
Engineering Delta Modeling Languages

Arne Haber
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Katrin Hölldobler∗
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Carsten Kolassa
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/
Markus Look

Software Engineering
RWTH Aachen University,

Germany
http://www.se-rwth.de/

Klaus Müller
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/
Bernhard Rumpe
Software Engineering

RWTH Aachen University,
Germany

http://www.se-rwth.de/

Ina Schaefer
Software Engineering and

Automotive Informatics
TU Braunschweig, Germany
http://www.tu-bs.de/isf

ABSTRACT
Delta modeling is a modular, yet flexible approach to cap-
ture spatial and temporal variability by explicitly represent-
ing the differences between system variants or versions. The
conceptual idea of delta modeling is language-independent.
But, in order to apply delta modeling for a concrete lan-
guage, so far, a delta language had to be manually devel-
oped on top of the base language leading to a large vari-
ety of heterogeneous language concepts. In this paper, we
present a process that allows deriving a delta language from
the grammar of a given base language. Our approach relies
on an automatically generated language extension that can
be manually adapted to meet domain-specific needs. We
illustrate our approach using delta modeling on a textual
variant of statecharts.

Categories and Subject Descriptors
D.2 [Software]: Software Engineering; D.2.2 [Software
Engineering]: Design Tools and Techniques; D.2.3 [Software
Engineering]: Coding Tools and Techniques

1. INTRODUCTION
Modeling is an important part of software development

that allows focussing on essential system aspects in various
development phases [5]. This holds for prescriptive modeling
that aims at generating (parts of) software systems as well

∗K. Hölldobler is supported by the DFG GK/1298 AlgoSyn.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
SPLC 2013 August 26 - 30 2013, Tokyo, Japan
Copyright 2013 ACM 978-1-4503-1968-3/13/08 $15.00.
http://dx.doi.org/10.1145/2491627.2491632.

as descriptive modeling aiming at documentation or commu-
nication issues. Modern software systems are increasingly
variable to adapt to varying user requirements or environ-
ment conditions. Software product line engineering [26] is
a well-established approach for developing a set of systems
with commonalities and variabilities. When a product line
is constructed, all modeling techniques and languages used
have to support the desired variability in order to allow a
seamless integration into the development process.

There are three main ways to model variability within a
software product line: annotative, compositional and trans-
formational variability modeling [34, 12]. In this paper, we
focus on delta modeling, a transformational variability mod-
eling approach [11] which contains modular, yet flexible vari-
ability modeling concepts. It can also be used to capture the
evolution of software products over time [13]. In delta mod-
eling, a set of diverse systems is represented by a designated
core model and a set of deltas describing modifications to the
core model. A particular product configuration is obtained
by applying the changes specified in the deltas to the core
model. A delta can add, remove, modify or replace elements
of a model. Delta modeling has already been applied to the
architecture description language MontiArc [14], to the pro-
gramming language Java [29], to Class Diagrams [28], and
to Simulink models [10].

Delta modeling is a generic, language-independent con-
cept. However, to use delta-modeling in a particular de-
velopment stage, the modeling and programming languages
used have to be adapted to support the definition of deltas.
The process of developing a delta language from a basis mod-
eling or programming language has so far not been defined
explicitly. Therefore, it depends on the knowledge and ex-
perience of the developer. For each modeling language that
should be extended with a delta modeling language, very
similar design steps have to be taken. The procedure itself is
very time consuming, because without a streamlined deriva-
tion process the design decisions need to be made again for
every delta language. With the process proposed in this pa-
per, the delta languages are strongly related to each other

22

[HHK+13] A. Haber, K. Hölldobler, C. Kolassa, M. Look, K. Müller, B. Rumpe, I. Schäfer.
Engineering Delta Modeling Languages.
In: Proceedings of the 17th International Software Product Line Conference, Tokyo,
September 2013, pp.22-31, ACM Digital Library, 2013.
www.se-rwth.de/publications

1 statechart Telephone {
2 initial state Idle;
3 state Active {
4 state Busy;
5 state Call;
6 }
7 Idle -> Call : [!isEngaged] numberDialed() ;
8 Idle -> Busy : [isEngaged] numberDialed() ;
9 Active -> Idle : hangUp();

10 }

Listing 1: UML/P Statechart of a telephone system.

as they have been derived by the same process. The com-
plexity of the delta derivation is not a problem as it is done
mostly automatically within the process.

Besides the concrete syntax of a delta language, also a
product variant generator has to be developed that is able
to transform a core model as specified by the applied deltas.

In this paper, we introduce a process that allows to sys-
tematically derive a delta language for any textual modeling
(or programming) language. The main idea is to automati-
cally generate an initial delta language based on a common
delta language by applying a set of generic derivation rules.
The common delta language encapsulates the common con-
cepts of delta modeling present in any delta language. The
generated delta language can then be manually refined to
meet domain-specific needs. Hence, the required effort for
the manual design of a delta language is alleviated as only
some adaptations have to be made. In order to demonstrate
the feasibility of our approach, we realize it using the DSL
toolbench MontiCore [9, 20, 21, 22]. We validate this ap-
proach by applying it to a language for modeling Statecharts
and derive the corresponding delta language.

The paper is structured as follows: in Section 2, we il-
lustrate the concept of delta modeling. Section 3 gives an
overview of the language toolbench MontiCore. The process
itself is described in Section 4. In Section 5, it is demon-
strated by means of an example. Section 6 reviews related
work and Section 7 concludes this paper.

2. DELTA MODELING ON STATECHARTS
First, we would like to illustrate the main concepts of

delta modeling by the example of modeling variability in
the UML/P [27, 30] Statecharts. The UML/P language fam-
ily contains a textual representation of Statecharts similar
to UML. The corresponding language for modeling UML/P
Statecharts is available as a MontiCore grammar [30].

The Statechart in Listing 1 describes states and state tran-
sitions of a cellphone. The model consists of two states on
the highest hierarchy level: the state Idle and the state
Active. The state Active itself contains two inner states:
the states Busy and Call. The model also contains three
transitions. The first is between Idle and Call and is
only traversed if the method numberDialed() is called
and the condition !isEngaged evaluates to true. The
second one is between Idle and Busy and is only traversed
if the method numberDialed() is called and the condition
isEngaged evaluates to true. The last one is between Ac-
tive and Idle and is traversed when hangUp() is called.

