
Dynamic Symbolic Execution for Semantic Difference
Analysis of Component and Connector Architectures
Johanna Grahl1,†, Bernhard Rumpe2,†, Max Stachon2,† and Sebastian Stüber2,†

1RWTH Aachen University, Germany
2Software Engineering, RWTH Aachen University, Germany

Abstract
In the context of model-driven development, ensuring the correctness and consistency of evolving models
is paramount. This paper investigates the application of Dynamic Symbolic Execution (DSE) for semantic
difference analysis of component-and-connector architectures, specifically utilizing MontiArc models. We have
enhanced the existing MontiArc-to-Java generator to gather both symbolic and concrete execution data at runtime,
encompassing transition conditions, visited states, and internal variables of automata. This data facilitates the
identification of significant execution traces that provide critical insights into system behavior. We evaluate
various execution strategies based on the criteria of runtime efficiency, minimality, and completeness, establishing
a framework for assessing the applicability of DSE in semantic difference analysis. Our findings indicate that
while DSE shows promise for analyzing component and connector architectures, scalability remains a primary
limitation, suggesting further research is needed to enhance its practical utility in larger systems.

Keywords
Dynamic Symbolic Execution, Model Analysis, Architecture Models, Component and Connector Architectures,
MontiArc, Semantic Difference, Symbolic Code

1. Introduction

In model-driven software and systems engineering, models serve as the primary artifacts for devel-
opment, evolving throughout their lifecycle due to modifications, refinements, and refactorings. To
facilitate a less error-prone development process and ensure the preservation of critical model properties,
automated model analyses, such as semantic differencing, can be employed [1].

Semantic differencing is a comparative model analysis technique that evaluates two models written in
the same language by examining their legal instances as defined by a language-specific formal semantics
[2]. A semantic difference is identified when a "“diff-witness” exists—an instance that is valid in one
model but not in the other. Conversely, if no such witness is found, the first model can be considered
a semantic refinement of the second. Various semantic difference operators have been developed for
different modeling constructs, including activity diagrams [3, 4], class diagrams [5, 6], feature models
[7], variants of statecharts [8, 9, 10], and sequence diagrams [11].

Despite the extensive exploration of semantic differencing in static structural models, such as class
diagrams, and isolated behavioral models, like statecharts, component-and-connector architectures
present unique challenges due to their dynamic nature and compositional complexity. Unlike static
object structures that do not define dynamic behavior, component-and-connector models necessitate
the consideration of both individual component behaviors and their interactions within compositions.
This paper addresses these challenges by focusing on semantic differencing specifically for MontiArc
models [12, 13, 14], a topic that has yet to be comprehensively covered in existing literature.

Understanding changes in architectural models is essential for early bug detection and ensuring correct
refinements from underspecified designs. Semantic differencing is particularly effective in addressing

arxiv.com
†
These authors contributed equally.
$ johanna.grahl@rwth-aachen.de (J. Grahl); rumpe@se.rwth-aachen.de (B. Rumpe); stachon@se-rwth.de (M. Stachon);
stueber@se-rwth.de (S. Stüber)
� https://se-rwth.de (B. Rumpe)
� 0000-0002-2147-1966 (B. Rumpe); 0000-0002-6328-3816 (M. Stachon); 0000-0002-6636-9375 (S. Stüber)

© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

[GRSS25] J. Grahl, B. Rumpe, M. Stachon, S. Stüber:
Dynamic Symbolic Execution for Semantic Difference Analysis of Component and Connector Architectures.
DOI 10.48550/arXiv.2508.00749, arXiv, Aug. 2025.

mailto:johanna.grahl@rwth-aachen.de
mailto:rumpe@se.rwth-aachen.de
mailto:stachon@se-rwth.de
mailto:stueber@se-rwth.de
https://se-rwth.de
https://orcid.org/0000-0002-2147-1966
https://orcid.org/0000-0002-6328-3816
https://orcid.org/0000-0002-6636-9375
https://creativecommons.org/licenses/by/4.0/deed.en

underspecification and refinement during the early stages of development, when architectural designs
are abstract and not fully specified. As the design evolves, this initial underspecification is progressively
refined through decomposition, architectural refactorings, and restrictions on component behavior. Our
approach not only identifies semantic differences but also generates test cases that assist in subsequent
development phases. These test cases provide valuable insights into specified behaviors and highlight
areas that may require further specification or testing, thereby supporting a more robust model evolution
process.

To analyze behavioral differences in component and connector architectures, we aim to leverage
Dynamic Symbolic Execution (DSE) [15], a variant of symbolic execution [16], to develop a semantic
differencing operator specifically for MontiArc models. Building upon the fundamental semantic-
difference framework established in previous publications, we apply DSE as a novel technique for
identifying semantic differences in these models.

MontiArc [12, 13, 14] is an architecture modeling framework developed with the MontiCore1 language
workbench [17, 18] that offers an architecture description language for designing both software and
cyber-physical systems [19]. It enables modular hierarchical modeling [20] of architectural components
and their message-oriented, asynchronous communication. The input-output behavior of atomic
components can then be specified by a variant of Statecharts (SCs) [21, 22] based on the FOCUS
formalism [23].

To facilitate simulations, MontiArc includes a code generator that produces executable Java code
[13, 12]. We have extended this generator to create symbolic code suitable for DSE. This symbolic code
can be invoked using a newly developed tool designed to initiate the analysis. A default execution
strategy for DSE is provided, with support for additional user-defined strategies. These strategies utilize
execution data from the MontiArc model and employ Z3 [24] as a satisfiability modulo theories (SMT)
solver.

The information collected during execution includes both symbolic and concrete values, which serve
as inputs for execution strategies and contribute to model validation efforts. An exemplary use case for
this model validation is the calculation of semantic differences between MontiArc models. Specifically,
a semantic difference is identified by a “diff-witness”, which manifests as an input-output trace from
the first model that cannot be replicated in the second model.

Our implementation supports primitive data types, strings, and enumeration types for ports and
internal variables. Furthermore, it accommodates model composition, non-deterministic transition
selection, and model parameters. Notably, we currently focus on component behavior specifications
defined through SCs and time-synchronous communication between components.

Contributions In this paper, we present the following contributions:

• Development and implementation of DSE for MontiArc.
• Implementation of multiple DSE controllers, each employing distinct execution strategies.
• Realization of a DSE-based semantic differencing operator specifically for MontiArc models.
• Evaluation of the implemented controllers based on the criteria of runtime, minimality, and

completeness, as well as their applicability to semantic differencing.
• Discussion on the utility and limitations of DSE in the context of component-and-connector

architectures.

Our evaluation emphasizes completeness and runtime efficiency. However, it is important to note that
enforcing completeness can lead to exponential increases in runtime with respect to input complexity.
To address this limitation, we discuss potential mitigation strategies that can help balance these factors.

The remainder of this paper is structured as follows: In Section 2, we outline the concept of DSE.
This is followed by an exploration of related work in the field of DSE in Section 3. Section 4 presents an
example architecture to illustrate and evaluate our approach in the subsequent sections. The concept

1https://monticore.github.io/monticore/

https://monticore.github.io/monticore/

and design decisions behind our tool’s development are detailed in Section 5. In Section 6, we evaluate
our DSE approach and the implemented execution strategies, followed by a discussion of the results
and their implications in Section 7. Finally, we conclude in Section 8 with a summary of our findings
and an outlook on future work.

2. Dynamic Symbolic Execution

Dynamic Symbolic Execution (DSE) is a variant of symbolic execution that generates concrete inputs
alongside symbolic inputs [15]. In symbolic execution, each input is represented as a symbolic constant.
Each execution path of a program is associated with a boolean expression known as the path condition.
These path conditions are initialized with the value true and define the properties that must be satisfied
by a concrete value in order to execute that specific path. During the process of symbolic execution, an
execution tree is constructed, representing all paths identified by the chosen execution strategy [16].
Concrete values can be derived as inputs by solving individual path constraints using a Satisfiability
Modulo Theories (SMT) solver.

