
FOCUS: COLLABORATIVE MODELING

40 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /18 / $ 3 3 . 0 0 © 2 018 I E E E

Does Distance
Still Matter?
Revisiting Collaborative
Distributed Software
Design

Rodi Jolak, Chalmers University of Technology and Gothenburg
University

Andreas Wortmann, RWTH Aachen University

Michel Chaudron, Chalmers University of Technology and
Gothenburg University

Bernhard Rumpe, RWTH Aachen University

// Studying the design activities of colocated

and distributed software designers revealed

that despite comprehensive technological

improvements, distance still matters. To ensure

effective distributed software design, designers

must consider extra (nontechnical) details. //

COMPANIES ENGAGE IN global
software engineering (GSE) to re-
duce development time and costs.
Companies also head toward cross-
site distribution of their development

work to take advantage of prox-
imity to markets and customers.1
However, working at a distance
might compromise the effectiveness
of GSE.

There are two important challenges
to making GSE successful. Almost
two decades ago, Gary Olson and
Judith Olson raised these challenges:2

• technological challenges raised
by the need for efficient, effec-
tive remote-collaboration tools
and media; and

• social challenges raised by differ-
ences in local context, culture,
language, and trust between
collaborators.

They predicted that future tech-
nological advances will reduce the
effect of the technological challenges.
But they also predicted that work-
ing at a distance will rarely succeed
owing to the inevitable differences
raised by the social challenges. How-
ever, advances in communication
and collaboration technologies raise
the question of whether distance
still matters.

One of the key activities of soft-
ware engineering is software design.
It comprises discussing requirements,
exploring the problem domain, and
making design decisions. When glo-
balized, software design could become
less effective. Several design activities
could be affected, including

• design modeling (representation),
• design reasoning (about problem-

domain and solution-domain
design aspects), and

• design communication.

Also, lack of awareness (understand-
ing others’ activities) and problems
with communication media might
threaten the success of distributed
software design.

Many researchers have explored
the impact of distance on collabora-
tive work. James Herbsleb argued that
colocation fosters communication

[JWCR18] Rodi Jolak, Andreas Wortmann, Michel Chaudron, and Bernhard Rumpe:
Does Distance Still Matter? Revisiting Collaborative Distributed Software Design.
In: IEEE Software, 35(6):40-47, 2018.
www.se-rwth.de/publications/

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 41

COLLABORATIVE
 DESIGN MULTIPLE-CASE
STUDY

In the first case study, three colocated pairs of software designers worked on
a software design challenge at a single location (labeled C1, C2, and C3 in the
main article).14 We conducted the second case study, which involved three design
sessions (D1, D2, and D3) between distributed pairs of software design practi-
tioners in Aachen, Germany, and Gothenburg, Sweden. We used the same design
problem and timing as in the first case study. This allowed us to

 • explore the design decisions and process activities of the two studies,
 • gather experiences and seek insights, and
 • develop suggestions and recommendations that could be of interest to prac-

titioners concerned with distributed collaborative software design.

The designers in our study varied from three to seven years of professional
experience. Three designers worked in automotive software development, two
worked in networking solutions, and one worked in traffic technologies. In both
studies, the designers solved a software design challenge. The challenge was to
create a software design of a simulator that should enable its users to investigate
the effects of different signal timing on traffic flow. The challenge description is
available in Software Designers in Action: A Human-Centric Look at Design Work.14

Teams of two professional software engineers solved the same challenge
locally, which focused on four functional requirements:

 • Users can create a visual map of intersected roads of varying length.
 • Users can describe the behavior of the traffic lights at each of the inter-

sections, such that combinations of individual signals that would result in
crashes are prohibited.

 • Users can simulate traffic flows on the map, and the resulting traffic levels
are conveyed visually.

 • Users can change the traffic density per road.

We informed the designers that

 • their design would be evaluated primarily on the basis of its elegance and
clarity, and

 • they should focus on the interaction that the users will have with the system,
including the basic appearance of the program, and on the important design
decisions that form the foundation of the implementation.