In order to be able to represent variants of this state-
chart using deltas, we need a delta modeling language. The
delta language should allow to add, remove or modify states

1 statechart Telephone {
2 initial state Idle;
3 state Active {
4 state Voicemail;
5 state Call;
6 }
7 state Dialing;
8 Dialing -> Call : [!isEngaged] numberDialed()

;
9 Dialing -> Voicemail : [isEngaged]

10 numberDialed();
11 Dialing -> Voicemail : [waited5seconds]
12 numberDialed();
13 Idle -> Dialing: openLine();
14 Active -> Idle : hangUp();
15 }

Listing 2: Product variant with voicemail.

1 delta Voicemail {
2 modify statechart Telephone {
3 add state Dialing;
4

5 add Idle -> Dialing: openLine();
6

7 modify transition [Idle -> Call;]{
8 set source Dialing;
9 }

10

11 modify transition [Idle -> Busy;]{
12 set source Dialing;
13 }
14

15 modify state Active.Busy {
16 set name Voicemail;
17 }
18

19 add Dialing -> Voicemail:
20 [waited5seconds] numberDialed();
21 }
22 }

Listing 3: Delta to add voicemail functionality.

as well as transitions and possibly other language concepts,
such as preconditions, if present.

Listing 3 shows an example of this delta language applied
to derive a variant of the Statechart depicted in Listing 1.
The delta derives a variant of the phone that has a new
state just for dialing the number and that allows recording
voicemails, if the phone is already in use. In order to model
that behavior, we need to define a delta (cf. l.1) which
we can apply to the telephone core model. We modify the
Statechart (cf. l.2) in order to add the new state Dialing.
After that we add a new transition (cf. l.5) from the state
Idle to the state Dialing. We then need to rewire two
transitions by changing their source state (cf. l.7& l.11).
Additionally we modify the state Busy and rename it to
Voicemail (cf. l.15). At last, we add a new transition from
Dialing to Voicemail that is triggered after a certain
time has elapsed (cf. l.19).

The product variant that is achieved by applying the delta
Voicemail to our core Statechart is depicted in Listing 2.
It now contains a state Voicemail instead of Busy and
the added transition as well as the state Dialing and the
corresponding transition.

As shown later, we use context conditions to check the
correctness of our derived model and resolve potential un-

23

1 grammar Statechart extends Common {
2 SCDefinition =
3 "statechart" Name
4 "{" Element* "}";
5

6 interface Element;
7

8 Transition implements Element =
9 source:Name "->" target:Name

10 ((":" TransitionBody) | ";");
11

12 State implements Element = "state" Name ...;
13 ...
14 }

Listing 4: Simplified excerpt of the UML/P
Statechart grammar.

certanties via the context.

3. MONTICORE LANGUAGE TOOLBENCH
The process for systematically deriving delta languages

for textual modeling languages is based on the MontiCore
language toolbench. We take languages defined as Monti-
Core grammars as input and produce delta languages that
are also defined by a MontiCore grammar as result. In this
section, we give a brief overview of MontiCore explaining all
relevant features.

MontiCore supports the specification and generation of all
relevant language processing artifacts for a specific textual
language that is defined by a grammar similar to EBNF.
Amongst other things, MontiCore generates the abstract
and concrete syntax of a language, a lexer, a parser, and a
set of runtime components, such as symbol tables and check-
ers for context conditions [20, 33]. A MontiCore grammar
is used to define the abstract as well as the concrete syntax
of a language in a single artifact.

Listing 4 shows a simplified excerpt of the Statechart gram-
mar which defines the language that is used for modeling the
UML/P [30] Statecharts in Listings 1 and 2. A MontiCore
grammar starts with the keyword grammar followed by the
name of the grammar (cf. l.1) and contains a set of produc-
tions defining available language elements. Listing 4 shows
three productions: SCDefinition (cf. l.2), Element (cf.
l.6), Transition (cf. l.8) and State (cf. l.12). SCDef-
inition defines the Statechart itself, State and Tran-
sition define the states and transitions of the Statechart.
Element is an interface which is explained later in this sec-
tion.

A production consists of a nonterminal and a right-hand
side (RHS) which specifies attributes and compositions within
the abstract syntax tree. As in EBNF, there might be ter-
minals (surrounded by quotation marks (cf. l.3)) and non-
terminals (cf. l.4) within the RHS. MontiCore allows to
distinguish repeatedly used nonterminals by preceding the
nonterminal with an identifier (cf. l.9). We also have repe-
tition (A*,A+), alternatives (A|B), and optionality (A?).

MontiCore also facilitates language reuse by supporting
modularity concepts like, e.g., language inheritance and com-
position (not shown here) [33, 30]. Language inheritance
means that one or more existing grammars can be extended
and refined by defining new grammar rules or redefining ex-
isting rules. This is denoted by the keyword extends fol-
lowed by the names of the extended grammars (cf. l.1). In

MCG «handwritten»
 Extended-ΔL

«generated»
 ΔL

«predefined»
 common∆

«handwritten»
 L

builds on

builds on builds on

Figure 1: Language hierarchy of concrete delta lan-
guages.

this way, a language developer can focus on the differences
between the existing languages and the new language. To
ease the reusability and extensibility of languages, it is pos-
sible to define interface-nonterminals in MontiCore gram-
mars. An interface-nonterminal can be used like any other
nonterminal within the grammar (cf. l.4) and is introduced
by the keyword interface (cf. l.6). This mechanism is
an extended form of alternatives. Thus the interface defini-
tion in l. 6 can be interpreted as Element = Transition
| State | ..., where the RHS contains an alternative
for every production that implements the interface. The
language inheritance and interface concept in MontiCore is
motivated by object-oriented inheritance and provides sim-
ple means to reuse and extend existing languages [19].

MontiCore also supports the definition and automatic check-
ing of context conditions to verify that a model is well-
formed. One simple context condition can, e.g., check whether
the names of states within a Statechart are unique.