Consider the program illustrated in listing 1, which takes an integer input x. In symbolic execution,
an execution tree is constructed, and a symbolic constant (e.g., 𝜆) is applied to x. The path constraint is
initialized with true, as depicted in fig. 1. While executing the program, assignments are also executed
symbolically; for example, the assignment 𝑧 = 2 * 𝑥 (cf. line 2) would be represented as 𝑧 = 𝜆 * 2.
At branching points, such as an if statement, the corresponding constraints are collected. The if
condition in line 3 results in two possible paths, each with the following path constraints: 𝑥 < 10x or
𝑥 ≥ 10. If the condition 𝑥 < 10 is not satisfied, the execution of that particular path in the execution
tree will terminate. Conversely, the alternative path is analyzed to completion. Each leaf node of
the execution tree corresponds to a path constraint, representing the specific condition that must be
satisfied for that execution path to be taken.

1 public int example(int x){
2 int z = 2*x;
3 if(z < 10){
4 if(z > 10) { z = z + 1; } // unreachable
5 z = z * 2;
6 }
7 return z;
8 }

Listing 1: Example of a program with an unsatisfiable path

Figure 1: Symbolic execution tree. At the top is the initial state, arrows are assignments or branches.

Figure 2: Representation of a specific path executed through Dynamic Symbolic Execution with input 𝑥 = 6

Symbolic execution has inherent limitations, particularly in cases where certain functions cannot be
effectively executed symbolically, such as cryptographic functions [25]. Dynamic Symbolic Execution
(DSE), also known as concolic execution, addresses these limitations by combining both concrete and
symbolic execution of a program, executing it with both concrete and symbolic values simultaneously
[26, 27, 28, 29].

Referring back to our example program, we can arbitrarily choose a concrete value for the input,
such as 𝑥 = 6. This choice leads to a specific execution path, as illustrated in fig. 2 on the right side.
Given that the concrete value for the variable 𝑧 is calculated to be 12, the condition z < 10 is not
satisfied, resulting in the termination of this particular execution path.

When comparing the symbolic path information gathered from both symbolic execution and DSE,
we find that there are no significant differences in the information collected. To explore new paths
using DSE, the current path constraint is negated, and this modified constraint is then passed to an SMT
solver. In our example, the corresponding formula would be 𝑥 * 2 < 10. If this formula is satisfiable,
the solver will produce a model containing concrete values that satisfy the condition. In this case, the
solver might yield 𝑥 = 4.

Further details regarding the design decisions related to symbolic execution and DSE for MontiArc
are elaborated in section 5.1.

3. Related Work

Symbolic execution is a powerful technique used in program analysis that systematically explores
program paths by treating inputs as symbolic variables. However, it is computationally intensive,
and while advancements in modern computer hardware have facilitated the development of efficient
theorem provers and scalable analysis tools, the challenges inherent in symbolic execution have
prompted renewed interest in this area [25].

Despite its strengths, symbolic execution faces two primary limitations: path explosion and the com-
plexity of constraint solving. These challenges are also prevalent in Dynamic Symbolic Execution (DSE)
and significantly hinder scalability. For instance, constructs such as loops can lead to an exponential
increase in the number of feasible execution paths, making it infeasible to systematically analyze all
possible paths in large systems or programs. Additionally, the second limitation pertains to constraint
solving, which is an NP-hard problem. In larger systems, path constraints can involve intricate combina-
tions of conditions, further complicating the analysis. Consequently, achieving complete path coverage
remains elusive in practice [28, 30, 29, 31].

To mitigate these limitations, several approaches have been proposed and integrated into various

tools. Notable examples include Microsoft’s SAGE, CUTE, DART, and SMART, each designed to enhance
the efficiency and effectiveness of symbolic execution in addressing the challenges of path explosion
and constraint complexity.

CUTE [27], a concurrent unit testing engine, can efficiently explore paths in C code, achieving high
branch coverage and bug detection. Due to the limitations of DSE with respect to path explosion,
an execution strategy has been used to counteract this. CUTE uses a bounded depth-first search to
counteract an infinite exhaustive search of the entire computation tree. Three optimizations have
been implemented to counteract the limitations of constraint solving: first, the fast unsatisfiability
check, which checks whether the last constraint of the path condition is syntactically the negation of
any previous constraints, second, common sub-constraints elimination, in which the solver identifies
and eliminates common arithmetic sub-constraints, and third, incremental solving, where the solver
identifies dependencies between sub-constraints and exploits them to solve constraints faster and keep
solutions similar. These optimizations reduce the number of sub-constraints and thus optimize the
runtime.

jCUTE [32] was one of the pioneering symbolic execution tools designed specifically for Java programs.
However, as jCUTE is no longer actively maintained, JDart has emerged as a robust replacement [33].
JDart employs DSE to analyze Java programs, primarily focusing on assertion checking. Through this
approach, JDart can either identify assertion violations, exhaustively explore all program paths, or
reach resource limits during analysis.

One of the key advantages of JDart is its capability to handle complex software systems, as exemplified
by its development to analyze intricate NASA software. JDart’s architecture is modular, comprising
two primary components: the executer and the explorer. The executer is responsible for executing the
program and collecting symbolic constraints, leveraging the Java PathFinder framework [34, 35]. In
contrast, the explorer determines the search and execution strategy employed during analysis.

JDart was designed with two main objectives in mind. The first is to create a robust framework capable
of managing industrial software challenges, such as handling crashes and addressing the constraints of
constraint solving. The second objective is to establish a modular and extensible platform, allowing for
the interchangeability of components, the use of various constraint solvers, and the implementation of
multiple search strategies or termination conditions [36].

SAGE [30], developed by Microsoft, is an automated white-box fuzz testing tool widely utilized
for detecting bugs and vulnerabilities in applications, such as those running on Windows. SAGE
implements a technique known as Generational Search, which minimizes redundancy while maximizing
the generation of new test cases. This systematic approach allows for effective analysis of the state
space, enabling SAGE to manage large applications with substantial input sizes. Additionally, SAGE
employs heuristics to enhance code coverage, further improving its effectiveness in identifying potential
issues.

Another tool developed by Godefroid is DART [28], which focuses on automatic software testing
using DSE. Building on DART’s capabilities, SMART [25] introduces the concept of compositional
analysis, wherein composite functions are decomposed into atomic functions for individual analysis.
The results of these analyses are then synthesized through the use of pre- and post-conditions.

While many of the tools discussed earlier primarily focus on program analysis, our research is
concerned with a different form of semantic model analysis. Notably, these tools typically employ
interpretation rather than generating symbolic code. In our case, we opted to extend the existing code
generator for MontiArc rather than develop a new interpreter from the ground up. Similar to JDart,
our approach incorporates a modular architecture, separating the execution and collection of symbolic
constraints from the implementation of search and execution strategies. Since our implementation is in
its initial version, we have yet to incorporate optimizations to mitigate the challenges of path explosion
and constraint solving; these enhancements are planned for future work.

A key aspect that differentiates our research from previous work on DSE is our intended goal: to
ascertain the semantic differences between executable component-and-connector architecture models.
As noted in section 1, semantic differencing operators have been developed for various modeling
languages [37, 5, 7, 10, 11], and component-and-connector structures, such as statechart systems (SCS)

or automata, are no exception [8, 9]. However, these approaches typically rely on translations to Büchi
automata, which necessitate a finite state space and a defined input-output alphabet. Additionally, to
compare entire architectures, syntactic composition of the automata is required, posing challenges
when feedback loops are present. Our DSE-based approach, in contrast, circumvents these limitations.

4. Running Example

Figure 3: Architecture description of the StudentVote, with the representation of the internal state

MontiArc [12, 13, 14] is an architectural description language specifically designed for component-
and-connector architectures. In this framework, components can either be atomic or consist of sub-
architectures, allowing for a hierarchical organization of system elements. Communication between
these components is achieved through a message-oriented approach, utilizing channels that connect
output and input ports. The input-output behavior of atomic components is described by automata that
are a variant of SCs [21, 22] based on the FOCUS formalism [23].