To create the design, the designers in our case study used a smart whiteboard
with the OctoUML (http://rodijolak.com/#octouml) collaborative-design

Continued

because developers are aware of who
is around and who is doing what.3
In contrast, being unable to share re-
sources and see what is happening at
the other sites hinders communication
across different locations.

Pernille Bjørn and her colleagues
investigated whether distance still
matters for distributed collabo-
ration.4 They found that the so-
cial challenges form an obstacle to
achieving effective work between
remote collaborators.

Demetrios Karis and his colleagues
performed studies of remote collabo-
ration at Google.5 They found that
the use of videoconferencing and
video portals contributes to the suc-
cess of remote collaboration by

• providing presence and status
information,

• helping to establish mutual trust
and common ground, and

• preventing misunderstandings.

However, when it comes to remote
design collaboration, Karis and his
colleagues highlighted that developers
at Google found collaboration over
videoconferencing and video portals
a pale imitation of face-to-face in-
teraction. Moreover, the developers
complained that the video portals at
Google lacked a shared drawing tool
to facilitate sketching, designing, and
brainstorming.

This conforms with what David
Budgen stated in his paper “The
Cobblers Children”: many mod-
eling tools do not serve the pur-
pose of software design and rarely
support realistic software design
practices.6 According to Budgen,
modeling tools should preserve the
flexibility and simplicity of white-
boards and provide proper support
for distributed designers at differ-
ent locations.

42 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

software15 connected to a computer providing videoconferencing between the
two sites. OctoUML is open source; it supports mixed informal modeling (free
strokes) and formal modeling (UML class diagram shapes) and supports trans-
lating free strokes into class diagram shapes on the fly. It provides predefined
shapes, drawing selection mechanisms, and undo and redo functionality. With
OctoUML, remote designers share a joint canvas upon which they can draw UML
diagrams along with informal elements (i.e., text, drawings, etc.). We chose to
deploy a simplified version of OctoUML (a shared canvas and sketching tool) on a
smart whiteboard that mimics standard whiteboards (see Figure A). Because the
designers in the first case study could not use formal modeling, we deactivated
those features as well.

Each design session finished with a questionnaire on the experiences and
challenges of collaborative distributed design. We analyzed approximately
10 hours of design activity by six pairs of professional software designers and
performed a manual coding of more than 2,000 discussion events. For cod-
ing the (conversation) actions of the design sessions, we used the collaborative
conversation skill taxonomy of Margaret McManus and Robert Aiken10 and the
design-reasoning decisions of Rainer Weinreich and his colleagues,11 as pre-
sented in Figure 4 in the main article. The former captures various collaborative
problem-solving conversation discussions; the latter captures decisions from the
problem domain (traffic flow) and solution domain (software engineering). We
focused on exploring design reasoning, design communication, awareness, and
the number and nature of problems that occurred during the distributed software
design sessions.

FIGURE A. UI sketches produced by one of the teams.

Several researchers have pro-
posed next-generation design-support
tools that are in line with Budgen’s
guidelines. One of these tools is
OctoUML.7 OctoUML allows mixed
informal modeling (sketching) and
formal modeling and supports collab-
orative distributed software design.

To answer the question posed in
our article’s title, a deep investiga-
tion of current practices of collabor-
ative software design is required. To
do so, we analyzed a collaborative-
design multiple-case study based on
two exploratory cases. Details re-
garding that study are in the sidebar.

How Distance Affects
Design Decisions
First, let’s look at the type of de-
sign decisions that were made and
see whether they differed between
distributed and colocated design
sessions. The graphs in Figure 1 indi-
cate that the colocated designers dis-
cussed more design decisions in the
problem domain than the distributed
designers did. More details on how
these design decisions were made
are available at http://rodijolak.com
/DoesDistanceStillMatter.html.

The decisions in the problem do-
main consisted mainly of assump-
tions, as shown in Figure 2. One of
the reasons that might have allowed
colocated designers to discuss more
problem domain design decisions
is that they implicitly knew (via fa-
cial expressions and body language)
whether a specific assumption was
mutually understood. In a collab-
orative process, the conversation
can continue only when the col-
laborators mutually establish what
they know.8 Distance obstructs the
process of establishing a mutual un-
derstanding of the problem domain
between distributed designers. When
one designer makes an assumption

COLLABORATIVE
DESIGN MULTIPLE-CASE
STUDY (Cont.)