4. DERIVATION PROCESS
Based on MontiCore technology, we now introduce the

process to derive a delta language for a given textual mod-
eling language. This approach relies on the language inher-
itance concepts of MontiCore. Figure 1 shows the language
hierarchy that is obtained when extending an existing source
language L with delta modeling constructs. The basis is
the abstract common∆ language that predefines the overall
structure of delta models. It additionally defines common
delta operations and specifies how to identify elements in a
model. The derived delta language ∆L extends this com-
mon language as well as the source language L. This way
all language elements of both languages are inherited and
are available in the grammar of language ∆L. The automat-
ically derived language ∆L is already complete but can also
be further refined manually in order to obtain a to domain
specific needs tailored delta language Extended-∆L.

4.1 Common Delta Constructs
The common structure for deltas is defined in the common∆

language that we provide as a MontiCore grammar in List-
ing 5. The syntactical structure of a delta is defined in ll. 8 –
13. A delta has a unique name and consists of DeltaEle-
ments (cf. l.12). This interface is implemented by produc-
tions that may be used directly within a delta. Each delta
has an optional ApplicationOrderConstraint (AOC)
(cf. l.10). An AOC is a logical expression over delta names,

24

1 // Elements that may be used directly within a
2 // delta model.
3 interface DeltaElement;
4

5 // Adds concrete syntax to modifies.
6 interface ScopeIdentifier;
7

8 Delta =
9 "delta" Name

10 ("after" ApplicationOrderConstraint)?
11 "{"
12 elements:DeltaElement*
13 "}";
14

15 DeltaModify implements
16 DeltaOperation, DeltaElement =
17 "modify" ScopeIdentifier
18 modelElement:ModelElementIdentifierPath "{"
19 DeltaOperation*
20 "}";
21

22 // To identify model elements.
23 interface ModelElementIdentifier;
24

25 // Hierarchical path of MEIs.
26 ModelElementIdentifierPath =
27 parts:ModelElementIdentifier
28 ("." parts:ModelElementIdentifier)*;
29

30 // Default identifier: qualified name.
31 DefaultModelElementIdentifier implements
32 ModelElementIdentifier =
33 QualifiedModelElementName;
34

35 interface DeltaOperation;
36

37 // Operand of a delta operation.
38 interface DeltaOperand;
39

40 DeltaAdd implements DeltaOperand = "add";
41 DeltaSet implements DeltaOperand = "set";
42 DeltaRemove implements DeltaOperand = "remove";
43

44 // Default remove operation.
45 DeltaRemoveOperation implements
46 DeltaOperation =
47 DeltaRemove target:ModelElementIdentifierPath
48 ";";

Listing 5: common∆ MontiCore grammar.

that restricts which deltas have to be applied before the
current delta and which deltas must not be applied before.
In the common grammar, DeltaModify (cf. ll.15–20) is
the only production that implements the DeltaElement in-
terface, therefore every Delta Element is represented by a
DeltaModify. It can later also be implemented in the
Extended-∆L-grammar to add further operations that may
be used directly within a delta. The nonterminal ScopeI-
dentifier refers to an interface (cf. l.6) that is imple-
mented by productions in the generated delta language and
allows us to identify the model element which is to be mod-
ified. The nonterminal named modelElement (cf. l.18) is
used to define the context that is modified by the contained
DeltaOperations (cf. l.19). Modify statements defined
by the production DeltaModify may contain further mod-
ify statements as this production implements the interface
DeltaOperation.

A ModelElementIdentifierPath is needed to identify

elements of the model. As depicted in Listing 5, it consists of
dot-separated ModelElementIdentifiers named parts
(cf. ll.25–28). Usually, models are hierarchically structured
by a contains relation. Hence, the order of the parts has to
reflect this hierarchical relation. Named model elements are
typically identified by their name. Therefore, the default
ModelElementIdentifier is a qualified name (cf. ll.30–
33). Models also contain unnamed parts, e.g., transitions in
a Statechart. The ModelElementIdentifier interface is
implemented in a concrete delta language for each unnamed
model element that has to be identified within a delta.

The interface DeltaOperation shown in Listing 5 is im-
plemented by delta operations that may be used within a
modify statement. Concrete operations must start with an
operand DeltaOperand (cf. l.38) that defines the syntax
of the concrete operation. Default operands are add for
set-based elements of a model (cf. l.40), set for singular
elements of a model (cf. l.41), and remove to delete el-
ements from a set or to delete optional singular elements
(cf. l.42). The default remove operation is given in ll. 44ff.
The target of the operation is identified by a ModelEle-
mentIdentifierPath as explained above. Distinguishing
between DeltaOperation and DeltaOperand allows us
to generate a single production rule DeltaOperation for
each nonterminal in the source language that represents all
available modification operands at once.

4.2 Derivation Rules
Based on the source language L and common∆, we de-

scribe how to derive a delta language ∆L. For new nonter-
minals in ∆L, we use a composite name consisting of the
name of the original nonterminal and the interface that is
implemented, avoiding duplicate nonterminals. Within the
following derivation rules, we use indices to represent this.

Addressing Elements.
In the delta language, it should be possible to modify ev-

ery model element given by the nonterminals of the concrete
language. Thus, we need to provide an implementation of
the interface ModelElementIdentifier for all nontermi-
nals N ∈ L. With the following rules, we ensure that every
nonterminal can be identified, either by the default produc-
tion using a qualified name or the element itself. During
the automatic generation of ∆L we consider an element as
addressable if it has a qualified name nonterminal with an
identifier name.

1a. For every nonterminal N that can be identified by a
qualified name, the default implementation of common∆ is
used to address the model element.

1b. For every other nonterminal N , the concrete syntax
of the corresponding model element enclosed in brackets is
used for addressing it. Thus, for N , we introduce a new
nonterminal ∆NMEI and add a production of the form:

∆NMEI implements ModelElementIdentifier
= ”[” N ”]”

Scope Identifier.
The ScopeIdentifier interface of common∆ is used

to specify the element type that is addressed by the Mod-
elElementIdentifier. With this, we are able to distin-
guish different model element types if they have the same

25

ModelElementIdentifier but create different scopes for
the application of the delta operations. At the same time,
we are able to automatically create context conditions for
checking matching identifiers and types. We reuse the non-
terminal of L as concrete syntax of ∆L. With these kind
of derivation rules, we are able to formulate modify state-
ments that identify the model element and allow modifica-
tions within this scope.