These automata facilitate underspecification due to partiality—where certain inputs may have missing
transitions—and non-determinism, characterized by the existence of multiple transitions for the same
input at a given state. In the following sections, we introduce a MontiArc model that will serve as the
running example throughout this paper.

In fig. 3, we illustrate the architecture of the MontiArc model named StudentVote. The primary
objective of this system is to survey university students and identify the most popular course from
two available options: “Model-Based Systems Engineering” (MBSE) and “Software Architecture” (SA).
The StudentVote model is a composite structure that comprises four sub-components. The first
sub-component, Distinction, calculates a weight for each student’s vote based on their matriculation
number. Older students, represented by lower matriculation numbers, are assumed to possess a more
informed opinion; thus, their votes are assigned a weight of 1.5. Conversely, younger students, indicated

by higher matriculation numbers, receive a weight of 1.01.0. The parameter defining this distinction
within the Distinction component can induce non-deterministic behavior if set above 350000.
Specifically, if a student’s matriculation number falls between 350000 and the specified parameter, the
weight of their vote can randomly be either of the two factors: 1.0 or 1.5.

The Evaluation sub-component is the second element in the StudentVote model. It receives
the factor corresponding to the student’s vote and forwards this value to the appropriate counter
module. To cast a vote, the input must be either "mbse" or "sa"; any other input will result in the
vote being disregarded. The two counters are interconnected within a feedback loop that includes
the Evaluation component. To mitigate issues arising from the sequential processing of models, a
delayed connection is implemented, allowing for effective feedback within the composite model. Each
delayed port is assigned an initial value, and the resulting input value is stored for use in the subsequent
processing step. Consequently, only multiple consecutive inputs can yield differing outputs. Notably,
the first output generated by the StudentVote model is consistently 0.00.0, irrespective of the input
provided.

In the following a possible execution, with input length 3 will be discussed. Initialization is done with
parameter value 400000, creating a non-deterministic range between matriculation numbers 350000
and 400000. The first input is (355555, "mbse"), belonging to a student with matriculation number
355555 and vote for module MBSE. The delayed ports in the counter components, lead to output
(0.0, 0.0). The counter for module MBSE is displayed first, followed by the counter for module SA.
However, the internal state of the model shows that a factor of 1.5 was assigned. Hence, CounterMBSE
is incremented accordingly. The next student might generate the following input (500000, "sa").
The corresponding output (1.5, 0.0) represents the state after the first input. The internal state,
however, differs, as the CounterMBSE is still 1.5 and CounterSA was incremented by 1.0 After the
third input message, the output would be the state of the second input. A third input consisting of
(399999, "sa") results in another non-deterministic case. This time, the factor 1.0 was assigned,
resulting in an increase of the CounterSA by 1.0. The output in step three (1.5, 1.0) shows the
state after the second input.

The running example demonstrates how branches such as𝑚𝑡𝑟𝑁𝑢𝑚 < 400000 and non-deterministic
behavior are handled. Additionally, the integer-values show that the approach works on large state-
space.

5. Design and Concept

This section discusses the main design decisions and provides a high-level overview of the developed
functionalities and the implemented controller. Finally, we apply our Dynamic Symbolic Execution
(DSE) approach to compute the semantic differences between two MontiArc models.

The implementation of the tool is publicly available as part of the MontiArc project on GitHub2

5.1. Major Design Decisions

This subsection outlines the key design decisions made during the development of the tool.

Dynamic Symbolic Execution vs. Symbolic Execution As discussed in section 1, DSE is a
specialized variant of symbolic execution. We opted for DSE over traditional symbolic execution for
two primary reasons.

First, when using symbolic execution, a program’s analysis generates a tree structure containing all
possible path combinations. This may lead to paths that cannot be satisfied by any concrete values. For
instance, consider a function with nested if statements that have mutually exclusive conditions. Take,
for example, the conditions z < 10 and z > 10. In this case, one of the possible paths would require
satisfying both conditions simultaneously, which is inherently impossible.

2https://github.com/MontiCore/montiarc

https://github.com/MontiCore/montiarc

In contrast, DSE avoids constructing such infeasible paths, as it inherently recognizes that no concrete
values can satisfy the path conditions.

The second reason for choosing DSE is that not all functions can be effectively analyzed using
traditional symbolic execution. For instance, cryptographic functions, such as hash functions, cannot
be evaluated through symbolic execution without undermining their security properties. In the case of
DSE, these functions can be analyzed by utilizing concrete values for variables. By substituting concrete
values, we can evaluate the function and consequently derive new input values for further analysis [25].
In summary, DSE was selected because it enables the analysis of functions that are not amenable to
traditional symbolic execution and avoids exploring paths with unsatisfiable conditions.

Z3 as an SMT Solver Z3 is an award-winning SMT solver developed by Microsoft. It is primarily used
for predicate abstraction, advanced static checking, and test case generation. Interaction with Z3 can
occur through the SMT-LIB format as well as various APIs [24]. Our implementation utilizes the Java
API for communication with the solver. Z3 supports multiple theories, including equality, arithmetic
operations, and uninterpreted functions. Additionally, it generates a model containing concrete values
for all defined constants within the formula. Z3 also includes numerous optimizations and tactics to
enhance its performance [38].

Supported MontiArc Features In our approach, we currently limit the behavior descriptions of
MontiArc models to automata that incorporate the following features: Ports and internal variables of
the automata can be of primitive types, strings, or enumeration types. Additionally, the composition of
models, cyclic connector loops, and the definition of model parameters are supported. Notably, our
developed extension of the generator also facilitates non-deterministic transition selection, which was
previously unsupported.

Generation instead of Interpretation Unlike other DSE engines that perform Dynamic Symbolic
Execution by executing the program under test and collecting symbolic information without explicit
code generation [30, 33, 27], MontiArc employs a code generator that produces executable Java code
[13]. In this paper, we evaluate a DSE approach based on this existing code generator and extend it to
generate symbolic code. We also discuss alternative methods, such as using an interpreter, in section 7.

5.2. Overview of the Tool’s Functionalities

The input of the generator is defined as a MontiArc model. This model may only contain the supported
MontiArc features, listed in section 5.1. MontiArc models are converted into symbolic Java code using
the aforementioned extended generator. During the execution of the generated symbolic code, a variety
of information is collected, including transition condition, taken transitions and state information. State
information of an automaton can be considered with or without the symbolic and concrete values of
internal variables. Collected information is transmitted to a controller, which defines the overall output
of the tool and interesting inputs. Interesting inputs are input-output pairs and their corresponding
branch conditions. Branch conditions represent the specific path taken, as they are the transition
conditions satisfied by the corresponding input. A high level overview of the tool is displayed in fig. 4.
In the following the main functionalities and features are presented.

Symbolic Java Code Collecting and analyzing information requires symbolic Java code. This code
is generated by the extended code generator, with a significant enhancement being the ability to
process both symbolic and concrete values of variables simultaneously. To achieve this, ports and
internal variables are represented using a new data type called AnnotatedValue (see listing 2). The
AnnotatedValue class features two attributes that represent the variable’s symbolic and concrete
values.

To extract the information encoded within AnnotatedValue, a second modification was made to the
generator. In previous implementations, transitions were converted into if-queries, where the condition

Figure 4: High level overview of the developed tool

1 public class AnnotatedValue<SMTExpr extends Expr<? extends Sort>, T>{
2 private final SMTExpr expr; // From Z3 SMT Solver
3 private final T value; // Original Message
4 //...
5 }

Listing 2: Java class that stores symbolic expression in addition to value

1 BoolExpr expr = ctx.mkGT(matr.getExpr(),
2 ctx.mkInt(35000);
3

4 if(TestController.getIf(expr,
5 mtrNr.getValue() > 350000, "branchId")
6){...}
7 //...
8 }

Listing 3: Exampel of a generated if-query for a transition

represented the transition constraint. To systematically capture transition information, transitions are
now generated as follows: for each transition, the function TestController.getIf() is invoked.
This function takes the concrete values of all required variables, a boolean expression representing
the symbolic condition, and the transition name as inputs. The controller then determines whether
the transition can be executed and stores all relevant transition information. An example of such a
generated if statement for a transition related to the matriculation number value is shown in listing 3.

