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ABSTRACT
Managing dynamic datasets intended to serve as training data for a
Machine Learning (ML) model often emerges as very challenging,
especially when data is often altered iteratively and already existing
ML models should pertain to the data. For example, this applies
when new data versions arise from either a generated or aggregated
extension of an existing dataset a model has already been trained
on. In this work, it is investigated on how a model-based approach
for these training data concerns can be provided as well as how
the complete process, including the resulting training and retrain-
ing process of the ML model, can therein be integrated. Hence,
model-based concepts and the implementation are devised to cope
with the complexity of iterative data management as an enabler
for the integration of continuous retraining routines. With Deep
Learning techniques becoming technically feasible and massively
being developed further over the last decade, MLOps, aiming to
establish DevOps tailored to ML projects, gained crucial relevance.
Unfortunately, data-management concepts for iteratively growing
datasets with retraining capabilities embedded in a model-driven
ML development methodology are unexplored to the best of our
knowledge. To fill in this gap, this contribution provides such agile
data management concepts and integrates them and continuous
retraining into the model-driven ML Framework MontiAnna [18].
The new functionality is evaluated in the context of a research
project where ML is exploited for the optimal design of lattice
structures for crash applications.

CCS CONCEPTS
• Software and its engineering → Application specific develop-
ment environments; • Computing methodologies → Machine
learning.
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1 INTRODUCTION
In the past years, ML applications have been established in multiple
domains reaching from healthcare applications [23] over finance [9]
to sentiment analysis [6]. However, the key element to success in
each ML task remains the dataset, as its quality massively impacts
the prediction capability of the model [14]. Thus, intelligent man-
agement and the attached training routines of different versions
can accelerate, simplify and enhance the development process and
model quality tremendously. Easy ways for juggling different data
versions should exist, while versioning concepts should be clear
and concise. Conflicts between different dataset versions are to be
avoided and the correlation from a trained model to the dataset
version should be drawn.

Often the training database continuously grows even after the
first version of an ML model was designed, trained, and even de-
ployed. This happens, for example, if more data is collected in a
social network by storing user interactions or if an extension is
requested to enable a more precise prognosis or a prediction inside
an area the original dataset does not achieve cover. Thus, it is re-
quired that starting from a base dataset to train the first ML model,
it is allowed to create an extension that can then be connected
to the base dataset. This means the dataset model must provide
capabilities to include a reference to a base dataset or to another
extension inside the extension itself. In this way, the data scientist
can iteratively provide data extensions with a reference to the base
datasets or other extensions and the affiliation becomes clear.

Consequently, the ML Engineer is left with the opportunity to
improve the network’s predictions with these extensions, if a model
trained on the base dataset already exists. Accordingly, a retraining
routine goes hand in hand with these iterative enlargements, so
that the models do not always have to be trained with the whole
dataset again. The importance of retraining routines especially
becomes apparent when taking into account cases, where retraining
with the most recent data is indispensable. Consider the case of
a concept drift [22], where the distribution of the data changes
over time and can cause already trained models to be less accurate.
Concept drifts can have multiple reasons, for example, technology
innovation, as it can be seen in our mobile phone usage changing
from mainly audio calls to mainly using mobile internet. Retraining
counteracts concept drifts, as the ML model is always opened up for
improvement and changes through the training on extensions. This
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particularly takes effect if the complete process is automized; all
required information lies within the dataset, which means, that the
deployment of an extension can cause a tool-chain to be triggered
including the retraining andmodel deployment without any explicit
interaction required by the ML engineer.

To realize the above-mentioned ideas, this paper presents the cor-
responding concepts and their implementation into the MontiAnna
framework, as well as an evaluation based on a use case involving
structural optimization with artificial intelligence. The remainder
of the paper is structured as follows: in Section 2 we list the prelim-
inaries for understanding the basics, while Section 3 covers related
work including a variety of tools for data management and related
publications. Our running example about structural optimization is
depicted in Section 4. The main concepts are evolved in Section 5
to then be evaluated in Section 6. In the last Section 7, we conclude
our results and give a short outlook for future work.

