespace and is used to
fully qualify the name of the tagschema. By using the
keyword conforms to, each tag file declares conformity
to one or more tagschemas, as shown in Listing 2 line 2,
expressing that tags used within the tag model are defined
within the tag schema model. We assume that different
technological specifica for a model will lead to different sets
of tags, which are free of conflict by definition. Conflicting
tags might however be possible but are not handled yet. A
formal specification of this relation is given in Section IV,
where we also explain how the name references between
the different models are resolved. In the example, the two
substates Busy and Call of the Active state are tagged
with Monitored by navigating into it. Listing 2 contains
the same information, that was modeled as stereotypes in
Figure 1. It should be noted, that we consider four different
tag types, which are explained in detail in Section IV-B.
Listing 3 shows the schema for the presented tag model,
which also starts with a package declaration. The schema
contains the four different tag types: Monitored that only
consists of a single word as key, Log which may take two
disjoint values, Method that can take an arbitrary String

1 package mobile;
2 conforms to loggingschema.StatechartTagSchema;

4 tags StatechartTags for Mobile {

6 tag Mobile with Method = "App.call()";

8 within Active {
9 tag Call,Busy with Monitored;

10 }

12 tag Active with Monitored;

14 tag ConnectionProblems with
15 Exception {
16 type = "NetworkException",
17 msg = "Problems connecting to the mobile network!";
18 };
19 ...
20 }

Listing 2: A valid tag model, written in a textual language
enriching the SC shown in Listing 1

1 package loggingschema;
2 tagschema StatechartTagSchema {

4 tagtype Monitored for State;

6 tagtype Log:["timestamp"|"callerID"] for Transition;

8 tagtype Method:String for Statechart;

10 tagtype Exception for State {
11 type:String,
12 msg:String;
13 }
14 }

Listing 3: A tagschema, written in a textual language
defining the tag types used in Listing 2.

as value and Exception that has multiple fields as values.
All these tag types are defined in Listing 3.

III. MontiCore
Our methodology to derive the tagging languages is

based on the modular language workbench MontiCore [12],
[13], a framework for designing textual DSLs. MontiCore
uses context free grammars as input artifacts to generate
lexer, parser, prettyprinter, abstract syntax tree (AST)
classes, runtime components and editor support for DSLs.
Furthermore, it enables context condition checking [10],
symbol table implementations [14], code generation and
mechanisms for integrating handwritten code [3]. Context
conditions are syntactically checkable rules that further
constrain the set of valid instances of a language. In this
paper, we specify context conditions in a mathematical way
to provide conformance rules between models of the derived
languages. For generating code we use Freemarker [15] as
a template language for a model to text transformation.

MontiCore combines concrete and abstract syntax within
a single grammar file and uses a syntax similar to EBNF.
Within such a grammar that starts with the keyword
grammar followed by its name, productions consisting of
a nonterminal and a right-hand side (RHS) that specifies
attributes and compositions within the AST. As with

EBNF, the right-hand side may contain terminal or nonter-
minal symbols. Also, alternatives ("|"), optionality ("?") and
multiple cardinalities ("+", "*") are supported. Apart from
that MontiCore offers several extensions over EBNF, such
as the use of interfaces and extending existing grammars,
denoted by the keywords implements and extends [12],
[13]. Similar to the corresponding polymorphic concepts,
interfaces can be implemented by other productions and
may be used as nonterminals. Such interfaces may even be
implemented in sublanguages in order to reuse the produc-
tion of the parent language. Basically, this mechanism is an
extended form of alternatives where the single alternatives
are not known beforehand. In general, extending existing
grammars increases the modularity and reuse since the
extending grammar can directly use all nonterminals from
the extended grammar.
For integrating different languages, MontiCore offers

three distinct mechanisms: language aggregation, language
embedding and language inheritance. Language aggregation
allows to combine two different languages in separate
artifacts by referencing elements and establishing a knowl-
edge relationship between both heterogeneous artifacts.
Language embedding allows the combination of two dif-
ferent languages into a single artifact by defining external
nonterminals that are filled with nonterminals of the
embedded language. This is especially useful for embedding
different paradigms, such as embedding behaviour modeling
capability into a structural language. Finally, language
inheritance offers the possibility to create sublanguages
and to reuse the productions of the parent languages via
the grammar extension mechanism. This mechanism also
supports multi inheritance. Our approach makes use of
language inheritance and language aggregation. A more
detailed discussion on these three mechanisms can be found
in [14], [16], [17].