Additionally, information about the current state of the model is collected at the end of each execution
and passed to the controller for further processing.

In fig. 5, the model StudentVote from our motivating example is presented, with its internal
state depicted through both symbolic and concrete values. A student with a matriculation number of
500000 votes for the module SA. Each internal variable and port is assigned a symbolic and concrete
representation; for example, the input is represented as (inputMtr_1, 500000) and (inputMtr_1,
"sa").

For ports, only the current values are visible, as previous values are not retained. In contrast, internal
variables, such as counters, may be influenced by prior inputs. The symbolic values of internal variables
indicate how the current values were derived.

The expression (0.0 + 0.0 + 1.0, 1.0) represents the current symbolic state of the counter for
SA. The initial and first input was 0.00.0, and the current computation has incremented the counter by
one.

Figure 5: Symbolic and concrete representation of StudentVote internal state after the second input
message

Information Gathered through Analysis During the execution of a model, various types of
information are collected. This includes all possible transitions starting from the current state of the
automaton, as well as all transitions that have been taken. For each transition, the collected information
encompasses branch conditions and the unique name of the transition. The branch conditions specify
the particular path taken through the model and must be satisfied by the input.

After processing each input message, information about the state of the automaton is gathered. This
includes the current state’s name, along with the symbolic and concrete values of internal variables. This
data is collected for each sub-component and is subsequently combined into the state of the composite
model.

All information regarding states and transitions is transmitted to the controller, where it can be
utilized to implement termination conditions.

Functionality of a Controller A controller is responsible for implementing the execution strategy
and the logic required for defining new inputs. To facilitate easy integration, each controller must
adhere to a specific interface, allowing users the flexibility to implement the details according to their
needs. The following paragraphs will elaborate on the general concept of a controller and its execution
strategies, such as path coverage.

In fig. 6, an example automaton is presented. During model execution, each branch condition is
collected and passed to the controller. Consider an input length of two; the solid blue arrows represents
the first path taken. The controller is aware of the following information: [A, -B, C, -D].

To achieve path coverage, an iterative negation of path constraints is employed. The first constraint
is negated and provided to the solver, resulting in a new model that ensures a different path is taken. In
the second recursion, the path represented by dashed orange arrows is taken, and [-A, B] is collected.

AC AD

BA

SC

A B

C D

Figure 6: Example of an automaton to illustrate a controller where conditions A and D are satisfied by the input.

Next, B is negated. Since the combination [-A, -B] is unsatisfiable, the controller returns to the first
recursion. There, the next constraint to be negated is C, as A and B were previously negated.

It is also possible to implement conditions within a controller to further control the paths taken; for
example, ensuring that each transition is visited only once. In this case, the first and second recursions
would remain the same as before. However, upon returning to the first recursion and checking [A,
-B, -C], the behavior would differ. Previously, a new path would be found and taken, but this path
includes the transition with condition A, which has already been visited. As a result, the path execution
is terminated, and the next possible path is explored.

In addition to branch conditions, the controller collects information regarding the state of the
automaton. This information can be used to evaluate the controller or to validate the model, such as for
path redundancy and non-determinism. These aspects are presented below.

We have developed multiple controllers, categorizing them into the following three groups:

Category 1: Path Coverage Controllers in the Path Coverage category aim to discover all possible
paths within a model. Variations of these controllers implement oracles to handle non-deterministic
models or utilize search algorithms.

Category 2: Termination Condition This category includes all controllers that utilize specified
termination conditions. These conditions can be based on visited transitions or states, with or without
involving internal variables. An example of such a termination condition can be found in section 5.2.

Category 3: Random Generation Controllers that do not utilize the symbolic information gathered
by the tool fall under the category of Random Generation. This includes controllers that execute only
once based on the given initial input or those that randomly generate input values that conform to the
specified input types.

Path Redundancy Path redundancy arises when two distinct paths in a model exhibit identical
simplified branching conditions. In the context of white box testing—where the internal workings and
input-output behavior of individual components are analyzed—both paths are significant. Conversely,
when the model is approached as a black box, both paths represent the same scenario; thus, only one
occurrence is necessary to reflect the behavior of the system.

To identify path redundancy within a model, we examine the simplified representations of the
branching conditions and outputs. If these simplified expressions are equivalent, we can conclude that
a pair of redundant paths has been identified. For instance, consider the two paths: the first path has a

branch condition of x + 1 < 5 and an output of x + 1 - 2. The second path consists of the branch
condition x + 2 < 6 and an output of x + 2 - 3. Upon simplifying these expressions for both paths,
we find that they share the same branch condition of x < 4 and an output of x - 1. This finding
illustrates how path redundancy can simplify the analysis of models, ensuring efficiency in testing and
validation processes.

Non-Determinism of the Model The extended generator supports models that include non-
deterministic automata, which were previously unsupported by the code generator. In this context,
non-determinism means that for a given input sequence, multiple paths and corresponding output
sequences are permissible within the model.

Using the collected information, it is possible to determine whether a model is deterministic. Each
path taken, represented by a set of branch conditions, is decomposed into symbolic expressions while
preserving the order. For example, consider the following two paths:

The first path is represented by the condition x > 5 ∧ y + 2 < 6, where x and y are symbolic
constants representing the input. The second path is represented by x > 5 ∧ y + 2 < 8.

Decomposing both paths yields the following representations:

[x > 5, y + 2 < 6] and [x > 5, y + 2 < 8].

To assess the non-determinism of two paths, we compare the symbolic expressions at each corre-
sponding position in their respective expression lists. Initially, we check each pair of expressions for
equality. If they are found to be unequal, we then evaluate their satisfiability when combined through
conjunction. If all pairs either contain equal expressions or yield satisfiable results when combined, we
conclude that the two paths represent non-deterministic alternatives for some input values. Conversely,
if any pair is unsatisfiable, it indicates that the paths are completely disjoint concerning the input.

In our specific example, the first pair (x > 5, x > 5) consists of equal expressions, while the
second pair (y + 2 < 6, y + 2 < 8) comprises expressions that are satisfiable in conjunction.
Consequently, these paths can be considered non-deterministic alternatives for certain values of x and
y.

By employing this pairwise comparison approach across all paths, we can ascertain the number of
non-deterministic paths. However, this method is computationally demanding and does not scale well
with larger models, making it impractical for extensive applications. Furthermore, using an oracle to
identify non-deterministic occurrences is not feasible, as such information is not mandatory. To address
this limitation in larger models, we focus solely on detecting the presence of non-deterministic paths.
Although this approach is less computationally intensive, it still necessitates multiple solver calls and
comparisons, which can result in prolonged runtimes. Strategies for optimizing solver call usage to
mitigate this issue are discussed in section 7.

5.3. Computation of Semantic Differences Between MontiArc Models

With the implementation of DSE in MontiArc, we can now compute semantic differences between
two MontiArc models. To illustrate this process, we first introduce a modified version of the existing
model StudentVote, referred to as StudentVoteAlt. Subsequently, we will explain how to compute
semantic differences in the form of diff-witnesses.

The model StudentVoteAlt, as shown in fig. 7, retains the basic structure of StudentVote but
introduces modifications to the Evaluation and Counter components. Notably, Evaluation now
allows simultaneous voting for both modules through the message mbse&sa, resulting in each counter
being incremented by 2.0. This addition creates a new execution path that is absent in the original
StudentVote model.

Furthermore, each counter component is designed to reset to 0 once its internal value reaches 1.0.
After this reset, the counter continues to count arbitrarily. Consequently, semantic differences are only
observable when the input length exceeds 2. The relationship between input and output—specifically,
the diff-witnesses between these two models—is illustrated in fig. 7.