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 43

and implicitly perceives that the co-
located partner did not understand
that assumption, that designer might
rephrase the assumption or build
more knowledge around it.

In contrast, distributed designers
usually do not see each other when
discussing assumptions. Hence, the
perception of having a mutual un-
derstanding (via body language) was
rarely possible. Indeed, the distrib-
uted designer making an assumption
often implicitly considered that the
remote partner understood it, thus

producing fewer problem domain
design decisions.

Technical issues also affected the
distributed design discussions—e.g.,
through blurriness of the voice and
instability of the communication me-
dium. Lack of awareness could have
also led to fewer problem domain
design decisions in the distributed
setting. This is because not perceiv-
ing another person’s actions makes it
difficult to initiate contact and often
leads to misunderstanding of com-
munication content and motivation.3

How Distance
Affects Collaborative
Communication
The graphs in Figure 3 show how
distance could affect communication
in distributed design. We see that
distributed teams had fewer creative-
conflict discussions but more conver-
sation. Creative-conflict discussions
can promote software design reason-
ing and enhance the effectiveness of
group tasks.9

The creative-conflict problem-
solving discussion skill comprises

FIGURE 1. The number of design decisions and social and technical issues per each collocated team (C1–C3) and distributed team

(D1–D3).

Problem design decisions

Fr
eq

ue
nc

y

200

180

160 150
154 150

174

121

83
67

74

26 23

41

139

66

6

49

74

32
15

140

120

100

80

60

40

20

0
C1 C2 C3 D1 D2 D3

Solution design decisions Awareness Technical issues

FIGURE 2. The categories of problem domain design decisions made in each design session.

69%93%66%91%70%

1%

29%

1%
91%

9%

2%

7%
22%2%

10%

7%
25%

6%

Scoping Actor Use case Driver Assumption

C1 C2 C3 D1 D2 D3
(150 total) (150 total) (121 total) (67 total) (41 total) (49 total)

44 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

two major subskills: Mediate and
Argue (see Figure 4). Argue com-
prises different actions (agree, dis-
agree, offer an alternative, propose
an exception, etc.). Distributed
designers argued less, as shown
in Figure 5. One of the reasons
for fewer arguments—and hence
fewer creative-conflict discussions—
might have been lack of trust. Colo-
cated designers share experiences and
context, which helps them to develop
trust. Trust is needed for collabora-
tors to be able to challenge each other
without frustrating collaboration.
Distributed settings can complicate
establishing trust and might compro-
mise reliability between the remote
collaborators.12

Another reason could have been
lack of common ground—i.e., the
knowledge that the designers are
aware of and have in common—in
distributed design sessions. When
common ground is missing, it might
affect distributed collaborators’ ac-
tivities and communication effective-
ness.13 Indeed, this might promote
mutual tacit acceptance of design
decisions. Hence, it reduces creative-
conflict discussions.

Lack of awareness can also re-
duce creative-conflict discussions.
For example, information on au-
thorship (who did what) and inten-
tion (what designers are going to do)
wasn’t available for the participants
in our study.

As we mentioned before, more
conversation happened between the
distributed designers than between
the colocated designers. To explain
this, we recall that conversation
comprises three major subskills:
Maintenance, Task, and Acknowl-
edge (see Figure 4). Distant collab-
oration requires more management
overhead and discussion about work
coordination. Lack of awareness
among distributed collaborators
also raises more task discussions
and maintenance discussions. For
example, the distributed design-
ers summarized design decisions
to confirm knowledge of what they
had done so far. Summarizing also
helped them understand the inten-
tion of their partners.

In addition, distributed designers
had fewer Inform (see Figure 4) dis-
cussions than the colocated design-
ers. This indicates that distributed
designers tend to give less informa-
tion about their decisions, which
leads to less active discussion of the
essence of and rationale for those
decisions.