IV. Methodology
In this section the process to derive the tagging lan-

guages for a given DSL is introduced. Derivation means
that following a set of given derivation rules leads to
the systematic development of new DSLs. Before the
specific derivation rules for both languages are presented,
Figure 2 gives an overview about the involved languages,
corresponding models and the relations between them.
Afterwards, languages containing the common production
for the tagging languages are introduced. The process for
deriving domain specific tagging languages is shown. It is
based on MontiCore as the existing modeling language, and
both derived tagging languages are defined as MontiCore
grammars. To ensure the consistency between all models,
context conditions are presented. The language application
section describes involved roles and activities needed to
create tagging models.
The different languages involved are shown in the

lower part of the figure. The MontiCore Grammar (MCG)
flag on the right indicates that the languages are de-

fined as MontiCore grammars. For an existing source
language LG the tag language LT ag

G and the tagschema
language LSchema

G can be derived following the process
presented in Sections IV-C and IV-D. LT ag

G builds on
both LT ag

COMMON and LG, whereas LSchema
G only builds

on LSchema
COMMON but depends on LG. The builds on relation

is implemented using language inheritance. That means
that LSchema

G includes concepts of the abstract syntax of
LG as concrete syntax (shown in detail in Section IV-D).
In contrast, the depends on relation means that LG is used
within the derivation process without having an inheritance
relation between LSchema

G and LG. Instead the productions
of LSchema

G depend on specific parts of the concrete syntax
of LG. The predefined common languages LT ag

COMMON and
LSchema

COMMON encapsulate productions to be reused by the
tagging languages. Since many concepts can be reused
within sublanguages, this eases the effort for creating
tag languages as the number of derivation rules can be
reduced substancially. The two common languages provide
interfaces that have to be implemented by the sublanguages.
Within the common language, the interface type can be
used and thus, most productions are already defined in the
common tagging languages. These common languages are
supposed to stay fixed for the derived DSLs.
In the upper part of the figure, models of the different

languages are shown. The MontiCore model (MCM) flag
on the upper right corner indicates that these models
can be processed by languages of the MontiCore language
workbench. As shown in the example of SCs in Section II,
the models MLT ag

G
of LT ag

G reference MLG
and its elements.

Furthermore, the models MLSchema
G

of LSchema
G contain

references to elements of the language LG, which are the
types of elements of MLG

. Moreover, references between
the models MLT ag

G
and the corresponding MLSchema

G
, as

well as their elements, exist. References between models
are established using the language aggregation mechanism
of MontiCore.

A. The LT ag
COMMON Language

Listing 4 shows the MontiCore grammar of LT ag
COMMON .

The LT ag
COMMON language serves as a basis of LT ag

G . It
defines the overall structure of all tag models. The Tag-
Model production marks the beginning of a tag model.
First a comma separated list of QualifiedName can be
specified in order to reference corresponding tagschemas,
explained in Section IV-B. A tag model then starts with the
keyword tags, followed by a QualifiedName referencing
the actual target model whose information is tagged.
The grammar provides two major concepts and the

interface ModelElementIdentifier that has to be
implemented in sublanguages. The first concept is the
concept of Contexts that enable navigating into elements,
via the within construct. As shown in Listing 4, the
Context production uses the ModelElementIdenti-
fier interface to address elements. Other contexts may be

«derived»

��
���

«predefined»

������	
���

«existing»

��

builds on builds on

MCG«derived»

��

����

«predefined»

������	

����

depends on builds on

���

�
��
�������

��
���

model of

model of

references

references

references

elements of

model of

MCM

Fig. 2: Overview of involved languages, corresponding models and the relations between them.

1 grammar Tags extends Common{

3 TagModel =
4 "conforms" "to"
5 QualifiedName ("," QualifiedName)*";"
6 "tags" Name "for" targetModel:QualifiedName
7 "{" (contexts:Context | tags:TargetElement)* "}"
8 ;

10 Context = "within" ModelElementIdentifier "{"
11 (contexts:Context | tags:TargetElement)*
12 "}"
13 ;

15 interface ModelElementIdentifier;

17 DefaultIdent implements ModelElementIdentifier =
18 QualifiedName
19 ;

21 interface Tag;

23 TargetElement =
24 "tag" ModelElementIdentifier
25 ("," ModelElementIdentifier)*
26 "with" Tag ("," Tag)* ";"
27 ;

29 SimpleTag implements Tag = Name;

31 ValuedTag implements Tag = Name "=" String;

33 ComplexTag implements Tag = Name
34 "{" (Tag ("," Tag)* ";")? "}"
35 ;
36 }

Listing 4: The LT ag
COMMON MontiCore grammar.

nested within in order to navigate further into the hierarchy
or tags for specific elements. The second concept is the
TargetElement production, defining the tagging of a
specific element. It starts with the keyword tag followed by
a comma separated list of ModelElementIdentifier.
After that a with follows and then the actual tagged
information represented by the interface Tag. The list
of ModelElementIdentifier enables simultaneously
tagging of multiple elements. The interface itself is im-
plemented in sublanguages for the purpose of uniquely
identifying concrete elements of MLG

. The derivation and
implementation of the sublanguages is shown in Sections

IV-C and V.
The interface Tag is directly implemented within

LT ag
COMMON by three different productions. The Simple-

Tag consists only of its name in order to flag an element
of the target model with additional information. The
ValuedTag tag consists of a name and an additional
value. This value is always represented as a String in
LT ag

