
EmbeddedMontiArc: Textual Modeling Alternative to Simulink
(Tool Demonstration)

Evgeny Kusmenko, Jean-Marc Ronck, Bernhard Rumpe, and Michael von Wenckstern
Software Engineering, RWTH Aachen University, Germany http://www.se-rwth.de

ABSTRACT
The development of complex cyber-physical systems relies heavily
on elaborate domain specific languages, agile processes, and tools.
A quasi-standard in multiple engineering domains is Simulink, a
component & connector modeling tool by MathWorks. In this pa-
per we present a versatile IDE for EmbeddedMontiArc, a textual
alternative for component & connector modeling. In order to de-
liver an agile and test-driven modeling experience, we integrate the
complete tool-chain including code generators, compilers, as well
as as variety of target runtime environments such as simulators
in the IDE facilitating the creation, execution, and validation of
cyber-physical system models.

KEYWORDS
C&C Modeling, Cyber-Physical Systems, Car Simulator

1 INTRODUCTION
EmbeddedMontiArc is a Component & Connector (C&C) modeling
language family developed with an emphasis on the needs of the
embedded and cyber-physical systems domain [2]. It is inspired
by the big players such as LabView and Simulink, but reveals a
novel textual approach to component and connector modeling. The
language family is composed of a multitude of modular textual
languages using the MontiCore language workbench [1]. The main
language elements include an architecture description language for
subdividing a system into its components and sub-components, a
matrix-based and strongly typed behavior specification language,
a stream language for model-based testing, etc. One of the main
strengths of EmbeddedMontiArc is its mathematical type system
abstracting away from the technical realization and integrating SI-
units and unit-related compatibility checks and conversions directly
into the language.

EmbeddedMontiArc provides an elaborate tool-chain transform-
ing the original user-defined model to an executable binary. Its
main steps include a parser, code generators for a series of target
languages such as C++ and WebAssebly as well as compilation and
linking [3]. As models are rarely developed for stand-alone usage
as apps, but are rather meant to be used in heterogeneous target
environments such as robot controllers, vehicles, simulators, and
others, the resulting binaries often need to be deployed in a run-
time environment for testing. In our tool demonstration we present
EmbeddedMontiArcStudio (EMAS) - an integrated development en-
vironment (IDE) providing the aforementioned development tools
out-of-the-box.

2 FEATURES
EMAS bundles all the features of EmbeddedMontiArc to a portable
Windows 10 64-bit application or a Ubuntu 16.04 64-bit virtual ma-
chine enabling us to use EmbeddedMontiArc and its tool collection

out-of-the-box. EMAS is publicly available under:
http://www.se-rwth.de/materials/embeddedmontiarc/
Similar to Simulink the main purpose of EmbeddedMontiArc is

C&C modeling for embedded and/or cyber-physical systems. In
contrast to Simulink, which is a graphical modeling language and
stores multiple components (subsystems) in the same file, Embed-
dedMontiArc is a textual modeling language family that, similar to
Java classes, stores each component in its own file.

Compared to graphical modeling, the textual modeling concept
of EmbeddedMontiArc exhibits multiple advantages:

(1) All model information is direct available in files, and can be
found and replaced by standard text programs. In graphical mod-
eling tools such as Simulink, Enterprise Architect, or PTC Integrity
Modeler this information is hidden behind a multitude of tabs or dia-
log boxes and often stored in proprietary binary formats. Integrated
search speed for large models is slow.

(2) Text-based versioning tools like SVN and git featuring model
differencing as well as merging and branching can be used out-of-
the-box. Graphical tools allow one to export their graph structure
as XML files, but reading an XML difference is hard since links be-
tween graphical elements are represented as links between unique
identifiers.

(3) In large projects where multiple teams work together on
the same model but on different files or even folders according to
their responsibilities, EmbeddedMontiArc follows the separation of
artifacts principle to enable modeling in the large. Having different
files for different components enables a better integration into
version control software since single components can be merged
or reverted independently.

(4) Test driven development increases the code quality dramati-
cally. EmbeddedMontiArc has an easy to use first level integration
of unit tests for components whereas Simulink uses a graphical test-
ing framework based on the signal builder. In Simulink executing
multiple unit tests for one component is achieved by copying the
signal builder and the component under test several times.

(5) In agile development, software is often updated to better
fit customer needs. But updating large graphical models (e.g. in-
serting and reconnecting components) is very time consuming as
the existing graphical layout needs to be rearranged manually. In
EmbeddedMontiArc the graphical layout is generated automatically
based on the textual files, serving a better understanding of the
C&C architecture. This way, the modeler can focus on the main
task by only adding, changing, or removing textual lines.

Figure 1 shows screenshots of the six main features of Embedded-
MontiArc: A○ An interactive IDE with syntax highlighting, outline
and parse error messages. The IDE support for all the languages of
the EmbeddedMontiArc language family is automatically generated
using the MontiCore framework.