In this comparison, individual inputs are provided to each model for execution. For the first input,
both models respond identically. However, the difference arises with the second input. When voting for
mbse&sa, the StudentVoteAlt model determines the increment factor for its counter to be 2. At this
point, the value of CounterSA remains unchanged, as it is less than 1.0. In contrast, CounterMBSE
has a value of 1.0, triggering a reset to 0. This discrepancy will only manifest after the subsequent
input, thus necessitating an input length of three to observe the difference. This example highlights a
path that cannot be replicated in the original StudentVote model.

Figure 7: Example of semantic difference between semDiffSmallModel and StudentVote, input
length 3

When assessing the semantic difference between two models, it is crucial to consider certain specific
scenarios. One such scenario arises when a component in the second model contains an automaton that
is deemed partial concerning the possible inputs of the first model. In this case, the partial automaton
will respond to any unknown input by ignoring it—meaning it neither produces a new output nor
transitions to a different state [39]. Consequently, the automaton retains its previous state and output.
However, if the output ports are delayed, Null values may be generated. It is essential to address these
cases within the automaton’s definition of the component behavior.

The semantic difference is computed by comparing the outputs of both models while treating each
model as a black box, thus eliminating the need to consider path conditions. The process is outlined
in algorithm 1. The first model undergoes analysis through DSE, from which input-output pairs are
extracted. These pairs are then utilized as inputs for the second model. The simplified symbolic portion
of the computed output from the second model is compared to the corresponding output of the first
model. If discrepancies are found between the simplified outputs, the input-output pair is classified as a
diff-witness.

Until this point, we have implicitly assumed that the models under consideration are deterministic.
However, our approach is also applicable to non-deterministic models. The non-determinism present in

the first component will be managed through DSE. In contrast, addressing the non-determinism in the
second component requires an additional step following the initial output comparison. In this scenario,
all potential paths must be explored to ensure the soundness of the differencing operator.

To achieve this, we utilize an oracle that represents or determines the non-deterministic “choices”
within the model. All possible oracle values are computed and applied to the specific input. Each resulting
output is then compared against the output of the first model. If a matching output is identified, the
search is halted, and the comparison of output pairs continues. Conversely, if no matching output
is found, the corresponding input-output pair from the first model qualifies as a valid diff-witness.
Given that all potential paths through the model have been examined, the calculation of the semantic
difference is deemed sound.

Algorithm 1 Algorithm to calculate semantic differences between MontiArc models
Input: m1, m2
Output: List of semantic differences

𝑑𝑖𝑓𝑓_𝑐𝑎𝑠𝑒𝑠← []
𝑑𝑠𝑒_𝑟𝑒𝑠𝑢𝑙𝑡← 𝑒𝑥𝑒𝑐𝑢𝑡𝑒_𝐷𝑆𝐸(𝑚1)
𝑓𝑜𝑢𝑛𝑑_𝑤𝑖𝑡𝑛𝑒𝑠𝑠← False

for each 𝑖𝑛_𝑚1, 𝑜𝑢𝑡_𝑚1 in 𝑑𝑠𝑒_𝑟𝑒𝑠𝑢𝑙𝑡 do
𝑜𝑢𝑡_𝑚2← 𝑟𝑢𝑛𝑀𝑜𝑑𝑒𝑙2(𝑖𝑛_𝑚1)
𝑠_𝑜𝑢𝑡_𝑚1← 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝑜𝑢𝑡_𝑚1)
𝑠_𝑜𝑢𝑡_𝑚2← 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝑜𝑢𝑡_𝑚2)

if 𝑠_𝑜𝑢𝑡_𝑚1 ̸= 𝑠_𝑜𝑢𝑡_𝑚2 then
𝑓𝑜𝑢𝑛𝑑_𝑤𝑖𝑡𝑛𝑒𝑠𝑠← True
𝑜𝑟𝑎𝑐𝑙𝑒𝑠← 𝑐𝑎𝑙𝑐_𝑜𝑟𝑎𝑐𝑙𝑒𝑠(𝑚2, 𝑖𝑛_𝑚1)

for each oracle in oracles do
𝑜𝑢𝑡_𝑜𝑟𝑎𝑐𝑙𝑒← 𝑟𝑢𝑛𝑀𝑜𝑑𝑒𝑙2(𝑖𝑛_𝑚1, 𝑜𝑟𝑎𝑐𝑙𝑒)
𝑠_𝑜𝑢𝑡_𝑜𝑟𝑎𝑐𝑙𝑒← 𝑠𝑖𝑚𝑝𝑙𝑖𝑓𝑦(𝑜𝑢𝑡_𝑜𝑟𝑎𝑐𝑙𝑒)
if 𝑠_𝑜𝑢𝑡_𝑚1 == 𝑠_𝑜𝑢𝑡_𝑜𝑟𝑎𝑐𝑙𝑒 then

𝑓𝑜𝑢𝑛𝑑_𝑤𝑖𝑡𝑛𝑒𝑠𝑠← False
break

end if
end for

end if
if 𝑓𝑜𝑢𝑛𝑑_𝑤𝑖𝑡𝑛𝑒𝑠𝑠 then

𝑑𝑖𝑓𝑓_𝑐𝑎𝑠𝑒𝑠← 𝑑𝑖𝑓𝑓_𝑐𝑎𝑠𝑒𝑠 ∪ {𝑖𝑛_𝑚1, 𝑜𝑢𝑡_𝑚1}
end if

end for
return 𝑑𝑖𝑓𝑓_𝑐𝑎𝑠𝑒𝑠

6. Evaluation

In this section, we evaluate the tool and the implemented controllers using the StudentVote example
introduced in section 4 as our case study. We will first define the evaluation criteria, followed by a
presentation of the results, including the calculation of semantic differences between two MontiArc
models.

6.1. Definition of Evaluation Criteria and Controllers

We have established the following criteria for evaluating the implemented controllers: Runtime, Mini-
mality, and Completeness.

Runtime The runtime of the developed tool plays a crucial role in determining its usability. To
facilitate comparison, the runtime of each controller is classified into one of the following categories:

• Constant Runtime: The runtime remains unchanged regardless of the input length.
• Linear Runtime: The runtime increases proportionally with the input length.
• Exponential Runtime: The runtime grows exponentially as the input length increases.

Among these categories, controllers exhibiting constant runtime are deemed most desirable, followed
by those with linear runtime, while exponential runtime is considered the least favorable option.

Minimalism The set of interesting inputs collected during the analysis should be minimized to ensure
that the outputs remain simplified. Due to Z3’s non-deterministic behavior in selecting concrete values
for a given formula, we focus exclusively on symbolic values. However, simplification of each symbolic
output results in the loss of information regarding the paths traversed, effectively treating the model as
a black box.

For instance, consider two interesting inputs characterized by the following properties: the first input
has a symbolic output of x + 1 - 4 and a branch condition of x + 1 < 5, while the second input
has a symbolic output of x - 5 + 2 and a branch condition of x - 5 < 10. Here, x represents the
symbolic representation of the input. Both inputs were derived from different paths, but when both
symbolic outputs are simplified, they yield x - 3. Consequently, these two inputs would be considered
duplicates concerning the minimality criterion.

As a metric, minimalism assesses the number of duplicates in relation to the size of the set of
interesting inputs. Controllers are evaluated based on the percentage of duplicates, with a higher
proportion of duplicates being regarded as less favorable.

Completeness When employing automata as the behavioral description of components, the com-
pleteness of a controller can be assessed from multiple perspectives. One perspective focuses on the
number of visited transitions, represented as the ratio of visited transitions to the total number of
existing transitions. A similar approach is used for assessing the completeness of states, which is
determined by the ratio of visited states to the total number of existing states.

There are two perspectives regarding states: the first considers states without any information about
the automaton’s internal variables, while the second incorporates the current values of these internal
variables as part of the state representation.

Given that the state space is often infinite concerning internal variables, it is not always feasible to
calculate the percentage of visited states. Therefore, in such cases, the absolute number of visited states
and transitions is used as an alternative metric for completeness.