2 PRELIMINARIES
The concepts devised in this paper were implemented as a part
of the MontiAnna framework [11, 18]. This framework enables
model-driven development of ML software with a dedicated focus
on neural networks. It comprises two tailormade Domain-Specific
Languages (DSLs) and one generic language, which have all been
developed using MontiCore [17].

(1) CNNArchLang is a modeling language intended for the de-
sign of neural network architectures. First, the input and
the output are defined to match the dimensions given in
the dataset. After that, a neural network is constructed by
connecting the input to a chain of different layers leading to
the output. A variety of layers, like Fully Connected Layers,
Graph Convolutional Layers, Convolutional Layers, Pooling
Layers, and many more are supported.

(2) ConfLang is a modeling language intended to specify hy-
perparameters related to the training routine in a JSON-like
syntax. These include the number of epochs to be trained
and the batch size, but also the used algorithm concerning
the optimization.

(3) TaggingLang is a language for tagging additional informa-
tion, for example, the dataset is specified in this language.

After the configuration is validated, conforming executable Python
Code for different backends, such as MXNet/Gluon, Tensorflow, and
Caffe2 can be generated. The generated code includes the creation
of the network and the training procedure. While the framework
itself is written in Java, the generated training code is completely
written in Python. The execution of the trained network can be
done in Python or C++. The latter is intended to facilitate seamless
integration into larger Component & Connector (C&C) architec-
tures modeled in EmbeddedMontiArc [15, 20]. With this framework,
complex architectures can be constructed for the domain of the
cyber-physical system, where C++ is often used due to its runtime
performance and resource efficiency. Other components do not
necessarily need to be ML-based. Hence, a complex structure of
components being connected through ports is capable of carrying
out complex tasks.

The MontiAnna framework comes with a Maven plugin, which
was developed to wrap some of the functionality into clear and

concise goals. For example, the code generation and calls to initiate
the training procedure can be invoked by mvn emadl:train. What
is especially crucial for this work, are the goals that exist for artifact
management [4]. For each artifact, the deployment into an archive
and the corresponding fetch procedure can be performed using
Maven goals. Besides an archive for the source code and another one
for pre-trained models, the most important archive in this context
is the dataset archive. It contains training, test, and evaluation data
wrapped in a jar file. The two goals mvn emadl:deploy-dataset
and mvn emadl:install-dataset are accordingly the basis for
this work concerning dataset management and versioning. The
attached retraining routines are to be implemented into the mvn
emadl:train goal.

3 RELATEDWORK
In our related work, we distinguish between related concepts from
publications in the literature and concepts derived from alternative
tools, that take care of similar tasks.

3.1 Related Concepts in Literature
A case study of Software Engineering for Machine Learning is of-
fered by Amershi et al. in [3] and was carried out in 2019. The
authors observed software teams at Microsoft in their development
process of ML software. In the context of our work, it is remark-
able that "discovering, managing and versioning the data needed for
machine learning applications is much more complex and difficult
than other types of software engineering". Especially, the need for
careful treatment of datasets with continuous changes is elucidated,
while, as in our case, the changes may either arise from "operations
initiated by engineers themselves, or from [...] incoming fresh data
(e.g., sensor data, user interactions)". The versioning of such datasets
serves as an enabler for reuse. Moreover, if the dataset is then addi-
tionally tagged to a model, experiment tracking can be carried out.
A descriptive tag about the origination can help massively as well.

In 2017, Polyzotis et al. [26] researched "Data Management Chal-
lenges in Production Machine Learning", which the authors claim
to be a complete class of problems existing in the intersection of
Production ML and Data Management. The focus of their works
lies in the relevant steps for processing datasets, which are split up
into understanding, validating, cleaning, and enriching the datasets.
The research is based on their experience in the development of a
data-centric infrastructure for a ML platform at Google. Retraining
is implicitly mentioned, as the serving data, defined as the data to
create the predictions with, is partially fed back into the data lake
of the training data and thereby used again.