2. For every nonterminal N ∈ L, we introduce a new
nonterminal ∆NSI and generate a production of the form:

∆NSI implements ScopeIdentifier = ”N”

Delta Operation.
With this rule, we gain the ability to specify different delta

operations inside a modify statement. The abstract gram-
mar common∆ defines the interfaces DeltaOperation and
DeltaOperand. The implementation of these interfaces is
needed for every nonterminal N since those are the elements
that shall be modified inside a given scope.

3. For every nonterminal N ∈ L, we introduce a new
nonterminal ∆NDO and generate an operation production
of the form:

∆NDO implements DeltaOperation =
DeltaOperand N

Multiple Nonterminals.
This derivation rule is needed since we need to consider

that nonterminals might be used more than once on the
RHS of a production. In MontiCore, we distinguish those by
identifiers preceding the nonterminals, as shown in Section
3. For ∆L we also need to distinguish these nonterminals
because we would like to be able to modify them separately.
We can reuse the identifiers and derive the productions for
those operations. We add the nonterminal names as concrete
syntax to the production to enable the distinction between
the nonterminals inside the delta.

4. For every nonterminal N ∈ L used more than once
on the RHS of a single production in L, we generate specific
operation productions for each occurrence. For each identi-
fier ni of N , we introduce a new nonterminal ∆nDOi and
generate a production of the form:

∆nDOi implements DeltaOperation =
DeltaOperand ”ni” N

Delimiter Addition.
Typically languages consist of block statements that hier-

archically encapsulate other statements. Those block state-
ments are delimited by an opening and a closing element.
Inside block statements, there can be single statements that
usually have a delimiter ending the statement. With a delta
language, we can also modify parts of single line statements
and not only complete single-line or block statements. Those
parts usually have no delimiter. In this case, we add a de-
limiter to the corresponding delta production to achieve a
uniform syntax of the delta language. For this reason, we
analyze L and check if the nonterminal is either a block
statement or a single line statement and has, therefore, a
delimiter. Otherwise, we add a final delimiter to the non-
terminals in ∆L.

5. For every nonterminal N ∈ L that is neither a block
statement nor a single line statement with a line delimiter,
we modify the operation production and append a delimiter.

The derivation rules are sufficient to derive ∆L since they
ensure that each nonterminal of L can be addressed to be
modified, and additionally, every nonterminal can be used
together with an operand inside a given scope. Thus, it
is possible to modify every element by adding or removing
other subelements. It should be noted that the rules use
concepts provided by MontiCore but are not limited to them,
since the concept of interfaces can be rewritten as another
production containing the alternatives, as shown in Section
3. We show the application of these rules to Statecharts in
the case study in Section 5.

4.3 Context Conditions
In addition to the derivation rules to create the delta lan-

guage ∆L, we generate context conditions that provide some
semantic checks for the delta language. The following enu-
meration provides context conditions that are automatically
generated:

1. Does a ModelElementIdentifier reference an ex-
isting element? This can be done via resolving its qual-
ified name and checking if there is an element with this
name or via checking the complete concrete syntax of
the element if used as an identifier for unnamed ele-
ments.

2. Does a ModelElementIdentifier reference a mo-
del element that corresponds to its type given by the
ScopeIdentifier? This is not checked on the lan-
guage level because most elements are addressed via
qualified names which do not provide information about
the type of the element.

3. Is a ModelElementIdentifierPath valid in terms
of its single concatenated elements? While the pre-
vious context conditions focus on single elements, this
context condition checks the path within the hierarchy
of model elements.

4. Is a DeltaOperation applicable within the scope of
its surrounding modify statement? This context con-
dition can be inferred from the RHS of the production
contained in L. Within the scope of the nonterminal
on the left-hand side (LHS) only operations affecting
nonterminals from the RHS are allowed.

5. Is a DeltaOperand applicable for its element? Since
we use the interface DeltaOperand to encapsulate
the available delta operations, it is possible to use ei-
ther the add operand or the set operand for a model
element. To ensure that add can only be used to add a
new element to a collection and set can only be used
for a single element, we use this context condition. It
is also derivable from the production contained in L.
Within the scope of the nonterminal used on the LHS,
we can distinguish if a nonterminal on the RHS has a
multiple cardinality and needs add as an operand, or
if it has a single cardinality and thus needs set as an
operand. This is also done for multiple nonterminals
that are distinguished by given variable names.

6. Does an element that should be added not yet exist?
This checking for avoidance of duplicates can be ei-

26

ther done via the qualified name or via equality on the
attribute level of the element.

7. Does an element that should be removed exist? This
check for existence of an element can be done in a
similar way as the previous context condition.

4.4 Workflow to derive ∆L

Figure 2 shows the workflow to derive a delta language
and the context conditions from an existing source language
as an activity diagram. First, the user provides an initial
configuration in which the location of the grammar for the
existing source language L is provided (A1). The generator
reads the grammar of L (A2). Using the MontiCore gram-
mar of L as an input, the generator creates the MontiCore
grammar for ∆L (A3). This is done by adding common∆

as super grammar (A4) and stepwise applying the described
derivation rules explained in Subsection 4.2 to the produc-
tions of L (A5). After the rules have been applied we gen-
erate the context conditions for ∆L (A6).

Provide initial
configuration

User Parser/Generator

Read L

Generate ∆L

L

∆L+

CoCos

Extended-∆L

Adapt ∆L

A1
A2

A3

Apply derivation
rules

A5

Generate Parser
Parser for

Extended-∆L

common∆

Build on

common∆

A4 A7

A8

Derive

CoCos

A6

Figure 2: Workflow of the automatic delta language
derivation.