6.2. Results of the Evaluation

In this subsection, we present the evaluation of the controllers using the model StudentVote from
our motivating example as a case study. The implications of these results are discussed in section 7. It is
important to note that all calculations and runtime measurements are specific to the hardware utilized
during the evaluation. The evaluation was conducted on a ThinkPad T14s equipped with 32GB of RAM,
an AMD Ryzen 7 Pro processor running at 2.7 GHz, and featuring 8 cores.

The detailed results of the evaluation are presented in fig. 8. In this visualization, poor performance is
indicated in red, while good performance is marked in green. The results for the categories Runtime and
Completeness are classified as follows: a percentage below 25% is deemed poor, while a percentage
above 75% is considered good, with values in between categorized as neutral. Conversely, in the category

Figure 8: Results regarding the smallModel based on input length 4

Minimalism, results above 75% are regarded as deficient, whereas those below 25% are classified as
proficient.

Runtime The controllers categorized under Path Coverage experience exponential runtimes. For
instance, an input length of 6 is estimated to take approximately 1.9 days to process. This exponential
behavior can be attributed to the number of solver calls, which are computationally intensive and
contribute significantly to the overall runtime, even for relatively small models and short input lengths.

In contrast, for the category Termination Condition, no uniform runtime can be established.
When the termination condition is defined based on transitions, the runtime remains constant. However,
when it relies on states—whether internal states are included or not—the runtime becomes linear. An
exception arises with the Boring Interesting Controller, which utilizes specific states and
transitions for its termination condition, leading to an exponential runtime.

The variability in runtime within this category can be explained by the nature of the termination
conditions. For instance, if a condition is based on the frequency of visits to a particular transition in the
automaton, the number of recursive calls is limited by that frequency, effectively creating a bottleneck.
Similarly, state-based termination conditions can also act as bottlenecks. Moreover, controllers of the
Boring Interesting type may suffer from poorly categorized transitions or states. Ineffectively
chosen termination conditions can lead to situations where a transition is erroneously classified as
interesting, allowing for numerous visits—even if that transition is never actually executed—resulting
in the termination condition failing to apply.

Controllers in the category Random Generation exhibit a constant runtime. This consistency can
be attributed to the non-utilization of collected symbolic information and the implementation of a
cap on the maximum number of identifiable paths, which prevents infinite runtimes. The controller
RunOnce executes the component precisely once for the specified input length, while RandomInput
explores new paths exactly ten times using randomized inputs.

When assessing controllers based on runtime performance, those in the Random Generation
category emerge as the most efficient, followed by those in the Termination Condition category.
In contrast, the Boring Interesting controllers and those in the Path Coverage category are the
least efficient, as they experience exponential runtimes.

Minimalism The architecture of the StudentVote system allows for multiple inputs to yield the
same output. Initially, irrespective of the input provided, the output consistently appears as zero for
both counters. This behavior is attributed to the previously discussed delayed ports. For input lengths
of 3, the percentage of duplicate outputs ranges from 86% to 92%, while for input lengths of 4, this range
increases to 91% to 99%. Notably, exceptions arise with the controllers Termination Transition,

Termination Automaton State, Termination State, and RunOnce. The RunOnce controller
uniquely identifies a single path within the model, resulting in the absence of duplicates, regardless of
input length. In contrast, the other exceptions can be attributed to a reduced number of interesting
inputs discovered due to certain restrictions. Importantly, none of the evaluated controllers employ a
strategy to prevent the generation of duplicate interesting inputs in relation to the simplified outputs.

Completeness of Visited Transitions To achieve completeness, it is essential that each transition
is visited at least once. Controllers belonging to the categories Path Coverage and Termination
Condition attain a transition coverage of 54% (7 visited transitions) for an input length of 1. However, a
minimum input length of 3 is required to achieve full transition coverage of 100% (13 visited transitions).
The Termination Transition controller is an exception; it is constrained by a limit on the number
of visits allowed for each transition, resulting in a bottleneck for the initial two transitions in the
StudentVote scenario.

In the case of controllers in the Random Generation category, transition coverage ranges from
31% to 46% (RunOnce: 4 or 5 visited transitions; RandomInput: 5 or 6 visited transitions), regardless of
input length. This limited coverage is attributed to the restricted number of iterations performed by the
controllers, which consequently reduces the number of paths explored.

Overall, all controllers are constrained by the specified input length when it comes to transition
coverage. An inadequate input length hinders the complete detection of transitions. Conversely,
when a sufficient input length is provided, controllers in the Path Coverage category can achieve
full transition coverage. While controllers in the Termination Condition category may have the
potential to explore all paths, they are ultimately restricted by their respective termination conditions.

Completeness of Visited States Excluding Internal Variables Controllers classified under Path
Coverage and Termination Condition successfully visit 100% (6 states) of the reachable states
starting from an input length of 1. In contrast, controllers categorized as Random Generation only
manage to visit 67% (4 states) of the states, irrespective of the input length.

Completeness of Visited States An automaton’s state can encompass the potential concrete values
of all its internal variables. Consequently, StudentVote does not possess a finite state space due to its
counter components. To quantify the percentage of visited states within the model, we relate it to the
maximum number of states that can be reached based on the input length.

Controllers in the Path Coverage category consistently achieve 100% relative coverage, regardless
of input length, except for the RandomNegation controller, which attains only 33% for an input length
of 4. In the Termination Condition category, the percentage of visited states declines as input
length increases, resulting in a completion rate of 10% to 40% for an input length of 4, largely due
to the constraints imposed by their respective termination conditions. Controllers in the Random
Generation category achieve merely 6% coverage for an input length of 4.

The ability to achieve completeness in visited states is contingent on both the model and the specified
input length. Shorter input lengths are inadequate for attaining completeness in visited states for larger
models.

Upon comparing the results, it becomes evident that no single controller emerges as the superior
choice. The selection of a controller should be guided by the specific model in use and the objectives
of the user. Notably, for controllers categorized under Path Coverage, an exponential increase in
runtime is to be anticipated, regardless of the underlying model. If runtime efficiency is a primary
concern and only a specific subset of paths is needed, opting for a controller of the Termination
Condition type may prove to be the most effective strategy.

Most controllers, particularly those focused on path coverage, experience exponential growth in
runtime. This phenomenon is exacerbated by the path explosion, which leads to a corresponding
exponential increase in the number of solver calls and solver operations. The average CPU load on
a single core due to these SMT-Solver operations is approximately 73 percent, indicating a pressing

need for optimization in solver operations. One effective optimization strategy involves implementing
a timeout for the solver. If the solver fails to identify a solution within the allotted time, we can infer
that the branch condition for the potential path is likely unsatisfiable, allowing it to be skipped.

A critical challenge in this optimization process lies in selecting an appropriate timeout duration. The
goal is to maximize time improvement while minimizing result degradation. Here, result degradation is
defined as the ratio of interesting inputs identified with the timeout versus those found without it.

To assess the time improvement and result degradation associated with the Path Coverage
Controller in conjunction with garbage collection, various timeout durations were tested. The
findings are summarized in table 1. An optimal balance between time improvement and result degra-
dation appears to be achieved with a timeout set at 10 milliseconds. Shorter timeouts can lead to a
degradation of results by as much as 99%, while longer timeouts yield only a modest time improvement
of up to 14%.

Timeout in ms Time improvement Result deterioration
1 0.9970 0.9994
5 0.9965 0.9988
7 0.98 0.97
8 0.88 0.83
9 0.70 0.59

10 0.15 0.03
30 0.14 0.00

300 0.18 0.00
1000 0.17 0.00

Table 1
Different timeouts for input length three, controller: PC Garbage Collector

In conclusion, implementing a timeout for the solver can lead to significant runtime improvements.
However, it is crucial to consider the accompanying loss of results. To achieve the optimal balance
between time improvement and result degradation, the timeout must be individually calibrated for each
combination of model, controller, and input length.

Computation of Semantic Differences Between MontiArc Models The evaluation of various
controllers reveals that no single controller stands out as universally superior. Instead, the selection
of a controller should be tailored to the specific needs of the user. Any controller can be employed to
calculate the semantic difference; however, if the goal is to compute all diff-witnesses, it is recommended
to select a controller from the Path Coverage category. Conversely, if identifying just a single
diff-witness is sufficient, a category 2 controller may be more appropriate.