COMMON but, in combination with the corresponding
tagschema, it can be another data type (such as numbers)
as well. This is explained in Section IV-B

The ComplexTag tag allows to express complex informa-
tion with multiple subtags. The name of the tag is followed
by the nested tag block (enclosed in curly brackets), which
consists of a comma separated list of subtags.
B. The LSchema

COMMON Language
Beneath the common language LT ag

COMMON we also
created a common language to be used by language specific
tagschema languages, called LSchema

COMMON . The language
LSchema

COMMON , shown in Listing 5, follows the same notion
as LT ag

COMMON . Within the common language again, all
necessary structuring productions and an interface that
has to be implemented by the sublanguages is already
defined. The tagschema language starts with the keyword
tagschema followed by a name. This name is the identifier
that has to be used in the conforms to element of the tag
model, shown in the previous section, in order to reference
the tagschema model.
Within the tagschema model, multiple TagTypes can

be specified. Each tag type may be private, meaning that
this type can only be used within other tag types and
not as a first level type. In general, each TagType starts
with the keyword tagtype, has a Name, that is unique
within a schema, and has a ScopeIdentifier. The scope
references nonterminals of LG. Since the scope is language
specific, it is represented by an interface in LSchema

COMMON and
has to be implemented in LSchema

G , where the different
scopes are known.
The interface TagType is implemented by four spe-

cific kinds of types: SimpleTagType, ValuedTag-
Type, EnumeratedTagType, and ComplexTagType. A

1 grammar TagSchema extends Common {

3 TagSchema = "tagschema" Name
4 "{"
5 TagType*
6 "}"
7 ;

9 interface TagType;

11 interface ScopeIdentifier;

13 Scope = "for"
14 (ScopeIdentifier ("," ScopeIdentifier)* | "*")
15 ;

17 SimpleTagType implements TagType =
18 ["private"]? "tagtype" Name Scope? ";"
19 ;

21 EnumeratedTagType implements TagType =
22 ["private"]? "tagtype" Name ":"
23 "[" String ("|" String)* "]" Scope? ";"
24 ;

26 ValuedTagType implements TagType =
27 ["private"]? "tagtype" Name ":"
28 ("int"|"String"|"Boolean") Scope? ";"
29 ;

31 ComplexTagType implements TagType =
32 ["private"]? "tagtype" Scope?
33 "{" Reference ("," Reference)* ";" "}"
34 ;

36 Reference = Name ":" ReferenceTyp ("?"|"+"|"*")? ;

38 ReferenceTyp = ("int"|"String"|"Boolean"|Name);
39 }

Listing 5: The LSchema
COMMON MontiCore grammar.

SimpleTagType defines a tag type which solely consists
of a key as a simple, static flag. In MLT ag

G
such tag

types are expressed as a SimpleTag. A ValuedTagType
contains a value which can be of a defined type, such
as int, String or Boolean. In MLT ag

G
such tag types

are expressed as a ValuedTag with a String value. The
type checking is ensured via context conditions, explained
in Section IV-E. An EnumeratedTagType defines a set
of values that compose the domain of that tag type. An
instance of an enumerated tag type, modeled in MLT ag

G
is

also expressed as a ValuedTag and must additionally
declare a value that exists in the defined domain. Thus,
the enumerated tag type is restricted in its values, whereas
the valued tag type is more expressive and only restricted
by its native type. A ComplexTagType has the most
expressive power as it can define an arbitrary number of
subtag types. Such subtag types are again directly defined
or referenced tag types, nested within the complex tag
type. A reference has a unique name within the complex
tag type, and a certain type. The type may either be a
primitive data type, analogously to the ValuedTagType,
or a reference to another tag type already defined in the
schema. Hence it is possible to nest information of various
tag types into one complex tag and there is no limitation
on the depth of the hierarchy.

Furthermore, each subtag may have a cardinality which
can be one of three kinds: optional ("?"), arbitrary many
("*") or at least one ("+"). If the cardinality is left out, the
subtag is required. In MLT ag

G
such tag types are modeled as

ComplexTag with the subtags nested in the curly brackets.

C. LT ag
G Derivation Process

To derive a LT ag
G for a given source language LG, we

utilize the inheritance mechanism of MontiCore. In this
way, production rules of LT ag

COMMON and LG can be reused
and additional rules can be specified.

Addressing Elements: As it is possible to tag elements
that are nested within others (e.g. nested states), there
are two different ways to address those elements. The
first possibility is to use a dot-separated syntax (e.g.
Active.Call) but this technique may get tedious when
trying to tag multiple elements or if the elements are
nested deeper. The second possibility is the use of contexts.
A context consists of the keyword within followed by
an identifier and its body (enclosed in curly brackets,
cf. Listing 2, l.8). XPath like path definitions have been
eliminated, since they are too unstable against changes in
the models. XQuery is more for tagging sets of elements,
where we use transformations. The identifier refers to a
target element, which is used as a context to resolve all
other elements that are defined within the body of the
context.