The Challenges of
Distributed Design
The distributed designers reported
the following challenges.

Technological Challenges
The designers considered con-
nection instability as a challenge.

Network problems and high CPU
use in the client machines inter-
rupted several design sessions.
These devices were simultaneously
running OctoUML, screen- and
voice-recording software, and tele-
communication software, which
overloaded them. Consequently,
the designers had to wait until
communication was reestablished.
This situation can be prevented by
avoiding such overloads.

Moreover, the distributed de-
signers complained about the qual-
ity of voice communication. This
depends on different factors: the
quality of the Internet connection,
the distance from the microphone,
and the volume of the speakers.
This problem can be alleviated by
adopting advanced communication
infrastructures, a high-speed Inter-
net connection, and advanced voice
management tools.

Nonetheless, many organizations
fail to keep pace with technological
advances and therefore fail to man-
age the aforementioned challenges.

Social Challenges
First, the designers perceived the
lack of awareness as a challenge. In
particular, they felt that the inabil-
ity to interpret eye contact, body
language, and facial expressions
affected their decisions and activi-
ties. For instance, one designer said
that because he could not see how

FIGURE 3. The categories of collaborative discussions made in each design session.

27%

47%

26%23%20%27%
40%

27%

33%30%31%

39%

42%

31%

35%

45% 45%

32%

D3D2D1C3C2C1
(673 total) (596 total) (448 total) (398 total) (677 total) (397 total)

Active discussionCreative conflict Conversation

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 45

his partner reacted to his propos-
als, he was unable to decide how to
act appropriately. Each designer was
unaware of what the collaborating
designer was doing and which part
of the system that designer was talk-
ing about or pointing to.

Second, the designers also per-
ceived the lack of trust as a chal-
lenge. In particular, the designers felt
that not knowing their collaborator

beforehand could have affected their
discussions and work.

Other Challenges
The design assignment per se was
perceived as a challenge. We be-
lieve this confirms our process
of thoughtfully planning the as-
signment to simulate real-world
software design situations. This
planning took into account ideation,

problem domain exploration, and
design solution decisions.

T he geographical distribu-
tion of collaborating part-
ners in practice still raises

social and technological challenges.
Thus, practitioners should carefully
consider whether the distribution is
applicable and weigh the benefits of

FIGURE 4. A classification schemata for conversation skills and software design decisions.10,11

Collaborative problem-solving conversation skills

Conversation Active discussion Creative conflict

Maintenance Task Request Inform Motivate Mediate Argue

Suggest action

Request attention
Request confirm

ation

Listen
Apologize

Acknowledge

Usability
(17)

Awareness
(19)

Technical issues
(18)

Scoping (16)

Drivers (14)
Identification of actors (15)

Definitions of use cases (13)
Assum

ptions (12)

Opinion
Justification

Illustration
Inform

ation

Elaboration
Clarification

Suggest
Lead

Explain
Justify

Elaborate
Assert

Reinforce

Encourage

Ask for assistance

Suppose

Offer alternative

Doubt
Infer

Disagree
Conciliate
Agree

Appreciation
Reject

Accept or confirm

Sum
m

arize inform
ation

Request focus change
End participation
Coordinate group process

Propose exception

Design decisions

Modeling tools

Problem-domain Solution-domain

Usability or UI (11)

Structural decision (9)

Im
plem

entation decision (7)

Notation decision (8)

Functionality (6)

Design principle (5)

Deploym
ent decision (4)

Data abstraction (3)

Com
m

unication or coordination (2)

Behavioral decision (1)

Technology decision (10)

Description

 1. Order of actions, initiative, synchronization, concurrency, etc.
 2. Communication or coordination between different parts
 3. Choice of data abstraction (e.g., data structures, message content)
 4. Distribution of software artifact, deployment targets
 5. Design principles and guidelines—e.g., layering, architectural style
 6. Functionality of the system
 7. Implementation details
 8. Modeling notation—e.g., type of diagrams, low or high level of design
 9. Coupling or relations between components, layering, abstraction, etc.
10. Employed technology—e.g., platforms or libraries
11. Usability and user interface
12. Assumptions about domain and context
13. Definition of traffic flow use cases
14. Architectural drivers such as security, usability, and maintainability
15. Identification and definition of actors
16. Decision on what is part of the system
17. Usability of the collaborative-modeling tool
18. Issues related to the communication tool, voice blurriness, latency, etc.
19. Understanding others’ activities, such as authorship, presence, etc.