In the subsequent analysis, we compute the semantic difference using the Path Coverage
Controller with a garbage collection trigger. The results of the semantic difference analysis be-
tween StudentVote and smallModelSemDiff for varying input lengths are presented in table 2.

Input length Time in min #Diff-witness #Solver calls
1 0.08 0 140
2 1.34 0 2380
3 45.46 512 37196
4 22227.27 n/a n/a

Table 2
Results of the computation of semantic differences between smallModel and semDiffSmallModel

As anticipated, a diff-witness was only identified starting from an input length of three. The challenges
associated with calculating semantic differences mirror those of the selected controller. To analyze
larger modules or to accommodate greater input lengths, optimization of the tool is necessary. Various
optimization strategies are explored in section 7.

7. Discussion

As discussed in section 6, the runtime of the tool is significantly constrained by the CPU load associated
with SMT solver operations. Specifically, the number of server calls increases exponentially with both
the length of the input and the size of the model.

To address this issue, we have implemented a timeout strategy for the SMT solver as an optimization
approach. The underlying assumption is that if no model is found within a specified timeframe,
it is likely that no model exists. This strategy provides a dual benefit: it improves runtime while
potentially compromising the quality of the results. Striking an optimal balance between these two
factors necessitates selecting an appropriate timeout based on the specific controller in use. An
alternative solution could involve parallelizing the analysis; however, the documentation on parallelism
is limited, and its implementation for Z3 is not yet complete.

While the strategies presented offer some avenues for improvement, none provide a definitive solution
to the runtime limitations. To substantially mitigate this issue, it is essential to reduce the number of
solver calls. Achieving this requires the formulation of an effective controller strategy tailored to the
specific use case. The challenge lies in minimizing solver calls while maximizing the discovery of paths.

In section 6, we evaluated three categories of controllers, each encompassing various implementations.
While each category presents its own set of advantages and disadvantages, none emerged as the
unequivocal best option. It is important to note that achieving comprehensive path coverage may
necessitate accepting exponential runtime. Conversely, by settling for less exhaustive results, it is
possible to attain a linear or constant runtime in relation to the input length.

To achieve an optimal balance between completeness and runtime, we propose a combination of
controllers. Random input generation yields the least complete results but maintains a constant runtime.
In contrast, a path coverage controller offers the most comprehensive results, albeit at the cost of
exponential runtime. By integrating both controllers, we can likely attain an acceptable compromise
regarding both completeness and efficiency.

One potential combination could be inspired by the queen’s problem. Initially, a random input
is provided to the model. Utilizing the symbolic information gathered from this input, the system
then searches for a defined number of new paths. By generating a new random input and repeating
this process, we can facilitate a more thorough exploration of the path tree within a user-defined
search range. An example of the paths identified within such a tree is illustrated in fig. 9. Future
evaluations will be necessary to determine whether this combined controller outperforms the existing
implementations. In order to enable the integration of different controllers, modifications to the current
controller architecture are required. This approach holds promise for significantly reducing the runtime
of DSE, though the completeness of the results produced by the new controllers will also need to be
assessed.

Another avenue for enhancing the tool is through decomposition analysis of models, as introduced
by Godefroid [25]. This technique involves breaking down the program under analysis into individual
functions. The results from analyzing these functions are then synthesized, taking into account their
pre- and post-conditions, to evaluate composite programs. This methodology should be applicable to
MontiArc models by examining their atomic components, which are already represented by atomic
model artifacts. Implementing this approach will necessitate adjustments to the tool architecture.

Additional optimization strategies to consider include fast unsatisfiability checks, common sub-
constraint elimination, and incremental solving, as utilized by jCUTE and discussed in section 3.

Optimization is a critical factor in analyzing realistic models. Our tool is currently in its initial
version, and further optimization is essential for practical applications. At present, it supports primitive
data types, strings, and enums for MontiArc models. Given that this represents only a fraction of the
potential data types, expanding support for additional data types should be prioritized in future work.

A noteworthy observation regarding other DSE tools is that most utilize interpreters for Dynamic
Symbolic Execution. However, there is currently no interpreter available for MontiArc models. De-
veloping an interpreter for MontiArc poses several challenges, such as ensuring synchronization and
managing the non-sequential execution of all components. For the purposes of this work, we deter-

SC
path found by randomized input

path found by following DSE

Figure 9: Possible paths found by a controller combining randomized inputs and DSE

mined that enhancing the MontiArc-to-Java generator would be sufficient. Nevertheless, introducing
an interpreter would improve usability, as it would eliminate the need for generating additional files.

8. Conclusion

In this paper, we successfully developed a Dynamic Symbolic Execution (DSE) approach tailored
for the component-and-connector architecture language MontiArc, implementing multiple execution
strategies. This DSE framework enabled us to create a semantic differencing operator capable of detecting
behavioral differences between two component-and-connector architectures. Notably, our approach
addresses the limitations of previously developed semantic differencing operators by accommodating
an infinite state space and input-output alphabet.

We evaluated our DSE approach and the implemented controller based on the criteria of runtime,
minimality, and completeness, identifying scalability as the most significant challenge. While our
semantic differencing approach is sound, it remains constrained by input length and does not scale well.

Looking ahead, we aim to tackle these challenges using the methods discussed in section 7, such as
parallelization and strategic early evaluation cessation. We will also reevaluate the updated tool using
existing component-and-connector models from both industry and scientific literature.

Furthermore, semantic differencing is not the only application of DSE concerning MontiArc models
that interests us. Future work will explore DSE’s applicability for test-case and input generation in
MontiArc. We are also keen to investigate the highlighting of syntactic differences that lead to semantic
differences, expand support for additional data types, and assess the use of an interpreter in comparison
to our current generator-based approach. Finally, we may consider applying a DSE-based approach to
other types of executable models.

Acknowledgments

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 250902306

References

[1] S. Maoz, J. O. Ringert, B. Rumpe, A Manifesto for Semantic Model Differencing, in: Proceedings
Int. Workshop on Models and Evolution (ME’10), LNCS 6627, Springer, 2010, pp. 194–203.

[2] D. Harel, B. Rumpe, Meaningful Modeling: What’s the Semantics of ”Semantics”?, IEEE Computer
Journal 37 (2004) 64–72.

[3] S. Maoz, J. O. Ringert, B. Rumpe, ADDiff: Semantic Differencing for Activity Diagrams, in:
Conference on Foundations of Software Engineering (ESEC/FSE ’11), ACM, 2011, pp. 179–189.

[4] O. Kautz, B. Rumpe, Semantic Differencing of Activity Diagrams by a Translation into Finite
Automata, in: Proceedings of MODELS 2018. Workshop ME, 2018.

[5] S. Maoz, J. O. Ringert, B. Rumpe, CDDiff: Semantic Differencing for Class Diagrams, in: M. Mezini
(Ed.), ECOOP 2011 - Object-Oriented Programming, Springer Berlin Heidelberg, 2011, pp. 230–254.

[6] J. O. Ringert, B. Rumpe, M. Stachon, On Implementing Open World Semantic Differencing for
Class Diagrams, Journal of Object Technology (JOT) 22 (2023) 2:1–14. doi:10.5381/jot.2023.
22.2.a11.

[7] I. Drave, O. Kautz, J. Michael, B. Rumpe, Semantic Evolution Analysis of Feature Models, in:
T. Berger, P. Collet, L. Duchien, T. Fogdal, P. Heymans, T. Kehrer, J. Martinez, R. Mazo, L. Montalvillo,
C. Salinesi, X. Tërnava, T. Thüm, T. Ziadi (Eds.), International Systems and Software Product Line
Conference (SPLC’19), ACM, 2019, pp. 245–255.

[8] A. Butting, O. Kautz, B. Rumpe, A. Wortmann, Semantic Differencing for Message-Driven Compo-
nent & Connector Architectures, in: International Conference on Software Architecture (ICSA’17),
IEEE, 2017, pp. 145–154.