One year later, Polyzotis et al. extended their publication and
created a survey of Data Lifecycle Challenges in Production Ma-
chine Learning [27]. In this work, understanding remains one of
the three main aspects, while the data validation and cleaning are
condensed compared to the previous publication, and data enrich-
ment is replaced by data preparation. For each aspect, literature
is reviewed, open challenges are posed and lessons learned from
their own experience in the development process are extracted. The
main emphasis is put on large-scale ML pipelines and the actual
steps for preprocessing. Leading back the serving data into the
training procedure is stated as the completion of the lifecycle and
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can retraining can consequently be seen as a crucial step, but the
technical realization is not specified.

Agrawal et. al [1] presented a data management system specifi-
cally designed for ML datasets in 2019. According to the authors
from Apple Inc., engineers involved in the ML development pro-
cess are forced to care about data versioning and management on
their own, as the majority of the frameworks emphasize training,
experimentation, evaluation, and the deployment process, while
the integration of a data system is neglected. As a solution for these
problems, a data management system called MLdp is proposed,
which has integrated assistance for annotation, exploration as well
as data and feature engineering. It removes the silos and brings
together all data storage to one single place thus simplifying con-
sistency checks and enabling easy versioning as well as paving the
way for data lineage. The data can be accessed comfortably via an
interface and through the integration capabilities to some common
ML frameworks. The idea of versioning and the integration of the
data storage is depicted in our work as well. Continuous data injec-
tion for retraining is also mentioned in the work from Agrawal et.
al, but not technically explained in detail.

The most comprehensive publication in our list is written by
Boehm et al. [7] and comprises both the support by ML in database
systems, but also database-inspired ML systems and ML lifecycle
systems. Among other topics that are discussed, the closest to our
work include data access methods and systems for data preparation.
The starting point in the high-level end-to-end vision of the ML
lifecycle is the source, which can come in various forms. These
include data lakes, distributed file-system as Apache Hadoop (cf.
Section 3.2) or DBMS. The publication demonstrates methodologies
to access datasets with SQL to go over into a deeper integration of
ML into database systems.

Many aspects influence our presented work and offer valuable
lessons to take into account when devising our concepts. Neverthe-
less, there is a research gap regarding the seamless integration of
data management concepts and intertwined retraining into a model-
based framework for the development of ML applications. Thus,
the design and creation of both the model, i.e. architecture and
hyperparameters and the datasets remain holistically model-driven
and the models should be traceable and linked to each other.

3.2 Related Tools
As the version control system Git is intended for versioning text-
based artifacts only, mainly source code, an extension to the version
control system Git called Git LFS was developed to store different
versions of large data files which are affiliated to different versions
of source code [8]. It works by introducing a text file in the Git
repository containing a pointer to the location of the dataset in
external storage. This extension is rather meant for isolated persis-
tence of large files in general than for training data management
purposes so it lacks tooling for ML Applications. Dolt 1 promises
to be Git for data, in particular for MySQL databases and the tables
contained in them. A selection of tools from [28] with ML focus is
presented in the following.

A tool called DVC tends to eliminate these issues by keeping
track of datasets that can be stored using different cloud storage

1https://github.com/dolthub/dolt

providers like Google Drive, AWS S3, or Microsoft Azure Blob
Storage, but also local storage or network-attached storage [5].
Different dataset versions are managed by taking advantage of the
integration into Git through a text-based file containing a pointer
likewise to Git LFS. Regarding the intentional development for ML
application purposes, DVC for instance provides possibilities for
pipeline development. It is completely programming language and
framework agnostic.

MLFlow [5] [29] deals with the ML lifecycle in a larger scope
shifting the focus away from data management and versioning, as
it is the focus in this work, to subsequent steps in the ML Pipeline
such as tracking, reproducing and deploying different experiments
as well as theML Pipeline itself. It thereby secondarily addresses the
problem of data management and versioning through connecting to
Databricks file system (DBFS) [13], as an enhancement of Apache
Spark, being integrated into Google Cloud Platform, AWS S3, or
Microsoft Azure. An alternative to Apache Spark and thereby also
to Databricks is Apache Hadoop developed in 2005 [24]. It usually
performs worse in terms of time consumed but better when it comes
to comparing memory usage [12].