In general, the resulting tag language should be able to
address all elements specified by models of LG. The type
of those elements is given by the nonterminals N ∈ LG in
the source language grammar. To facilitate the derivation,
the LT ag

COMMON offers the ModelElementIdentifier
(cf. Listing 4, l.15) interface that has to be implemented by
the productions of the sublanguage LT ag

G . By implementing
this interface, elements of MLG

become identifiable and
can be referenced by MLT ag

G
. To address those elements,

one of the following rules have to be applied:

IV-C.1. Let N ∈ LG be the set of nonterminals of LG.
For every n ∈ N that can be identified by a qualified name,
the DefaultIdent rule of LT ag

COMMON can be reused (cf.
Listing 4, l.17).

IV-C.2. For every other nonterminal n ∈ N , a manual
identifier has to be chosen, that uniquely identifies the
element. This is dependent on the semantics and the
use of the language. A general possibility to ensure a
correct identification rule is to reuse the concrete syntax
of the tagged element in the tagging language. Therefore,
a new rule In is added to LT ag

G where the nonterminal of
LG enclosed in brackets is used to address corresponding
elements:

In implements ModelElementIdentifier = "[" n "]"

Nevertheless, reusing the concrete syntax of the tagged
element typically leads to a poor concrete syntax of the

tagging language. If there is a different identifier suitable,
this should be taken. This can enhance the usability of
the tagging language. The rule must only ensure that
corresponding elements can be addressed uniquely.

D. LSchema
G Derivation Process

To derive LSchema
G for a given source language LG, the

inheritance mechanism of MontiCore is utilized again. In
this way, production rules of LSchema

COMMON can be reused
and additional rules can be specified. In contrast to
LT ag

G and LG, there is no inheritance relation between
LSchema

G and LG. Nevertheless, LSchema
G depends on LG as

parts of the concrete syntax are reused for the definition
of LSchema

G (instead of referencing existing rules).

Addressing Element Types: In addition to the rules of
LSchema

COMMON , derivation rules to address element types of
MLG

must be added to LSchema
G . This is necessary as the

tagschema language is used to define which tags can be
added to which type of elements. To facilitate the derivation
the LSchema

COMMON offers the ScopeIdentifier (cf. Listing
5, l.11) interface that has to be implemented by the
productions of the sublanguage LSchema

G . By implementing
this interface, elements of LG become identifiable and can
be referenced by MLSchema

G
. The fact that each type of an

element is defined by a nonterminal of the corresponding
MontiCore grammar is used to define the derivation rule
for LSchema

G :

IV-D.1. Let N ∈ LG be the set of nonterminals of LG.
For every n ∈ N a new rule SIn is added to LSchema

G :

SIn implements ScopeIdentifier = "n";

Addressing Nested Element Types: We need to con-
sider that nonterminals of LG might be used more than once
on the RHS of a production, e.g. "source:Name ’->’
target:Name", taken from the SC grammar, where the
nonterminal Name is used twice. Within MontiCore, such
occurrences of nonterminals are distinguished by identifiers
preceding the nonterminal. As we need to address each
occurrence in LSchema

G , we add additional production rules
implementing the ScopeIdentifier interface, which
utilize the preceding identifiers of nonterminals of LG.

IV-D.2. Let PIst be the set of preceding identifiers that
occur more than once on the RHS of a single production
st ∈ LG. For each preceding identifier pi ∈ PIst for all st,
a specific production rule SIpi is added to LSchema

G in order
to address the different occurrences in the scope st defining
nonterminal n:

SIpi implements ScopeIdentifier = "n_pi";

Note that all identifiers are unique within a single
production even if they are used to distinguish different
nonterminals on the RHS. If the identifer is unique in the
scope of all st ∈ LG, the prefix n_ can be omitted.

E. Context Conditions

Figure 2 already gave an insight into the relations
between models of the different modeling languages.
These relations where bounded to the technical relations
references and references elements of. In fact,
the relations between the models are more complex and
the conformance of models among each other have to be
validated by additional rules in contrast to the consistency
between all involved languages where no additional context
conditions are required, since they are ensured by construc-
tion through the derivation rules. The following context
conditions are used to consistency check the tag model as
well as the tag schema model.

Before introducing these context conditions, some vari-
ables are defined: Let st ∈ MLT ag

G
be a tag defining

statement of MLT ag
G

, MRst the set of model element
references of st, TRst the set of tag type references of
st, tr.value : tr ∈ TRst the value, either native, enum
or complex, assigned to a tag, Dom(tr.value) the type,
either specific native, enum or complex, of the value,
tt ∈ MLSchema

G
a tag type defining statement of MLSchema

G
,

tt.name the name of the defined tag type, tt.domain the
type of the value which can be assigned to this tag type,
and MTRtt the set of model element type references of tt
defined in LG.

Tagged elements: A relation between MLT ag
G

and MLG
is

explicitly stated within the MLT ag
G

(cf. Listing 2, l.4). The
correctness of this relation is given if each tagged element
of MLT ag

G
exists in MLG

.