[KRRvW18] E. Kusmenko, J. Ronck, B. Rumpe, M. von Wenckstern:
EmbeddedMontiArc: Textual Modeling Alternative to Simulink.
In: Proceedings of MODELS 2018. Workshop EXE, Copenhagen, Oct. 2018.
www.se-rwth.de/publications/

http://www.se-rwth.de/materials/embeddedmontiarc/

Conference’17, July 2017, Washington, DC, USA Kusmenko, Ronck, Rumpe, and von Wenckstern

ⒶⒶⒶⒶ

ⒷⒷⒷⒷ

ⒸⒸⒸⒸ

ⒹⒹⒹⒹ ⒺⒺⒺⒺ

ⒻⒻⒻⒻ

Figure 1: Screenshots of Main Features of EmbeddedMontiArc: A○ IDE, B○ Quality Reports incl. Results of Unit Tests, C○ Image
Clustering, D○ Generated Graphical C&C Layout of Textual EMAModels, E○ 3d-Car Simulator Executing Autopilot Controller,
F○ Image Classifier based on CNN Models

B○ A quality report for all EmbeddedMontiArc models. The tool
shows all parse, resolve, and testing errors with its console out-
put; it is a continuous integration/deployment CI/CD front-end
for our modeling family. The tool can also be used stand-alone
(without EMAS) on a CI/CD server (e.g., travis-ci or gitlab runners)
to perform model-based regression tests.

C○ The simplest simulator of EmbeddedMontiArc is the image
clusterer ; this simulator allows to select pictures and converts them
into a 3-dimensional tensor object (the first two dimensions rep-
resent height and width of the image, while the third dimension
contains the color channels red, green, and blue) which is passed
to the C&C model; finally, the simulator converts the resulting 2d
matrix of the C&C model back to a black and white image.

D○ The visualization generator produces a graphical representa-
tion of the textual EmbeddedMontiArc models as HTML and SVG
files. A special feature of this generator is to produce graphical
models with different abstraction levels, e.g. only showing the con-
nected components but no ports up to drawing the complete model
including all ports with their respective names and types. Since the
layouts are computed automatically unlike in Simulink where only
names or lines are hidden, the abstract graphical visualization is
much smaller than the complete one and thus well suited to obtain
an overview of large C&C models.

E○ The car simulator with its 3d visualization and physics engine
executes car controllers to test EmbeddedMontiArc models and their
environment interactions. This feature is used for acceptance test-
ing allowing users to judge the driving behavior of cars easily. Also
the car simulator is a good motivation push for students to create
EmbeddedMontiArc models as they can experience their model in
the 3d visualization of the simulator.

F○ The image classifier simulator works similarly to the image
clusterer. It allows to drag (or to select your own) pictures into
the analyze zone (white box) and then analyzes the content in the
images and returns a predicted class (such as dog, cat, truck, and so
on). The image classifier is a learned CNN (Convolutional Neural
Network) C&C component where the test images of the simulator
are of course different from the training data.

All three simulators C○, E○, and F○ have in common that a C++
compiler toolchain translates the textual EmbeddedMontiArc mod-
els to native code (dynamically linked libraries or standalone ex-
ecutables) before the respective simulator can execute the model.
A feature of the toolchain is that it includes the highly optimized
Armadillo mathematics framework guaranteeing an efficient model
execution of computationally intensive software. This enables the
simulation of different cars at the same time and on the same lap-
top, the execution of expensive algebraic algorithms in our image
clustering example, as well as the classification of images at nearly
real-time on standard customer hardware. Fast simulation results
(car visualization works at 30 fps or immediate image classifying)
is one key to keep students motivated to test their models and thus
improve them continually.

3 EMBEDDEDMONTIARC MODEL EXAMPLES
Figure 2 presents code snippets used in three of our executable
model examples: Autopilot E○: model snippet 1○ belongs to the
Autopilot model. This component checks whether the car is still
in the track. This component has two input ports (ll. 2-3) for the car
position relatively to the track accepting values between -200meters
and +200 meters, and one Boolean output port (l. 4) returning true
when the car is outside the track boundaries. The implementation

EmbeddedMontiArc: Textual Modeling Alternative to Simulink
(Tool Demonstration) Conference’17, July 2017, Washington, DC, USA

component SpectralClusterer {

ports in Q(-oo:oo)^{50,50} img[3],

out Q(-oo:oo)^{2500, 1} cluster;

instance Similarity <50> similarity;

instance NormalizedLaplacian <2500> normalizedLaplacian;

instance EigenSolver <2500, 50> eigenSolver;

instance KMeansClustering <2500, 50, 1> kMeansClustering;

connect img[:] -> similarity.img[:];

connect similarity.degree -> normalizedLaplacian.degree;

connect similarity.similarity -> normalizedLaplacian.similarity;

connect normalizedLaplacian.nLaplacian -> eigenSolver.matrix;

connect eigenSolver.eigenvectors -> kMeansClustering.vectors;

connect kMeansClustering.cluster -> cluster; }

component CheckTrackBoundaries {

ports in Q(-200m:200m) x,

in Q(-200m:200m) y,

out B outsideTrack;

implementation Math{

B boundariesX = (x > 200m) || (x < -200m);