Pachyderm is an extensive framework for managing data science
pipelines integrating different data version management concepts
into automated ML Pipelines and experiment tracking [5]. Git in-
spires the data versioning techniques, but it operates other than Git
by not being text-based and because of that being able to operate
on large binary files in a faster way.

Databricks, Apache Spark, and Pachyderms Data versioning are
dedicated to scaling for Big Data and problems with huge com-
plexity, which is not the main focus of this work. They implement
mechanisms for distributed storage and its interaction with calcula-
tions on distributed systems. Furthermore, none of those mentioned
above tools consider a dedicated iterative enlargement of datasets
and hence lack tooling for the opportunities arising from contin-
uous retraining, but instead always train with a completely new
dataset as they are thought of in a more general way.

4 RUNNING EXAMPLE AND REQUIREMENTS
In this section, the workflow of our running example is analyzed to
derive requirements for the optimal support of managing dynamic
datasets and integrating continuous retraining. Integrated into this,
we find an exemplary role distribution in an ML project. An impor-
tant notion is the intended abstraction of the requirements from
the running example, as related use-cases should be supported and
flexibility should be enabled. After the concepts to fulfill the re-
quirements are explained in the next section, the evaluation in the
penultimate section also falls back on this running example. The
workflow steps are also depicted in Figure 1.

4.1 Running Example
The use-case we refer to is the core of a project about the Artifical
Intelligence (AI)-based design of additively manufactured lattice
structures for crash applications called KI-LaSt2. KI-LaSt aims at
reducing the CO2 emission by minimizing the weight of energy
absorbing components in cars in case of an accident. The overall

2https://www.rwth-innovation.de/en/aktuelles/aktuelle-detailseiten/bmwi-funded-
project-ki-last

https://www.rwth-innovation.de/en/aktuelles/aktuelle-detailseiten/bmwi-funded-project-ki-last
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Figure 1: Abstracted Workflow Steps from our Running Example

project goal is that the AI is capable of generating lattice structures
inside a given installation space conforming to the desired perfor-
mance when being exposed to different load-cases. The running
example in this paper is given as a first step towards the fulfillment
of the overall project goal, namely an ML model intended to serve
as a cheaper and faster simulation surrogate. In particular, it should
use the parameterized lattice structure as the input and output of
the mechanical performance, i.e. the Energy Absorption (EA) and
the Peak Crush Force (PCF) [25].

4.2 Workflow
Workflow, Step 1: The workflow in the development process be-
gins with the generation of the training data. As the ML model
should surrogate the simulation, the training data is accordingly
extracted from simulations to make the ML model learn patterns
between the input and output. It is then intended to perform pre-
dictions for unseen data without needing to calculate the time-
consuming simulation with the expensive finite element analysis.
As the configuration and execution of the simulation require expe-
rience in the tooling as well as a consolidated scientific background,
it is executed by different domain experts with appropriate facilities
including a computing cluster. In our use-case, the domain experts
use LS-DYNA3 for executing the simulation. From the ML perspec-
tive, this process produces raw data consisting of large binary files.
These files are uploaded to a cloud storage provider. The raw data
remains saved unchanged in any case, as it occurs different parts
of it are relevant. For example, sometimes not only the lattice pa-
rameters but also the lattice structure as a graph may be a relevant
feature for a model to learn from.

Workflow, Step 2: After being uploaded to the central storage,
the raw data has to be transferred into an appropriate feature-label
format that can be applied to a training procedure. The features
in our case are the lattice structure parameters, while the labels
are given by the EA and PCF. All of this information is implicitly
comprehended in the binary files produced by LS-DYNA, which
are preprocessed with the help of a Python library and arithmetic
calculations. The person undertaking this task assumes the role of a

3https://www.dynamore.de/en/products/dyna/Introduction?set_language=en

data scientist. The data scientist has to extract the relevant features
in close consultation with the domain experts, as they have the
physical background to tell which features may allow a machine to
learn a pattern between the input and output variables, while the
desired output variables are a choice of the domain experts as well.
Based on the data added by the domain experts, the data scientists
initiate a process, that executes the preprocessing script, packages
the resulting dataset, and assigns a matching version number to
the dataset before uploading. As a package, we consider an artifact
in the shape of an archive containing the training data as already
introduced as DAR in [4].