IV-E.1. For each st ∈ MLT ag
G

, mr ∈MRst:

mr ∈ MLG

Conforms to: The conforms to relation between a
MLT ag

G
model and a corresponding MLSchema

G
model is also

stated explicitly (cf. Listing 2, l.2). The correctness of this
relation is given if for every tag statement in the MLT ag

G
a

corresponding tag type is defined in MLSchema
G

.

IV-E.2. Each tag type of MLSchema
G

has a unique name
which allows the unique mapping between used tag types
within statements of MLT ag

G
and the tag type definition

statements of MLSchema
G

. For tt1, tt2 ∈ MLSchema
G

:

tt1.name = tt2.name⇒ tt1 = tt2

If multiple schemas are referenced by MLT ag
G

, the rule
has to be extended to ensure unique names for all included
tag types of all referenced tagschemas.

IV-E.3. For each tag type reference of each statement of
MLT ag

G
, a corresponding tag type exists (1). Furthermore,

the model element types of tagged elements fit to the types
defined in MLSchema

G
(2) and the types of tag values fit to

the types also defined in MLSchema
G

(3). Thus, for each st ∈
MLT ag

G
, tr ∈ TRst : ∃ tt ∈ MLSchema

G
:

tt = tr (1)
∧ {mr.type | mr ∈MRst} ⊆ MTRtt (2)
∧ Dom(tr.value) = tt.domain (3)

Note that the comparison of tag value types (3) must
support native types, enum types and complex types.
F. Language Application in MDE

So far, a methodology for deriving the tagging languages
for a given source language has been presented. In this
paragraph the application of both languages in a MDE
environment is examined. For simplicity, it is assumed
that a single generator is involved in the MDE process
which takes MLG

models together with corresponding
MLT ag

G
models as input.

Before the generator can be used, the generator has
to be developed by the generator developer. Beside the
usual generator development steps, the generator devel-
oper models MLSchema

G
and provides the model as part

of the generator. The generator is developed in a way
that multiple MLT ag

G
conforming to the MLSchema

G
can be

processed. The generator user is the role that creates the
inputs for the generator, which are the domain model
MLG

and in addition a model MLT ag
G

for the additional,
e.g. domain specific, information. Of course this role can
be taken by more than one person, most likely an expert
for each domain, such as a domain expert and a database
designer who tags the domain model with database specific
configuration information.
In a more complex scenario, several MLSchema

G
can be

provided by the generator developer. This implies that the
generator must be able to process multiple MLT ag

G
conform-

ing to any of the MLSchema
G

. This enables a clean model-
based specification of all necessary additional information
not in the scope of the domain. Note that in this complex
scenario, the languages LSchema

G and LT ag
G must not be

adapted concerning the simpler scenario.
V. Case Study

In order to validate our approach, we applied it to three
different languages: SCs, CDs and directly to MontiCore
grammars. The case study is used to evaluate if the method
itself is applicable to a set of languages and to get an
impression on the benefits for the different roles. It does
not provide a solid empirical study. Apart from the sole
applicability, we check if creating the tagging language can
be done with small effort. Additionally, we check if we can
check the tag models against the schema, i.e. we are able to
define constraints on the target element types and on the
structure of tags in general. Furthermore, the possibility
of creating multiple models was explored.
Figure 3 shows the application to an excerpt of the

SC grammar. The SC grammar also inherits some nonter-
minals from the Common language, the LT ag

COMMON and

grammar StatechartTagSchema extends CommonTagSchema {

SCSchemaIdentifier implements ScopeIdentifier = "SCDefinition";

TransitionSchemaIdentifier implements ScopeIdentifier = "Transition";

StateSchemaIdentifier implements ScopeIdentifier = "State";

InvariantSchemaIdentifier implements ScopeIdentifier = "Invariant";

grammar Statechart extends Common {

SCDefinition = Stereotype? "statechart" Name "{" Element* "}";

interface Element;

Transition implements Element =

source:Name "->" target:Name ((":" TransitionBody) | ";");

State implements Element =

Stereotype? "state" Name "{" (Stereotype? "[" Invariant "]")? "}";
-

}

IV-D.1

SourceSchemaIdentifier implements ScopeIdentifier = "Transition_Source";

TargetSchemaIdentifier implements ScopeIdentifier = "Transition_Target";

}

IV-D.2

d
e

riv
a

tio
n

d
e

riv
a

tio
n

grammar StatechartTagDefinition extends CommonTagDefinition, Statechart {

TransitionIdentifier implements ModelElementIdentifier= "[" Transition "]";

InvariantIdentifier implements ModelElementIdentifier = "[" Invariant "]";

}

IV-C.2

Fig. 3: Application of the tagging languages derivation rules for
the SC grammar.