The user can manually adapt the generated grammar ∆L
by creating a subgrammar Extended-∆L (A7). The manual
adaption of a derived delta grammar is optional. It is useful,
e.g., to tailor the syntax of the delta language. For example,
∆L may contain unneeded modify statements for language
elements that should not be modifiable, or the syntax of an
unnamed ModelElementIdentifier should be adjusted
by introducing a new keyword. It is also possible to add
more refined delta operations such as, a replace operation.
The names of non-terminals of the source language can be
part of the derived delta language. This is, for example,
the case when these non-terminals need to be addressed.
Sometimes the names of these non-terminals are choosen
badly and need also be adapted while creating Extended-
∆L. In the last step (A8), the base grammar common∆

and the generated context conditions are used together with
the grammar Extended-∆L to generate the parser and the
runtime components to validate the context conditions for a
given delta in our new delta language.

Using the generated parser, it is now possible to parse a
delta and to check that none of the context conditions has
been violated.

4.5 Discussion

When automatically deriving a delta language ∆L from
an existing source language L, we reuse concepts given in
the language L. This also leads to the use of concepts of the
abstract syntax of L which are typically hidden from the
modeler who only knows the concrete syntax. But for speci-
fying a modify statement, the delta modeler has to know the
nonterminals of L as they become part of the concrete syn-
tax of ∆L. While the abstract and concrete syntax should
typically be separated, we would like to present a process
that automatically derives such a language ∆L. Hence, the
above mentioned effect cannot be completely avoided.

In order to reduce this effect, it is possible to create a
hand-written language Extended-∆L that refines ∆L and
overrides the productions defining these parts of the concrete
syntax. To this end, we encapsulate the concrete syntax in
own productions that can be overridden. Also those produc-
tions that contain, e.g., keywords that are not suitable and
should be changed can be overridden.

Reusing parts of the abstract syntax of L and automati-
cally deriving ∆L puts some requirements to the structure
of L. For the automatic derivation of a delta language, the
design of the abstract syntax is pretty important. The ab-
stract syntax might contain folded or expanded productions
that do not affect the concrete syntax of L. In the case of
the derived ∆L, the definition of productions and the use
of nonterminals is important for the identification of model
elements, the nesting of modify statements and the feasible
delta operations within a modify block. The possible path
of navigation is given by the structure of the abstract syntax
and might change if the abstract syntax changes. Therefore,
it might be useful to restructure the grammar of L, e.g. by
folding or unfolding nonterminals.

We avoid nondeterminism since we use a dynamic looka-
head for parsing models of the context-free grammar. In ad-
dition, the resulting grammar ∆L is always non-left-recursive
by construction since the derivation rules always introduce
new unique nonterminals that are only used on the LHS of
the productions and never on the RHS. The new nontermi-
nals are based on the names of the original nonterminals to
prevent name clashes.

MontiCore supports language reuse by grammar exten-
sion. Thus, the source language L might also be an exten-
sion from a parent language PL. For the derivation of the
delta language from L, we only consider nonterminals de-
fined directly in the language L and do not consider inherited
nonterminals from parent languages in this approach yet.
To handle language inheritance, we assume that for every
parent language PL of L there also exists a delta language
∆PL, according to the language hierarchy, shown in Figure
3. The language ∆L builds upon ∆PL and can, therefore,
also handle nonterminals defined in the super language.

5. CASE STUDY
In order to demonstrate our process, we use it to derive

a delta language for the UML/P Statechart language in-
troduced in Section 2. This language can then be used to
describe the delta shown in Listing 3. In the following, we
go through the derivation rules step by step, as described in
Subsection 4.2, in order to show what each rule adds to the
grammar of the delta language.

Our new delta language builds on the Statechart language
and the common∆ language. In MontiCore, this is done by
extending the two languages (cf. Figure 4, part A).

27

MCG «handwritten»
 Extended-ΔL

«generated»
 ΔL

«predefined»
 common∆

«handwritten»
 L

«handwritten»
 PL

«generated/handwritten»

 ΔPL

builds on

builds on builds on

builds on
builds on

builds on

builds on

Figure 3: Language hierarchy of concrete delta lan-
guages extended by PL and ∆PL.

For the first derivation rule, we need to implement the
ModelElementIdentifier interface for every nontermi-
nal N ∈ L. In case the nonterminal N has a name, we
can use the default implementation in common∆. An ex-
ample for such a case is state, because states have names
in the Statechart language. The default implementation for
ModelElementIdentifier is shown in Listing 5. If the
nonterminal N has no name, which is the case for transi-
tions, we need to introduce a new nonterminal which we call
TransitionIdentifier that encloses the concrete syntax
of a Transition with square brackets. The corresponding
grammar is shown in Figure 4, part 1 .

Using the second derivation rule, we derive the pro-
ductions for the modify statements, which is used to de-
note which Statechart grammar construct we want to mod-
ify. Figure 4, part 2 , shows the ScopeIdentifiers for
Statecharts, States and Transitions.

With the third derivation rule, we specify the available
operations for adding or removing transitions, see Figure
4, part 3 . The delta operations are already defined in
common∆ (see Listing 5).

The original transition nonterminal consists of two name
elements specifying source and target of a transition. As
we would not be able to distinguish both we need to apply
the fourth derivation rule after the third one and add
the keywords ”target” and ”source” for the productions (see
Figure 4, part 4).

The fifth and last derivation rule adds a delimiter to
every statement that is neither a block statement nor a single
line statement. In our case, this delimiter is a semicolon
added by the fifth rule (cf. Figure 4, part 5).

However, the resulting concrete syntax of our generated
delta Statechart language does not conform to the expected
syntax used in Section 2 yet. For instance, the expected
ScopeIdentifier for a transition should be “transi-
tion” (cf. Listing 3, ll.7 & 10) and not “Transition”.
According to the presented workflow in Subsection 4.4, we
perform step (A6) and tailor the concrete syntax of the delta
language by creating an extended delta language. This is
demonstrated in Listing 6. The shown grammar builds on
the generated language DeltaStatechart and redefines
the production DeltaTransitionScopeIdentifier. This
way, the expected syntax for the transition modification is
achieved.