Workflow, Step 3: For the next step of the workflow, the ML
engineers come into play, who develop the ML models using the
deployed datasets from the previous step. The datasets conform
to the target format to be fed into the network. The ML engineer
simply has to specify the dataset, which is a clean dataset that is
then installed locally and serves for pending training processes. In
our running example, different ML approaches are built by different
ML engineers, for example, one tries predicting the EA and PCF
based on the lattice structures parameters, and another one works
on the lattice structure interpreted as a graph trying to predict the
stepwise deformation procedure. The development process itself is
experimental, so different architectures and hyperparameters are
tested, which is already enabled through the model-driven engineer-
ing approach of MontiAnna and the corresponding code generation
based on the configuration of the model [19]. The trained model is,
at this point, usually only a proof-of-concept prototype, because
unnecessary compute-intensive and hence expensive simulations
should be avoided, if the ML model is unable to learn from the
derived data anyways.

Workflow, Step 4:After theML engineer has successfully trained
a model, she packages it and delivers it to a central storage4. Before
it is uploaded, the package is tested on its functionality by being
executed in a pipeline. This test prevents corrupt implementations
from being deployed. Domain experts and data scientists can then
access the model and test or productively use it.
4We are aware, that in terms of MLOps it is good practice to deploy a complete pipeline
instead of only the model (i.e. the weights) only [28]. In our case, we define the model
to include the complete pipeline.

https://www.dynamore.de/en/products/dyna/Introduction?set_language=en
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Figure 2: Concept for dealing with iteratively growing datasets

Workflow, Step 5: After the steps 1-4 are executed, the result
is a deployed model. After this deployment, there is often an en-
largement of the dataset generated by one or more domain experts.
The reason for that is that the enlargement is put into the prospect
of continuously improving the prediction quality of the model or
being capable to perform predictions inside a new subsection of
the data’s distribution. Including this enlargement, we repeat steps
1-4 to create an enlargement of the dataset. Following that, this
procedure is illustrated in Figure 1, where the associated steps are
colored in blue. As a consequence, the raw data increases iteratively,
caused by the explicit generation of more training data from mul-
tiple domain experts. These extensions have to be both managed
from the data point of view and the functionality to use them for
retraining has to be implemented. The integration of these ideas
into the MontiAnna framework form the main contribution and the
novel idea of this paper. For this aim, we now derive requirements
to enable this procedure.

4.3 Requirements
The requirements are derived from the workflow to support it con-
veniently. Especially, we intended to enable Step 5, the retraining,
which is intertwined with the previous steps, as on the one hand,
enabling Step 5 influences the concepts behind some of the previ-
ous steps, and on the other hand, it implies the automation of the
previous steps.

R1: Data Management

R1-1 Extending Datasets: The data scientist must have the pos-
sibility to mark an existing dataset as an extension of an
existing dataset.

R1-2 Storage efficiency: The extension should be stored in a
storage efficient way. In particular, the extension should not
include data from the dataset it extends.

R1-3 Versioning: The version number of the dataset should be
managed in accordance to the extensions to guarantee trace-
ability.

R2: Continuous Retraining

R2-1 Retraining: The ML engineer should have the possibility to
improve models through retraining, whenever new data is
generated as an extension of an existing dataset.

R2-2 Computational Efficiency: To save computational power,
the retraining procedure should be implemented efficiently.

R2-3 Continuity: The retraining procedure of the model can be
configured to be executed completely automated after the
raw data was uploaded and specified as an extension by the
data scientist.

5 DATA MANAGEMENT AND CONTINUOUS
RETRAINING

We illustrate our model-driven concept for dealing with iteratively
growing datasets in Figure 2. The figure can be interpreted as an
internal look into steps 2 to 5. In our following explanation, we
repeatedly refer to this image.