LSchema
COMMON languages also inherited from. Furthermore,

the SC grammar consists of the nonterminals SCDefi-
nition, Transition, TransitionBody, State and
Invariant. The Element interface and the Transi-
tionBody are omitted within the derivation process.
For the other nonterminals, the derivation process for
deriving LT ag

G is shown in Figure 3 and the necessary
steps are applied. Implicitly, every SCDefinition and
every State can be identified by a unique name. Thus,
the default production for ModelElementIdentifier
defined in LT ag

COMMON , following step IV-C.1, is used. For
the remaining two nonterminals, the derivation rule IV-
C.2 that reuses the abstract syntax of LG is applied, as
shown in Figure 3. The two nested source and target
variables are also directly identifiable by a name and
therefore can be tagged via the transition identifier and
the respective source or target name. An instance of
this derived language was already shown in Listing 2.
The names of the SC and the states have been used for
identifying the elements. The presented model can be
parsed with the parser generated by MontiCore out of
the derived language. The complete SC language consists
of 16 different productions and six nested nonterminals
that have to be distinguished by a variable name. Six
nonterminals are not uniquely identifiable by a name.
Thus, the derived tag language includes six productions to
specify these identifiers. For Classdiagrams the situation
is similar: The grammar contains 17 productions with
10 nested nonterminals that have to be distinguished by
a variable name and the derived tag language contains
five productions. The grammar for MontiCore grammars
presents itself a bit different since we chose to tag only
certain elements, i.e. the grammar itself and productions.
Thus, the corresponding tag language contains only two
productions.
The derivation of LSchema

G is shown in Figure 3. We
again apply the derivation rules and use the name of the

nonterminal as an identifier. This is done for the SC itself,
states, transitions and invariants in order to address these
elements in a tagschema. Furthermore, the nested source
and target of a transition are also included since there may
be tags that are only allowed at these elements. An instance
of this derived language was already shown in Listing 3.
The resulting schema language for the SC language consists
of 22 productions implementing the ScopeIdentifier.
For the CDs and the MontiCore grammar language there
are 27 and two productions, respectively.

While these three applications are certainly not enough
for a solid empirical validation, we have high confidence
that developers of tagging languages, generator developers
and domain experts, i.e. product developers, will have
considerable benefits of the approach especially in larger,
multi-tier projects, where configuration and other technical
information are complex. We were able to show that
it is possible to apply our method with small effort,
which should help language developers in creating these
languages. None of the languages needed a lot of addi-
tional productions. We were also able to automatically
take schemas into account for the languages mentioned
supporting the generator developer. Seperation of concerns
was also possible by creating multiple models with different
information, supporting domain experts.

VI. Related Work
Similar to the approach of [18], the LT ag

G language can
be automatically derived from the target grammar G by
using the concrete syntax of the target element type as its
identifier. In our work we recommend to manually choose a
readable identifier and provide a default derivation rule for
systematic derivation. In [18] the default rules are generated
and can be overridden afterwards by a language extension.
An alternative approach where variability is added to DSLs
is presented in [19].

Related is the ProMoBox approach [20], that generates
five different sublanguages out of a given metamodel of a
DSL. These languages are used to specify certain aspects
of the system, such as design, input, output, runtime and
properties. This approach differs in the fact that the tags in
our case are used for a different purpose, such as enriching
the model with arbitrary information. Other approaches
aim at reducing the complexity of a model using multilevel
modelling approaches [7], [21].
In [22] three primary methods for defining a DSL are

presented. Two of those extend or refine an existing
modeling language. The source language is the UML
[23] whose extension techniques can be compared to our
approach as we build upon a source language as well. The
first mechanism is to add stereotypes to elements of the
source language which enables specialized DSL tools to
display the marked elements in a different way. This is
similar to our approach which tags special elements of the
source language. However, in our approach models of the
source language do not need to be changed. Thus, we avoid

model pollution by separating the information in several
artifacts.
The second described technique is UML profiles [23]

where parts or the whole UML metamodel can be reused to
define DSLs or domain-specific viewpoints. This approach
is limited to UML while our approach can be applied to
DSLs. Moreover, in [22] a systematic method to define
such UML Profiles is presented, which is comparable to
our approach but more abstract. Furthermore, [24] presents
an automated approach to extract UML profiles from Java
annotation libraries. UML profiles have been extended to
EMF profiles in [25]. We will investigate how to transfer
the results to our approach in order to automatically derive
tagschema models. Most work extends the UML by suited
stereotypes or profiles, such as [26] for embedded real-time
systems, [27] for Web applications, [28] as a profile for
AADL applications, and even for software product lines
[29]. While there are many profiles available for all kinds
of concerns, these are all restricted to the UML and not
to DSLs in general.
Furthermore, a lot work has been done in the area of

transformation languages. An overview of different model
transformations is given in [30] and [31]. In this area,
some work can be found that focuses on the derivation
of domain specific transformation languages, following
a systematic approach [32], [33] or taking the concrete
syntax of the source language into account [33], [34], [35].
Such transformations can be used to transform technology
agnostic models to technology aware models, which is
supported by several transformation tools [36], [37], [38],
[39].