The grammar in Figure 4 in combination with its exten-
sion shown in Listing 6 is complete and can be used to gen-
erate a parser for our example in Listing 3.

grammar Statechart extends Common {

 SCDefinition =

 "statechart" Name

 "{" Element* "}";

 interface Element;

 Transition implements Element =

 source:Name "->" target:Name

 ((":" TransitionBody) | ";");

 State implements Element = state Name ...;

...

}

StateChart.mc

DeltaStatechart.mc

// The grammar of CommonDelta is shown in

// Listings 5,6 and 7

grammar DeltaStatechart extends CommonDelta, Statechart {

 DeltaSCDefinition = Delta;

 TransitionIdentifier implements

 ModelElementIdentifier =

 "[" Transition "]";

 DeltaStateChartScopeIdentifier implements

 ScopeIdentifier = "statechart";

 DeltaStateScopeIdentifier implements

 ScopeIdentifier = "state";

 DeltaTransitionScopeIdentifier implements

 ScopeIdentifier = "Transition";

 DeltaStateOperation implements

 DeltaOperation =

 DeltaOperand State;

 DeltaTransitionOperation implements

 DeltaOperation =

 DeltaOperand Transition;

 DeltaTransitionSourceOperation implements

 DeltaOperation =

 DeltaOperand “source" source:Name ";";

 DeltaTransitionTargetOperation implements

 DeltaOperation =

 DeltaOperand "target" target:Name ";";

}

①

④&⑤

Ⓐ

②

③

Figure 4: Example for the application of the deriva-
tion rules.

1 grammar ExtendedDeltaStatechart extends
2 DeltaStatechart {
3 DeltaTransitionScopeIdentifier implements
4 ScopeIdentifier = "transition";
5 ...
6 }

Listing 6: Extended-∆L for the generated delta
Statechart language L.

28

The first and the last line are parsed using the Delta
production (cf. Listing 5, l.8). Within the scope of such a
Delta, only DeltaElements are allowed. A modify state-
ment is a DeltaElement, i.e. the statement modify stat-
echart Telephone ... can be parsed using the pro-
duction DeltaModify (cf. Listing 5, l.15) which imple-
ments DeltaOperation and DeltaElement. Addition-
ally, DeltaModify requires a ScopeIdentifier. In our
case, the DeltaStateChartScopeIdentifier from the
∆L grammar (cf. Figure 4, part 2). Within the Delta pro-
duction multiple DeltaOperations are allowed (cf. Listing
5, l.12), in our example these are the statements between line
3 and 20. They are either parsed using the DeltaModify
production (cf. Listing 5, l.15), if they are modify state-
ments, or by the newly generated productions DeltaTran-
sitionOperation or DeltaStateOperation, if they are
add statements.

As the different add statements are pretty similar, we just
describe how one of them is parsed in detail as the other ones
are parsed similarly. We use the statement from Listing 3,
line 19–20, as it is the most complex one.

The whole statement is parsed using the DeltaTransi-
tionOperation production (cf. Figure 4, part 3) which
in turn uses the Transition production from the State-
chart grammar and the DeltaOperand nonterminal which
is implemented by the DeltaAdd nonterminal. This is il-
lustrated in Figure 5.

The statement in line 5 is parsed exactly the same way,
while the statement in line 3 is parsed similarly but using
the DeltaStateOperation production (cf. Listing 3, ll.3
& 5). The statements that start in lines 7, 11 and 15 are
modify statements (cf. Listing 3, ll.7, 11 & 15). They are
parsed using the DeltaModify production (cf. Listing 5,
l.15).

The two statements that start in lines 7 and 11 are spe-
cial because they address a nonterminal that does not have
a name. Therefore we cannot use the default implementa-
tion of the ModelElementIdentifier interface but need
to generate the TransitionIdentifier production (cf.
Figure 4, part 1) which allows us to address transitions us-
ing its complete syntax. As these statements are also parsed
using the DeltaModify productions they can also include
multiple DeltaOperations. In this case the DeltaOp-
erations are DeltaTransitionSourceOperations (cf.
Figure 4, part 4 & 5). Apart from these two differences,
they are parsed similarly to the DeltaModify already pre-
sented.

This example shows that we can parse the delta UML/P
Statechart language using our newly generated grammar.
We can now parse any delta of the UML/P Statechart lan-
guage. Using our process we can generate a delta language
for any language with a grammar in the Monticore language
toolbench.

6. RELATED WORK
In this section, we discuss related work in the area of

variability modeling approaches, model transformation lan-
guages and methodologies, which aim at deriving transfor-
mation languages for a specific base language.

6.1 Variability modeling
Approaches intending to model variability in modeling

languages can be classified in three main directions [34, 12]:

add Dialing -> Voicemail: [waited5seconds] numberDialed();

parsed using the Transition Production from the
Statechart grammar

parsed using the DeltaTransitionOperation production

parsed using the DeltaOperand production from common Δ

Figure 5: Example for parsing a DeltaTransitionOp-
eration.

annotative, compositional and transformational variability
modeling. Annotative approaches consider one 150% model
representing all products of the product line. Variant an-
notations expressed using, e.g., UML stereotypes [38, 6] or
presence conditions [3] define which parts of the model have
to be removed to derive a concrete product model. The or-
thogonal variabilty model (OVM) [26] captures the variabil-
ity of product line artifacts in a separate variability model
in which artifact dependencies serve as annotations. A spe-
cialization of the OVM for architectural models is presented
with the variability modeling language (VML) in [24].

Compositional approaches associate model fragments with
product features that are composed for a particular feature
configuration. In [16, 34, 25], aspect-oriented composition
is used for constructing models. In [1], the composition
of model fragments is performed by model superposition.
In feature-oriented model-driven development [31], a combi-
nation of feature-oriented programming (FOP) and model-
driven engineering (MDE), a product model is composed
from a base module and a sequence of feature modules.

Transformational approaches express variability by trans-
formation rules. The common variability language (CVF)
[15] provides means to express variability of a base model
in a language that does not depend on the base modeling
language. This is done by specifying rules that describe
how model elements of a base model have to be substituted
in order to obtain a particular product model. In [18], a
model composition language is introducted, which enables
the specification of variant features by graph transforma-
tion rules that modify kernel models. Graph transformation
rules are also used in [32, 37] to capture architectural vari-
ability. In [17], architectural variability is represented by
change sets containing additions and removals of compo-
nents and component connections that are applied to a base
line architecture. Delta modeling also belongs to the group
of transformational approaches.