5.1 Data Management
This subsection focuses on the upper part of Figure 2. To meet the
requirements R1: Dynamic Data Management from the previ-
ous section, we introduce our concepts of extending datasets in a
chained manner.

In Figure 2, there is one dataset in the first iteration, that has the
id main and the data file inside has the ending h5 which stands for
a Hierarchical Data Format version 5 (HDF5) file, a file format often
used in the ML context for hierarchically saving data with a tree-
like structure [10] [16]. Anyways, we are not restricted to HDF5,
so any other training data file type can be integrated into these
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concepts as well. The contents of this file were gathered by the data
scientist. At this point, it does not matter whether they resulted from
an explicit generation of raw data, or whether they were passively
generated e.g. from sensors. That is why we leave out Step 1 in
our concept description, as it is not the focus of this paper. Based
on the dataset, a package is created and deployed using Apache
Maven. We, therefore, developed a plugin, so that the functionality
is capsuled and easily configurable through defining a pom.xml. At
the same time, a JSON file is automatically created which stores
metadata about the dataset. We decided on JSON because storing
the information in the metadata part of the HDF5 file would require
the use of HDF5 files, which cannot be ensured for all ML libraries.
This would thereby harden the flexibility.

Now we consider the case, that the raw data is extended and
the data scientist wants to deploy an extension of it, which has, in
the case of Figure 2, the id ext. With the help of our framework,
the data scientist can now refer to the existing already deployed
package by defining its id and version number. Internally, this works
through the JSON file that contains a reference pointing towards
the base package. This functionality is also completely included
in configurable Maven goals so that the configuration is solely
modeled in a pom.xml. Through this idea, R1-1 is met. Extensions
of datasets do not necessarily have to refer to base datasets, but
can also refer to an extension themselves. As a consequence, a
chain of extensions can be built to continuously grow in parallel
to the growth of the raw data. This means, in a potential third
iteration could contain an ext_2 that is inside a package with a
JSON file pointing towards the package with the dataset ext. This
functionality forms the dataset model.

As we are only using pointers and not saving any duplicates or
the union of an extension together with the base dataset, storage
efficiency from requirement R1-2 can also be seen satisfied. The
only overhead we must mention is the JSON files, but their size is
negligible when compared to the size of common training datasets.

When an extension is deployed, the version number needs to be
increased. In this manner, R1-3 is satisfied. A version number is
unique and can only be assigned to one dataset. Overwriting can be
enforced if the version number is explicitly set and the validation is
turned off. The version number proves to be very useful in terms of
data lineage and reproducibility, a fundamental concept of MLOps
[2]. The development process of ML models is experimental, that is
why multiple experiments with different datasets can be carried out.
Here, it is always guaranteed that the dataset can be both identified
and reconstructed.

In our previous examinations, we solely considered the training
dataset. Usually, there is always part of the data kept out for val-
idation and testing. For reasons of clarity, these datasets are not
depicted in Figure 2. Nevertheless, the data scientist can define a
test and validation dataset in the pom.xml. The test and validation
datasets are optional and can be contained in any package, i.e. in
the base dataset or any extension. The two then work for all trained
models based on new extensions, so that e.g. the performance be-
fore and after training with an extension can be compared with the
same dataset. If this is not desired, they can also be redefined or
altered when adding a new extension.

5.2 Continuous Retraining
After we discussed the data-management concept visualized in
the upper part of Figure 2, we now focus on the lower part il-
lustrating the integration of training and continuous retraining
methods. In the first iteration, the ML engineer trains a model with
the data-package containing the main dataset, that can be received
by defining the package inside the pom.xml as a dependency. In this
manner, it is automatically checked whether it is already locally
available or still needs to be downloaded to be fed into the training
routine, that is initiated and configured with the same pom.xml
build file.

The key part of our work is represented by the second iteration,
where the ML engineer is delivered an extension of the dataset she
wants to retrain the model with. To receive it, she has to refer to
this extension by defining its id and version as a dependency in the
pom.xml file. The chain of datasets is then automatically resolved,
so all previous datasets are automatically downloaded, if not already
locally available.