B boundariesY = (y > 120m) || (y < -50m);

outsideTrack = boundariesX || boundariesY; }}

stream StatusControllerTest for StatusController {

x: 0m tick 200m tick -200m tick 250m;

y: 0m tick 120m tick -50m tick 50m;

status: false tick false tick false tick true; }

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

SpectralClusterer

Similarity

cluster

C&C

KmeansClustering

NormalizedLaplacianEigenSolver

W

D

����
...

matrix

dimensions

Q(0:255)^{50,50}[3]

value

range

array size

k-eigenvectors cluster id of each pixel

similarity

degree

img
img

Q^{2500,2500}

W

D

Q^{2500,2500}

degree

similarity
nLaplacian

Q^{2500,2500}
matrix

eigenvectors

Q^{2500,4}
vectors cluster

Q(-1:4)^{2500,1}

U

①①①①

②②②②

component NormalizedLaplacian {

ports in diag Q^{2500,2500} degree,

in Q^{2500,2500} W,

out Q^{2500,2500} nLaplacian;

implementation Math{

nLaplacian = degree^-0.5*W*

degree^-0.5; }}

④④④④

component Network {

ports in Z(0:255)^{3, 32, 32} data,

out Q(0:1)^{10} softmax;

implementation CNN {

data -> conv -> conv ->

FullyConnected -> Relu -> Dropout ->

FullyConnected -> Softmax -> softmax

}}

③③③③

⑤⑤⑤⑤

⑥⑥⑥⑥

Figure 2: Concrete syntax examples of EmbeddedMontiArc language family: 1○ simple component checking if car is inside the
track; 2○ unit test of 1○; 3○ component using CNN; 4○ component executing matrix operations; 5○ complex component being
decomposed into subcomponents. Picture at the right bottom is visual representation of 5○.

part of the atomic component (ll. 5-8) contains the code for what
input values the output value will become true or false.

Testing: 2○ is a blackbox unit test based on the stream seman-
tics. The concept is very similar to JUnit. A stream test operates
on exactly one component specified after the for key word (l. 9).
Of course, multiple stream tests can exist for each component. The
first lines (ll. 10-11) provide the values for the input ports of the
components while the last lines (l. 12) specify the expected values
of the output port. The stream language also supports underspecifi-
cation, e.g. by defining ranges for output values. If and only if the
component is executed and the calculated output values satisfy the
expected values of the stream, then the test will be considered as
pass.

Deep LearningClassifier F○: In 3○ a component using an alter-
native implemention language, namely CNN is presented. It allows
a compact description of so called convolutional neural networks
which become more and more ubiquitous in intelligent software
systems. The CNNmodel describes the layers of the network as well
as their interconnections. A generator then generates the target
network architecture, trains the network on a given labeled data
set and encapsulates the software in a standard EmbeddedMontiArc

component. Using a simulator similar to the clusterer the user can
check the classification with her own images.

SpectralCluster C○: the model snippets 4○ and 5○ belong to the
spectral clusterer model, which can be used to detect objects in a pic-
ture. Since EmbeddedMontiArc is a textual modeling language the de-
veloper writes the model shown in 5○, which is semantically equiv-
alent to the C&C model displayed in 6○. The SpectralCluster
component is decomposed into four subcomponents (ll. 35-38). The
information between these four subcomponents is exchanged via
unidirectional connectors (ll. 40-45). Model 4○ shows the implemen-
tation of the subcomponent normalizedLaplacian (l. 36) having
the component type NormalizedLaplacian. Lines 26 and 27 show
that the implementation part of EmbeddedMontiArc models support
normal matrix-vector expressions similar to MATLAB code.

REFERENCES
[1] Katrin Hölldobler and Bernhard Rumpe. 2017. MontiCore 5 Language Workbench

Edition 2017. Shaker Verlag.
[2] Evgeny Kusmenko, Alexander Roth, Bernhard Rumpe, and Michael von Wenck-

stern. 2017. Modeling Architectures of Cyber-Physical Systems. In ECMFA.
[3] Evgeny Kusmenko, Bernhard Rumpe, Sascha Schneiders, and Michael von Wenck-

stern. 2018. Highly-Optimizing and Multi-Target Compiler for Embedded System
Models: C++ Compiler Toolchain for the Component and Connector Language
EmbeddedMontiArc. In MODELS.

	Abstract
	1 Introduction
	2 Features
	3 EmbeddedMontiArc Model Examples
	References