Delta modeling has already been applied to several lan-
guages, like the architectural description language MontiArc
[14] in [11], Java in [29], Class Diagrams in [28] and Simulink
models in [10]. In contrast to these publications, our work
presents a process which allows deriving a delta language
from the grammar of a given base language.

6.2 Model transformation languages
Delta languages can be classified as a special type of model

transformation languages, in which delta models correspond
to transformation rules. Out of the multitude of different
model transformation approaches, graph-based transforma-
tion approaches [4] are essentially the most similar to delta

29

modeling. Graph transformation rules usually consist of
a LHS, a RHS and often negative application conditions
(NAC). The LHS describes the pattern to be searched for
in the model to be transformed and the RHS describes the
pattern which replaces the matched elements. A NAC repre-
sents a pattern that must not be found. In this way, powerful
transformations can be formulated.

In the following, we outline the major differences between
delta languages and typical graph-based transformation lan-
guages. These differences can as well be transferred easily
to other types of model transformation languages.

(D1) One difference concerns the need to specify NACs.
In order to avoid that applying a transformation rule leads
to an invalid model, the developer of a transformation rule
has to specify NACs. For a transformation rule that adds
a substate to a state, such a NAC can, e.g., express, that
the state must not already contain a substate with the given
name. Delta languages created according to our approach
do not offer constructs to define NACs. This is done on pur-
pose to simplify the specification of delta models as much
as possible. Instead, we assume that these checks are im-
plemented via context conditions that ensure that specific
types of delta operations can(not) be applied. One such
context condition can, e.g., ensure that adding a substate to
a state is only possible if the state does not already contain
a substate with the corresponding name. As presented in
Subsection 4.3, some context conditions are generated and
must therefore not be implemented by developers.

(D2) Another difference is related to the modification op-
erations that can be specified. A delta language provides a
well-defined and restricted amount of delta operations that
are used for model-specific modifications. In contrast to this,
graph transformation rules are capable of modeling arbitrary
modifications. Albeit such rules are more powerful, it is eas-
ier to specify and understand the restricted amount of delta
operations offered by a delta language.

(D3) A further difference concerns the syntax which trans-
formation rules are based on. Most transformation lan-
guages solely operate on the abstract syntax of the models to
be transformed [36]. The advantage of these approaches is
that they can express transformations for any kind of model.
However, the disadvantage is that the developer of a trans-
formation rule inevitably needs to have a deep knowledge of
the metamodel. In contrast to this, delta modeling allows
reusing the concrete syntax of the corresponding modeling
language.

6.3 Methodologies for transformation languages
In [2, 23], the metamodel of a pattern language, in which

the LHS and RHS of a transformation rule are specified,
is generated out of the metamodel of a modeling language.
Based on this generated metamodel, the user has to define
the concrete syntax for the transformation language. In [7,
8], a graphical transformation language is generated for a
graphical base language. To achieve this, the user has to
link the abstract syntax to the concrete syntax. In contrast
to these publications, our methodology clearly defines the
necessary steps to derive a grammar for a textual delta lan-
guage from a textual base language. This comprises both
abstract and concrete syntax of the delta language.

The most similar work to ours is the generation of a tex-
tual domain-specific transformation language (DSTL) for a
textual base language described in [35]. A concrete DSTL

for hierarchical automata, that could be created by this ap-
proach, is presented in [36]. In [35], the grammar for the
DSTL is derived systematically from the grammar of the
base language. This is comparable to our approach, that
formulates how to derive a delta language systematically
from the grammar of the base language. The major dif-
ference consists in the resulting languages. The differences
(D1) and (D2) still hold between [35] and our approach since
the applicability of transformation rules has to be restricted
by NACs, and all kinds of model modifications and not only
well-defined delta operations can be modeled. However, the
difference (D3) does not hold as the transformation rules
in [35] also reuse the concrete syntax of the corresponding
modeling language.

7. CONCLUSION
Delta modeling is a modular, yet flexible approach to rep-

resent variability by explicitly capturing system changes.
We already applied it to MontiArc [14], to Java [29], to Class
Diagrams [28], and to Simulink models [10]. The general
idea is language-independent. Hence, when delta modeling
should be applied, for every modeling (or programming) lan-
guage a separate delta language has to be designed although
many of the design steps are redundant. To alleviate this,
we have presented a general process to automatically derive
a delta language from an existing source language. Since
the MontiCore features that are used in our approach can
also be within other language development frameworks [22],
our approach is not limited to MontiCore, but can also be
applied to other frameworks. The derived delta language
can then be adapted to meet domain-specific needs. We il-
lustrated our process by an application to the UML/P Stat-
echart language. For future work, we aim at analyzing the
requirements that have to be put on the existing language
for deriving a delta language and the adaptations that have
to be made to the derived language using larger case stud-
ies.

8. REFERENCES
[1] S. Apel, F. Janda, S. Trujillo, and C. Kästner. Model

Superimposition in Software Product Lines. In
International Conference on Model Transformation
(ICMT), 2009.

[2] T. Baar and J. Whittle. On the usage of concrete
syntax in model transformation rules. In International
Andrei Ershov memorial conference on Perspectives of
systems informatics (PSI), 2007.

[3] K. Czarnecki and M. Antkiewicz. Mapping Features to
Models: A Template Approach Based on
Superimposed Variants. In International conference on
Generative Programming and Component Engineering
(GPCE), 2005.

[4] K. Czarnecki and S. Helsen. Feature-based survey of
model transformation approaches. IBM Systems
Journal, 45(3), 2006.

[5] R. France and B. Rumpe. Model-Driven Development
of Complex Software: A Research Roadmap. In Future
of Software Engineering 2007 at ICSE (FOSE), 2007.

[6] H. Gomaa. Designing Software Product Lines with
UML. Addison Wesley, 2004.