46 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: COLLABORATIVE MODELING

technology deliberately. To support
distributed designing, for instance,
modern collaborative-design envi-
ronments focus on the consistent,
real-time sharing of diagrams. How-
ever, social awareness, such as the
ability of designers to relate to each
other through pointing, gaze, and
gestures, remains missing.

The designers in our study indi-
cated challenges in distributed col-
laborations that are beyond the scope
of tooling. In particular, in contrast
with locally collaborating teams, dis-
tributed designers did not know their
collaborators beforehand. Hence,
they had to build professional and
personal trust during the experiment.

On the basis of our results, we
encourage software design prac-
titioners aiming to collaborate re-
motely to consider the following:

• Establish trust via arranging
personal or virtual meetings or
social events before the remote
design sessions.5

• Establish common ground
via exchanging interests,

experiences, expertise, and
beliefs between distributed
designers.

• Introduce explicit triggers for
creative-conflict discussions into
the collaboration process.

Furthermore, we recommend that
the developers of computer-supported
cooperative work (CSCW) tools
for software design should support
awareness by adapting technology
to provide immersive telepresence
experiences.

Software design requires exten-
sive exploration of the problem do-
main and context, and leads up to
making critical design decisions
about software systems. Moreover,
collaborative software design is
tightly coupled work that requires
either more frequent or more com-
plex interactions.2 Because of these
aspects of software design and be-
cause the current technology is still
incapable of fully mitigating the so-
cial challenges of remote collabora-
tion, we suggest that distance still
matters.

References
 1. D. Šmite and C. Wohlin, “A Whisper

of Evidence in Global Software Engi-

neering,” IEEE Software, vol. 28,

no. 4, 2011, pp. 15–18.

 2. G.M. Olson and J.S. Olson, “Dis-

tance Matters,” Human–Computer

Interaction, vol. 15, no. 2, 2000,

pp. 139–178.

 3. J.D. Herbsleb, “Global Software

Engineering: The Future of Socio-

technical Coordination,” Proc. 2007

Future of Software Eng. Conf. (FOSE

07), 2007, pp. 188–198.

 4. P. Bjørn et al., “Does Distance

Still Matter? Revisiting the CSCW

Fundamentals on Distributed Col-

laboration,” ACM Trans. Computer-

Human Interaction, vol. 21, no. 5,

2014, article 27.

 5. D. Karis, D. Wildman, and A. Mané,

“Improving Remote Collaboration

with Video Conferencing and Video

Portals,” Human–Computer Interac-

tion, vol. 31, no. 1, 2016; https://

www.tandfonline.com/doi/abs

/10.1080/07370024.2014.921506.

 6. D. Budgen, “The Cobbler’s Chil-

dren: Why Do Software Design

FIGURE 5. Percentages of collaborative-discussion categories per each team.

21
.1

0

Pe
rc

en
ta

ge

32
.3

8
24

.7
8

20
.4

0

1.
93

2.
01

6.
25

4.
27

7.
68

6.
82

5.
54

11
.3

8 14
.3

2
5.

17
5.

17
4.

03

25
.9

4

7.
58

6.
20

8.
70

11
.8

1
7.

83
13

.3
5

8.
62

4.
37

2.
46

14
.0

7

31
.0

6
32

.0
4

27
.0

1

11
.3

7
7.

56

25
.7

0
19

.3
5

19
.4

222
.7

4
16

.9
5

2.
27

19
.5

0
16

.3
3

D3D2D1C3C2C1

ArgueMaintenanceTaskAcknowledgeRequestMotivateInform Mediate

19
.8

5
20

.5
3

24
.4

3

0.
15 0.
51 2.