Various approaches exist explaining how to reuse and retrain
already trained models [21]. These mainly focus on the case, where
new data is intended for the prediction of a new feature, e.g. de-
tecting whether construction workers wear a safety vest after a
model has already been trained to detect whether they wear a hard
hat. In these cases, the performance of the ML models tends to
massively deteriorate after retraining for the new prediction task
concerning the performance of the old prediction task. However,
for our current concept, we focus on data to solely improve the ac-
curacy or to cover a new domain in the distribution of the training
data. Consequently, the goal in the second iteration is to produce a
model, that has the same performance as a model, that would have
directly been trained on the union of the samples from themain and
ext dataset, but takes less time for this. Therefore, the fine-tuning
approach in [21] inspired our concept, although even the last layer
remains the same before starting the retraining because no new
prediction task is intended.

Accordingly, retraining is realized through initializing the ML
model with weights learned from a previous training procedure and
trying to improve these weights by executing a new training proce-
dure with the new data. If the ML engineer references an extension
and has not already trained a model based on a previous dataset, the
training is performed with the union of the datasets. Through the
concept described in this section, both R2-1 and R2-2 are satisfied,
as the retraining is capable of improving already trained models in
a computationally efficient way, as only the data is used for retrain-
ing, that has not already been used in a training procedure. The
result, as shown in Figure 2 of the retraining procedure is a model
with extracted knowledge from both the main and ext dataset.

The retraining can also be configured conforming to the model-
based manner in the ConfLang (cf. Section 2). Several parameters
influence the learning process, for example, the selected optimizer
and its learning rate. An excerpt of this configuration model for the
two cases is shown in Figure 3. TheML engineer can decide, whether
she would like to continue the retraining with the parameters of
the training procedure of the base dataset (Figure 3a), or whether
she would like to explicitly set them for the retraining (Figure 3b).
As the retraining parameter is automatically adjusted during the
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configuration Network{

[...] 

optimizer : sgd {       

learning_rate : 0.1       

learning_rate_decay : 0.85

}

retraining_type : automatically

}

1

2

3

4

5

6

7

8

ConfLang

(a) Retraining type is set to automatically, so the
parameters from the original training process are
overtaken.

configuration Network{

[...] 

optimizer : sgd {

learning_rate : 0.1       

learning_rate_decay : 0.85

}

retraining_type : manually

retraining_optimizer : sgd {

learning_rate : 0.12       

learning_rate_decay : 0.83

}

}

1

2

3

4

5

6

7

8

9

10

11

12

ConfLang

(b) Retraining type is set to manually, so the con-
figuration must be done explicitly.

Figure 3: Automatic versus manual retraining configuration

training procedure, the ML engineer can even continue with the
learning rate to pretend one big training, or she can increase the
learning rate to attach more importance to the extension.

To enable the continuity aspect, the retraining procedure needs
to be automated as required by R2-3. By means of continuous re-
training, the prediction quality can be improved automatically with-
out the data scientist or ML engineer even interacting. In this way,
the improvement caused by the iterative enlargement of datasets
can be retraced by looking at the deployed model as agile as possi-
ble. For the automation, we implemented an event-based retraining
pipeline that is triggered by the deployment of an extension by
the data scientist. The following retraining and deployment of the
retrained model can also be fully automated and be attached to
conditions (e.g. a better accuracy than the old model), or it can be
specified, that the ML engineer should first manually confirm the
model before it gets deployed.

6 EVALUATION
We are going to evaluate the discussed data management concepts
on our running example aiming to answer the following research
questions.

RQ1: Training Time and Quality: Can intelligent data version-
ing with continuous retraining save storage resources and training
time while preserving or improving the model quality?

RQ2: Agility: How can automation contribute to an agile devel-
opment process for data-driven applications?