VII. Conclusion
In the presented work a methodology for deriving a

language specific pair of tagging languages has been intro-
duced. Built upon two common parent languages, the effort
for creating the language specific parts could be minimized.
Beside the systematic stepwise derivation process, necessary
context conditions for ensuring consistency and validity of
the models have been presented. Moreover, advices for the
application of the tagging languages have been given and
a case study ensuring the feasibility of the approach has
been presented. For future work we aim at implementing
our methodology in an automated language generation
process, that makes use of reasonable defaults and is able
to generate both languages directly from a given grammar.
Furthermore, the generation of corresponding context con-
ditions is planned which will allow the automatic validation
of corresponding tag and tagschema models. Additionally
we aim at exploring conflict resolution strategies for tags
and the possiblity to tag tags themselves. As additional
tool support, the generation of a tagschema model editor
from source grammars and the generation of tag model
editors from corresponding tagschema models is planned.
Moreover, back-end infrastructure for the generator could
be generated to make processing of tag models easy.

Here, the automatic generation of a class hierarchy from
tagschema models would allow to represent information
of tag files conforming to a tagschema model by objects
of the generated class hierarchy. This would enable the
generator developer to access the additional information
from tagschema models in a well typed manner.

References

[1] H. Grönniger, “Systemmodell-basierte Definition objektbasierter
Modellierungssprachen mit semantischen Variationspunkten,”
Ph.D. dissertation, RWTH Aachen, Aachen, Deutschland, 2010.

[2] K. Czarnecki and U. W. Eisenecker, Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.

[3] T. Greifenberg, K. Hoelldobler, C. Kolassa, M. Look, P. Mir
Seyed Nazari, K. Mueller, A. Navarro Perez, D. Plotnikov,
D. Reiss, A. Roth, B. Rumpe, M. Schindler, and A. Wortmann,
“A Comparison of Mechanisms for Integrating Handwritten and
Generated Code for Object-Oriented Programming Languages,”
in Proceedings of the 3rd International Conference on Model-
Driven Engineering and Software Development. Angers, France:
SciTePress, 9-11 February 2015.

[4] B. Rumpe, Agile Modellierung mit UML : Codegenerierung,
Testfälle, Refactoring, 2nd ed. Springer Berlin, September
2012.

[5] Object Management Group, “MDA Success Stories,”
http://www.omg.org/mda/products_success.htm.

[6] ——, “Model Driven Architecture (MDA) MDA Guide rev. 2.0,”
August 2014, www.omg.org/cgi-bin/doc?ormsc/14-06-01.pdf.

[7] J. D. Lara, E. Guerra, and J. S. Cuadrado, “When and how to
use multilevel modelling,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 2, pp. 12:1–12:46, 2014.

[8] E. W. Dijkstra, A discipline of programming. Upper Saddle
River, New Jersey: Prentice Hall, 1976.

[9] B. Rumpe, Modellierung mit UML, 2nd ed. Springer Berlin,
September 2011.

[10] M. Schindler, Eine Werkzeuginfrastruktur zur agilen Entwicklung
mit der UML/P, ser. Aachener Informatik-Berichte, Software
Engineering, Band 11. Shaker, 2012.

[11] M. Fowler, UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 3rd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2003.

[12] H. Krahn, MontiCore: Agile Entwicklung von domänenspe-
zifischen Sprachen im Software-Engineering, ser. Aachener
Informatik-Berichte, Software Engineering. Shaker Verlag, März
2010, no. 1.

[13] H. Krahn, B. Rumpe, and S. Völkel, “MontiCore: a framework
for compositional development of domain specific languages,”
STTT, vol. 12, no. 5, pp. 353–372, 2010.

[14] S. Völkel, Kompositionale Entwicklung domänenspezifischer
Sprachen, ser. Aachener Informatik-Berichte, Software Engineer-
ing. Shaker Verlag, 2011, no. 9.

[15] Freemarker website http://freemarker.org/.
[16] A. Haber, M. Look, P. Mir Seyed Nazari, A. Navarro Perez,

B. Rumpe, S. Voelkel, and A. Wortmann, “Integration of Het-
erogeneous Modeling Languages via Extensible and Composable
Language Components,” in Proceedings of the 3rd International
Conference on Model-Driven Engineering and Software Develop-
ment. Angers, France: SciTePress, 9-11 February 2015.

[17] M. Look, A. Navarro Pérez, J. O. Ringert, B. Rumpe, and
A. Wortmann, “Black-box Integration of Heterogeneous Model-
ing Languages for Cyber-Physical Systems,” in Proceedings of
the 1st Workshop on the Globalization of Modeling Languages,
B. Combemale, J. De Antoni, and R. B. France, Eds., vol. 1102,
Miami, Florida, USA, 2013.

[18] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe,
K. Müller, and I. Schaefer, “Engineering Delta Modeling Lan-
guages,” in Proceedings of the 17th International Conference
on Software Product Lines, Tokyo, Japan, 2013, no. September.
New York: ACM Press, 2013, pp. 22–31.