22

0 0

2.
02

 NOVEMBER/DECEMBER 2018 | IEEE SOFTWARE 47

Environments Not Support Design

Practices?,” Software Designers in

Action: A Human-Centric Look at

Design Work, M. Petre and A. Van

Der Hock, eds., CRC Press, 2013,

pp. 199–218.

 7. B. Vesin, R. Jolak, and M.R.V.

Chaudron, “OctoUML: An Environ-

ment for Exploratory and Collabora-

tive Software Design,” Proc. IEEE/

ACM 39th Int’l Conf. Software Eng.

(ICSE 17), 2017, pp. 7–10.

 8. H.H. Clark and S.E. Brennan,

“Grounding in Communication,”

Perspectives on Socially Shared Cog-

nition, L. Resnick et al, eds., Am.

Psychological Assoc., 1991,

pp. 127–149.

 9. A. Soller and A.S. Abu-Issa, “Sup-

porting Social Interaction in an

Intelligent Collaborative Learning

System,” Int’l J. Artificial Intelligence

in Education, vol. 12, no. 1, 2001;

http://iaied.org/pub/980.

 10. M.M. McManus and R.M. Aiken,

“Monitoring Computer-Based Col-

laborative Problem Solving,” J. Inter-

active Learning Research, vol. 6,

no. 4, 1995, p. 307.

 11. R. Weinreich, I. Groher, and C.

Miesbauer, “An Expert Survey on

Kinds, Influence Factors and Docu-

mentation of Design Decisions in Prac-

tice,” Future Generation Computer

Systems, vol. 47, 2015, pp. 145–160.

 12. P.S. Greenberg, R.H. Greenberg,

and Y.L. Antonucci, “Creating and

Sustaining Trust in Virtual Teams,”

Business Horizons, vol. 50, no. 4,

2007, pp. 325–333.

 13. A. Monk, “Common Ground in Elec-

tronically Mediated Communication:

Clark’s Theory of Language Use,”

HCI Models, Theories, and Frame-

works: Toward a Multidisciplinary

Science, J.M. Carroll, ed., Morgan

Kaufmann, 2003, pp. 265–290.

 14. M. Petre and A. Van Der Hoek,

Software Designers in Action: A

Human-Centric Look at Design

Work, CRC Press, 2013.

 15. R. Jolak et al., “Towards a New

Generation of Software Design En-

vironments: Supporting the Use of

Informal and Formal Notations with

OctoUML,” Proc. 2nd Int’l Work-

shop Human Factors in Modeling

(HuFaMo@MoDELS), 2016,

pp. 3–10.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

RODI JOLAK is a PhD candidate in software engineering at

the joint Department of Computer Science and Engineering of

Chalmers University of Technology and Gothenburg University.

His research activities focus on software engineering, soft-

ware architectures, software design, and human–computer

interfaces. Jolak received an MSc in engineering of computing

systems from Politecnico di Milano. Contact him at rodi.jolak@

cse.gu.se; http://www.rodijolak.com.

ANDREAS WORTMANN is a tenured researcher in RWTH

Aachen University’s Department for Software Engineering.

His research interests include software engineering, software

architectures, model-driven development, robotics, and

software-language engineering. Wortmann received a PhD

in software engineering from RWTH Aachen University. He’s

a member of IEEE and its Technical Committee on Software

Engineering for Robotics and Automation. Contact him at

wortmann@se-rwth.de.

MICHEL CHAUDRON is a full professor in the Software

Engineering Division of the joint Department of Computer Sci-

ence and Engineering of Chalmers University of Technology and

Gothenburg University. His research interests include software

architecture, software design, software modeling, and model-

driven software development. Chaudron received a PhD in formal

methods and programming calculi for parallel computing from

Universiteit Leiden. Contact him at michel.chaudron@cse.gu.se.

BERNHARD RUMPE is the chair of RWTH Aachen University’s

Department for Software Engineering. His main interests are

software development methods and techniques that benefit from

rigorous, practical approaches. Rumpe received a habilitation in

computer science from the Technical University of Munich. He’s

editor in chief of Software and Systems Modeling. Contact him at

rumpe@se-rwth.de; http://www.se-rwth.de/topics.