For the evaluation, we fall back on our running example intro-
duced in Section 4. The lattice structures have a cubic shape, and
both an exemplary initial structure and its deformed version can be
seen in Figure 4. As an input, we use nine parameters describing the
lattice structure, amongst others the beam thickness and rotation.
As the output, we try to predict the EA and PCF. The architecture

Figure 4: Initial and deformed Lattice structures

w/o retraining A) w/ retraining B) Δ
Avg. CPU time 41.83s 27.20s −14.63s

MAE 7.85 6.71 −1.14

Figure 5: Time andMAE of the to setups A) and B) to compare.

consists of four fully-connected layers with ReLu activation func-
tions and a total of 226 neurons. For our comparison, we first divide
our dataset of 400 samples into a training (90%) and a testing (10%)
dataset. We then compare the Mean Absoulte Error (MAE) and
training time considering the workflow before our data manage-
ment approach in a case we call A) and with the data management
enabled in a case called B). We divide the dataset into a base dataset
(60% of training) and an extension (40% of training). For case B) we
train first on the base dataset and then perform a retraining solely
on the extension. For case A) we first train on the base dataset and
then on the union of the base dataset and the extension, as this was
previously the only opportunity to improve the model performance
if the dataset update is integrated into the original dataset directly.
The data in the following table shows the averaged time and MAE
repeating the experiment 100 times.

Based on only our experiments for this special use-case, we can
answer our RQ1 by saying that around 40% of the training time
could be saved there. In the approach without retraining, it was
trained on 160% of the samples, the reduction in time of only 40% is
to explain the overhead of loading the weights for retraining again.
The MAE decreased by around 15%. However, we observed a high
variance in MAE at the end of the training so that the difference can
be considered random. Hence, we can claim that in our experiment
the accuracy roughly remains the same. A more detailed analysis of
the influence of retraining approach on the resulting model quality
is subject of future work.

To answer RQ2, we pertain to our experience in the KI-LaSt
project introduced in Section 4. After implementing this concept,
we were able to fasten the feedback loop drastically. The domain
experts first came up with a base dataset and expected feedback in
form of a proof of concept model. Then, they generated raw data to
improve the model. After the data scientist preprocessed the data,
the complete retraining and deployment procedure was automated,
so that the experts obtained feedback within the next days. Before,
the ML engineer had to merge the existing and the new dataset by
hand and train the model all over again. Even in cases, where the
requirements changed, which is symbolical for agile processes, the
intelligent versioning and automation sped up the development
process, because only the preprocessing and the model had to be
changed inside the fully automated workflow. The development of
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the application, which is experimental and often requires multiple
iterations, is severely accelerated, if the steps inside are automated.

Threats to Internal Validity: The experiments cover a rather
small part of the hyperparameter and architectural space. The im-
provement of training time and loss in accuracy might deviate for
different setups.

Threats to External Validity: The research work was mainly
evaluated on a single project. The results might differ when trans-
ferred to projects with different organization schemes and tools.
Then, the concepts presented in this work might not lead to an
increase in agility or process improvement as expected.

Threats to Construct Validity: In the presented experiment the
complete dataset was known from the beginning and we performed
an arbitrary splitting into a base and an extension dataset. In a real
scenario data might arrive in chunks of varying sizes which would
possibly affect the results.

7 CONCLUSION
In this work we introduced a novel model-driven data manage-
ment framework for iteratively growing datasets and integrated an
automated continuous retraining routine into this. The presented
concepts enable us to deal with growing datasets and to store result-
ing training data efficiently andwere integrated into theMontiAnna
framework. The requirements were abstracted from the workflow
of an actual research project and satisfied by our concept evolved
throughout the paper. For the evaluation, we show how training
time can be saved by applying our concepts on our running exam-
ple without losing model accuracy. We conclude that our approach
has the potential to save development costs and enforce agility in
data-driven projects.

In future work, we are going to extend our evaluation to different
ML projects and deepen our analysis regarding a more extensive
coverage of the hyperparameter and architectural space. Further-
more, we plan to investigate how semantic modeling can be used to
further improve the consistency between data and ML models, e.g.
by verifying that the given data and its labels are compatible with
the chosen network architecture and its parameters. We also aim
at implementing a configurable retrain methods, for example the
Learning without Forgetting algorithm from [21], to avoid worsen-
ing the prediction of learned patterns from previous datasets, when
a new task should be trained.
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