[19] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and
A. Svendsen, “Adding Standardized Variability to Domain
Specific Languages,” in International Software Product Line
Conference, 2008.

[20] B. Meyers, R. Deshayes, L. Lucio, E. Syriani, H. Vangheluwe,
and M. Wimmer, “ProMoBox: A Framework for Generating
Domain-Specific Property Languages,” in Software Language
Engineering, ser. LNCS. Springer, 2014, vol. 8706, pp. 1–20.

[21] C. Atkinson and T. Kühne, “Reducing accidental complexity in
domain models,” Software and Systems Modeling, vol. 7, no. 3,
pp. 345–359, 2008.

[22] B. Selic, “A Systematic Approach to Domain-Specific Language
Design Using UML,” in Object and Component-Oriented Real-
Time Distributed Computing, 2007. ISORC ’07. 10th IEEE
International Symposium on, May 2007, pp. 2–9.

[23] Object Management Group, “Unified Modeling
Language: Superstructure Version 2.4.1,” August 2011,
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF.

[24] A. Bergmayr, M. Grossniklaus, M. Wimmer, and G. Kap-
pel, “JUMP—From Java Annotations to UML Profiles,” in
Model-Driven Engineering Languages and Systems, ser. LNCS.
Springer, 2014, vol. 8767, pp. 552–568.

[25] P. Langer, K. Wieland, M. Wimmer, J. Cabot et al., “EMF
Profiles: A Lightweight Extension Approach for EMF Models.”
Journal of Object Technology, vol. 11, no. 1, pp. 1–29, 2012.

[26] W. Muhammad, M. Radziah, and N. Dayang, “SOA4DERTS: A
Service-Oriented UML profile for Distributed Embedded Real-
Time Systems,” in Computers Informatics (ISCI), 2012 IEEE
Symposium on, March 2012, pp. 64–69.

[27] L. Baresi, F. Garzotto, and P. Paolini, “Extending UML for Mod-
eling Web Applications,” in System Sciences, 2001. Proceedings
of the 34th Annual Hawaii International Conference on, Jan
2001, pp. 10 pp.–.

[28] M. Faugere, T. Bourbeau, R. De Simone, and S. Gerard,
“MARTE: Also an UML Profile for Modeling AADL Applica-
tions,” in Engineering Complex Computer Systems, 2007. 12th
IEEE International Conference on, July 2007, pp. 359–364.

[29] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a UML
Profile for Software Product Lines,” in Software Product-Family
Engineering, ser. LNCS. Springer, 2004, vol. 3014, pp. 129–139.

[30] T. Mens, K. Czarnecki, and P. V. Gorp, “A Taxonomy of Model
Transformations,” in Language Engineering for Model-Driven
Software Development. Dagstuhl Seminar Proceedings. IBFI,
Schloss Dagstuhl, Germany, 2005.

[31] R. Grønmo, B. Møller-Pedersen, and G. Olsen, “Comparison of
Three Model Transformation Languages,” in Model Driven Ar-
chitecture - Foundations and Applications, ser. LNCS. Springer,
2009, vol. 5562, pp. 2–17.

[32] J. Sánchez Cuadrado, E. Guerra, and J. de Lara, “Towards
the Systematic Construction of Domain-Specific Transformation
Languages,” in Modelling Foundations and Applications, ser.
LNCS. Springer, 2014, vol. 8569, pp. 196–212.

[33] B. Rumpe and I. Weisemöller, “A Domain Specific Transforma-
tion Language,” in Workshop on Models and Evolution (ME),
2011.

[34] T. Baar and J. Whittle, “On the Usage of Concrete Syntax in
Model Transformation Rules,” in International Andrei Ershov
memorial conference on Perspectives of systems informatics
(PSI), 2007.

[35] R. Grønmo and B. Møller-Pedersen, “Concrete Syntax-Based
Graph Transformation,” 2009, research Report 389.

[36] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A Model
Transformation Tool,” Science of computer programming, vol. 72,
no. 1, pp. 31–39, 2008.

[37] F. Jouault and I. Kurtev, “Transforming Models With ATL,”
in satellite events at the MoDELS 2005 Conference. Springer,
2006, pp. 128–138.

[38] E. Syriani, H. Vangheluwe, and B. LaShomb, “T-Core: A
Framework for Custom-Built Model Transformation Engines,”
Software & Systems Modeling, pp. 1–29, 2013.

[39] W. M. Ho, J.-M. Jézéquel, A. Le Guennec, and F. Pennaneac’h,
“UMLAUT: An Extendible UML Transformation Framework,” in
Automated Software Engineering, 1999. 14th IEEE International
Conference on. IEEE, 1999, pp. 275–278.

	Introduction
	Tagging Statecharts
	MontiCore
	Methodology
	The LTagCOMMON Language
	The LSchemaCOMMON Language
	LTagG Derivation Process
	LSchemaGDerivation Process
	Context Conditions
	Language Application in MDE

	Case Study
	Related Work
	Conclusion
	References