[7] R. Grønmo. Using concrete syntax in graph-based
model transformations. PhD thesis, University of Oslo,

30

2009.

[8] R. Grønmo and B. Møller-Pedersen. Concrete
syntax-based graph transformation, 2009. Research
Report 389.

[9] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, and
S. Völkel. MontiCore: a Framework for the
Development of Textual Domain Specific Languages.
In International Conference on Software Engineering
(ICSE), 2008.

[10] A. Haber, C. Kolassa, P. Manhart, P. M. S. Nazari,
B. Rumpe, and I. Schaefer. First-class variability
modeling in matlab/simulink. In International
Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), 2013.

[11] A. Haber, T. Kutz, H. Rendel, B. Rumpe, and
I. Schaefer. Delta-oriented Architectural Variability
Using MontiCore. In European Conference on
Software Architecture (ECSA), 2011.

[12] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer. Delta
Modeling for Software Architectures. In Tagungsband
des Dagstuhl-Workshop MBEES: Modellbasierte
Entwicklung eingebetteter Systeme, 2011.

[13] A. Haber, H. Rendel, B. Rumpe, and I. Schaefer.
Evolving Delta-oriented Software Product Line
Architectures. In Monterey conference on Large-Scale
Complex IT Systems: development, operation and
management, 2012.

[14] A. Haber, J. O. Ringert, and B. Rumpe. MontiArc -
Architectural Modeling of Interactive Distributed and
Cyber-Physical Systems. Technical Report
AIB-2012-03, RWTH Aachen, february 2012.

[15] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen,
and A. Svendsen. Adding Standardized Variability to
Domain Specific Languages. In International Software
Product Line Conference (SPLC), 2008.

[16] F. Heidenreich and C. Wende. Bridging the Gap
Between Features and Models. In Aspect-Oriented
Product Line Engineering (AOPLE), 2007.

[17] S. A. Hendrickson and A. van der Hoek. Modeling
Product Line Architectures through Change Sets and
Relationships. In International conference on Software
Engineering (ICSE), 2007.

[18] P. K. Jayaraman, J. Whittle, A. M. Elkhodary, and
H. Gomaa. Model Composition in Product Lines and
Feature Interaction Detection Using Critical Pair
Analysis. In International conference on Model Driven
Engineering Languages and Systems (MoDELS), 2007.

[19] G. Karsai, H. Krahn, C. Pinkernell, B. Rumpe,
M. Schindler, and S. Völkel. Design Guidelines for
Domain Specific Languages. In OOPSLA Workshop
on Domain-Specific Modeling (DSM), 2009.

[20] H. Krahn. MontiCore: Agile Entwicklung von
domänenspezifischen Sprachen im
Software-Engineering. PhD thesis, RWTH Aachen
University, 2010.

[21] H. Krahn, B. Rumpe, and S. Völkel. MontiCore:
Modular Development of Textual Domain Specific
Languages. In International Conference on Objects,
Models, Components, Patterns (Tools), 2008.

[22] H. Krahn, B. Rumpe, and S. Völkel. MontiCore: a
Framework for Compositional Development of Domain
Specific Languages. International Journal on Software

Tools for Technology Transfer (STTT), 12(5),
September 2010.

[23] T. Kühne, G. Mezei, E. Syriani, H. Vangheluwe, and
M. Wimmer. Explicit transformation modeling. In
International conference on Models in Software
Engineering (MoDELS), 2010.

[24] N. Loughran, P. Sánchez, A. Garcia, and L. Fuentes.
Language Support for Managing Variability in
Architectural Models. In International conference on
Software composition (SC). 2008.

[25] N. Noda and T. Kishi. Aspect-Oriented Modeling for
Variability Management. In International Software
Product Line Conference (SPLC), 2008.

[26] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering - Foundations, Principles,
and Techniques. Springer, Heidelberg, 2005.

[27] B. Rumpe. Modellierung mit UML. Xpert.press.
Springer Berlin, 2nd edition edition, September 2011.

[28] I. Schaefer. Variability modelling for model-driven
development of software product lines. In
International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS), 2010.

[29] I. Schaefer, L. Bettini, F. Damiani, and N. Tanzarella.
Delta-oriented programming of software product lines.
In International conference on Software product lines
(SPLC), 2010.

[30] M. Schindler. Eine Werkzeuginfrastruktur zur Agilen
Entwicklung mit der UML/P. Aachener Informatik
Berichte, Software Engineering. Shaker Verlag, 2012.

[31] S.Trujillo, D. Batory, and O. Dı́az. Feature Oriented
Model Driven Development: A Case Study for
Portlets. In International conference on Software
Engineering (ICSE), 2007.

[32] D. Tamzalit and T. Mens. Guiding Architectural
Restructuring through Architectural Styles. In
International Conference and Workshops on the
Engineering of Computer-Based Systems (ECBS),
2010.

[33] S. Völkel. Kompositionale Entwicklung
domänenspezifischer Sprachen. PhD thesis, TU
Braunschweig, 2011.

[34] M. Völter and I. Groher. Product Line
Implementation using Aspect-Oriented and
Model-Driven Software Development. In International
conference on Software product lines (SPLC), 2007.

[35] I. Weisemöller. Generierung domänenspezifischer
Transformationssprachen. Aachener Informatik
Berichte, Software Engineering. Shaker Verlag, 2012.

[36] I. Weisemöller and B. Rumpe. A Domain Specific
Transformation Language. In Workshop on Models
and Evolution (ME), 2011.

[37] M. Wermelinger and J. L. Fiadeiro. A graph
transformation approach to software architecture
reconfiguration. Science of Computer Programming,
44(2), 2002.

[38] T. Ziadi, L. Hélouët, and J.-M. Jézéquel. Towards a
UML Profile for Software Product Lines. In Workshop
on Product Familiy Engineering (PFE), 2003.

31

	Introduction
	Delta Modeling on Statecharts
	MontiCore Language Toolbench
	Derivation Process
	Common Delta Constructs
	Derivation Rules
	Context Conditions
	Workflow to derive L
	Discussion

	Case Study
	Related Work
	Variability modeling
	Model transformation languages
	Methodologies for transformation languages

	Conclusion
	References