[9] A. Butting, O. Kautz, B. Rumpe, A. Wortmann, Continuously Analyzing Finite, Message-Driven,
Time-Synchronous Component & Connector Systems During Architecture Evolution, Journal of
Systems and Software (JSS) 149 (2019) 437–461.

[10] I. Drave, R. Eikermann, O. Kautz, B. Rumpe, Semantic Differencing of Statecharts for Object-
oriented Systems, in: S. Hammoudi, L. F. Pires, B. Selić (Eds.), Proceedings of the 7th Interna-
tional Conference on Model-Driven Engineering and Software Development (MODELSWARD’19),
SciTePress, 2019, pp. 274–282.

[11] O. Kautz, Model Analyses Based on Semantic Differencing and Automatic Model Repair, Aachener
Informatik-Berichte, Software Engineering, Band 46, Shaker Verlag, 2021.

[12] A. Haber, J. O. Ringert, B. Rumpe, MontiArc - Architectural Modeling of Interactive Distributed
and Cyber-Physical Systems, Technical Report AIB-2012-03, RWTH Aachen University, 2012.

[13] A. Haber, MontiArc - Architectural Modeling and Simulation of Interactive Distributed Systems,
Aachener Informatik-Berichte, Software Engineering, Band 24, Shaker Verlag, 2016.

[14] A. Butting, O. Kautz, B. Rumpe, A. Wortmann, Architectural Programming with MontiArcAu-
tomaton, in: In 12th International Conference on Software Engineering Advances (ICSEA 2017),
IARIA XPS Press, 2017, pp. 213–218.

[15] C. Cadar, P. Godefroid, S. Khurshid, C. S. Pasareanu, K. Sen, N. Tillmann, W. Visser, Symbolic
execution for software testing in practice: preliminary assessment, in: 2011 33rd International Con-
ference on Software Engineering (ICSE), 2011, pp. 1066–1071. doi:10.1145/1985793.1985995.

[16] J. C. King, Symbolic execution and program testing, Commun. ACM 19 (1976) 385–394. doi:10.
1145/360248.360252.

[17] H. Grönniger, H. Krahn, B. Rumpe, M. Schindler, S. Völkel, MontiCore 1.0: Ein Framework
zur Erstellung und Verarbeitung domänspezifischer Sprachen, Informatik-Bericht 2006-04, CFG-
Fakultät, TU Braunschweig, 2006.

[18] K. Hölldobler, O. Kautz, B. Rumpe, MontiCore Language Workbench and Library Handbook:
Edition 2021, Aachener Informatik-Berichte, Software Engineering, Band 48, Shaker Verlag, 2021.

[19] H. Giese, B. Rumpe, B. Schätz, J. Sztipanovits (Eds.), Science and Engineering of Cyber-Physical
Systems (Dagstuhl Seminar 11441), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2012.

[20] M. Broy, B. Rumpe, Modulare hierarchische Modellierung als Grundlage der Software- und
Systementwicklung, Informatik-Spektrum 30 (2007) 3–18.

http://dx.doi.org/10.5381/jot.2023.22.2.a11
http://dx.doi.org/10.5381/jot.2023.22.2.a11
http://dx.doi.org/10.1145/1985793.1985995
http://dx.doi.org/10.1145/360248.360252
http://dx.doi.org/10.1145/360248.360252

[21] D. Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming
8 (1987) 231–274. doi:https://doi.org/10.1016/0167-6423(87)90035-9.

[22] B. Rumpe, Modeling with UML: Language, Concepts, Methods, Springer International, 2016.
[23] M. Broy, K. Stølen, Specification and development of interactive systems: focus on streams,

interfaces, and refinement, Springer Science & Business Media, 2012.
[24] L. De Moura, N. Bjørner, Z3: An efficient smt solver, in: International conference on Tools and

Algorithms for the Construction and Analysis of Systems, Springer, 2008, pp. 337–340.
[25] P. Godefroid, Compositional dynamic test generation, in: ACM-SIGACT Symposium on Principles

of Programming Languages, 2007.
[26] X. Xiao, S. Li, T. Xie, N. Tillmann, Characteristic studies of loop problems for structural test gener-

ation via symbolic execution, in: 2013 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE), 2013, pp. 246–256. doi:10.1109/ASE.2013.6693084.

[27] K. Sen, D. Marinov, G. Agha, Cute: A concolic unit testing engine for C, volume 30, 2005, pp.
263–272. doi:10.1145/1095430.1081750.

[28] P. Godefroid, N. Klarlund, K. Sen, Dart: Directed automated random testing, in: Proceedings of
the 2005 ACM SIGPLAN conference on Programming language design and implementation, 2005,
pp. 213–223.

[29] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, I. Finocchi, A survey of symbolic execution
techniques, ACM Computing Surveys (CSUR) 51 (2018) 1–39.

[30] P. Godefroid, M. Y. Levin, D. A. Molnar, Automated whitebox fuzz testing, in: Network and
Distributed System Security Symposium, 2008.

[31] N. Williams, Towards exhaustive branch coverage with pathcrawler, CoRR abs/2105.05517 (2021).
arXiv:2105.05517.

[32] K. Sen, G. Agha, Cute and jcute: Concolic unit testing and explicit path model-checking tools,
in: T. Ball, R. B. Jones (Eds.), Computer Aided Verification, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2006, pp. 419–423.

[33] M. Mues, F. Howar, Jdart: Dynamic symbolic execution for java bytecode (competition contribu-
tion), in: A. Biere, D. Parker (Eds.), Tools and Algorithms for the Construction and Analysis of
Systems, Springer International Publishing, Cham, 2020, pp. 398–402.

[34] K. Havelund, T. Pressburger, Model checking java programs using java pathfinder, International
Journal on Software Tools for Technology Transfer 2 (2000) 366–381.

[35] W. Visser, C. S. Pǎsǎreanu, S. Khurshid, Test input generation with java pathfinder, in: Proceedings
of the 2004 ACM SIGSOFT international symposium on Software testing and analysis, 2004, pp.
97–107.

[36] K. Luckow, M. Dimjasevic, D. Giannakopoulou, F. Howar, M. Isberner, T. Kahsai, Z. Rakamaric,
V. Raman, Jdart: A dynamic symbolic analysis framework, in: M. Chechik, J.-F. Raskin (Eds.),
Proceedings of the 22nd International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 9636 of Lecture Notes in Computer Science, Springer,
2016, pp. 442–459. doi:10.1007/978-3-662-49674-9_26.

[37] S. Maoz, J. O. Ringert, B. Rumpe, An Operational Semantics for Activity Diagrams using SMV,
Technical Report AIB-2011-07, RWTH Aachen University, Aachen, Germany, 2011.

[38] N. Bjørner, L. de Moura, L. Nachmanson, C. M. Wintersteiger, Programming z3, Engineering
Trustworthy Software Systems: 4th International School, SETSS 2018, Chongqing, China, April
7–12, 2018, Tutorial Lectures 4 (2019) 148–201.

[39] B. Rumpe, Formale Methodik des Entwurfs verteilter objektorientierter Systeme, Herbert Utz
Verlag Wissenschaft, München, Deutschland, 1996.

http://dx.doi.org/https://doi.org/10.1016/0167-64 23(87)90035-9
http://dx.doi.org/10.1109/ASE.2013.6693084
http://dx.doi.org/10.1145/1095430.1081750
http://arxiv.org/abs/2105.05517
http://dx.doi.org/10.1007/978-3-662-49674-9_26

	1 Introduction
	2 Dynamic Symbolic Execution
	3 Related Work
	4 Running Example
	5 Design and Concept
	5.1 Major Design Decisions
	5.2 Overview of the Tool's Functionalities
	5.3 Computation of Semantic Differences Between MontiArc Models

	6 Evaluation
	6.1 Definition of Evaluation Criteria and Controllers
	6.2 Results of the Evaluation

	7 Discussion
	8 Conclusion

