
Distributed Simulation of Cooperatively Interacting Vehicles*

Christian Frohn1, Petyo Ilov1, Stefan Kriebel2, Evgeny Kusmenko1, Bernhard Rumpe1, and Alexander Ryndin1

Abstract— The field of cooperatively interacting vehicles re-
quires complex simulation infrastructures dealing with various
aspects such as vehicle, traffic, and communication models.
In this work we present a modular and extensible simulator
architecture, design patterns, and best practices for this domain.
We show how extension points for co-simulators can be em-
ployed allowing the engineer to tailor a simulation environment
to his needs. Moreover, we introduce the sectoring approach
distributing the computational burden of a simulation over a
series of workers thereby allowing us to cope with a large
number of participants residing in large urban areas.

I. INTRODUCTION

The development of highly-interconnected transportation
systems is a challenging process requiring a large amount
of testing, validation, and verification in order to guaran-
tee safety and standard-compliance, e.g. with ISO26262.
Simulators have always played a key role in automotive
engineering processes revealing properties of a system under
development or parts thereof without having to deploy it
on expensive hardware or endangering human lives. In [1]
we presented a simulator framework for the evaluation of
model-based software engineering methods in the field of
autonomous vehicles. The question arises which capabilities
a simulation platform needs to exhibit in order to support
an elaborate cooperative vehicle development process. From
our experience in previous academic and industrial projects
we derived the following set of requirements a cooperative
driving simulator for off-line application in automated de-
velopment processes needs to fulfill and which we missed in
available solutions:

(R1) World model: depending on the simulation task, dif-
ferent abstraction levels of the physical laws and the environ-
ment may be required. The detail level should be adaptable
in order to adequately capture reality while ensuring an
optimal utilization of computational resources. (R2) Commu-
nication: efficient cooperation is only possible if an adequate
communication channel is available. Similarly to (R1), the
detail level of the employed communication model depends
highly on the simulation task. While an abstract channel
model only simulating the quantities latency, bandwidth,
and outage may be sufficient for the majority of simulation
scenarios, more details including multi-path propagation and
the Doppler effect particularly inherent for mobile communi-
cation but also protocol stacks might become indispensable.

*This work was supported by the Grant SPP1835 from DFG, the German
Research Foundation.

1Department of Software Engineering, RWTH Aachen University, Ger-
many, {kusmenko,rumpe}@se-rwth.de

2BMW Group, Munich, Germany, stefan.kriebel@bmw.de

To allow a seamless integration of co-simulators, e.g., for
communication, a simulator coupling approach allowing for
the creation of simulator product lines is required. (R3)
Distribution: due to a potentially large number of participants
and vast simulation areas, simulation tasks may become
computationally expensive. Therefore, a scalable concept to
distribute the workload over multiple workers is required.
(R4) Driving system integration: seamless integration of
vehicle control software into a simulator is mostly accom-
plished using ROS [2] or similar middleware ensuring a low
coupling between simulator and controller. However, such
middleware mostly relies on asynchronous execution models
potentially leading to synchronization problems. Therefore,
synchronous integration alternatives still ensuring a high
level of decoupling are required. (R5) Vehicle extensibility:
it must be possible to extend a vehicle by new elements like
sensors or physical parts. (R6) User interface: both headless
and visualized simulation delivering reproducible results are
needed. The former enables efficient continuous simulation
and testing inside an automated work-flow while the second
helps to identify and understand erroneous vehicle behavior.

The aim of this work is a modular object-oriented sim-
ulation platform for cooperative vehicles living up to the
aforementioned requirements. The project web site con-
taining practical information can be found at https://se-
rwth.de/materials/montisim. We encourage the reader to
inspect our simulator and to use it for further research.
The main principles as well as our first main contribution,
namely design patterns for event-driven simulator coupling
are presented in section II. In section III, as the second
contribution we present a distributed simulation approach
enabling realistic simulations of large urban areas by load
distribution. In section IV we elaborate on our design
patterns for controller integration. In section V, based on
a cooperative crossing example we demonstrate how the
reference implementation of our simulator can be used for
cooperative driving simulation.

II. COOPERATIVE VEHICLE SIMULATION

Research on cooperatively interacting vehicle simulation
has been conducted in works such such as TraNS [3],
iTETRIS [4], and Veins [5]. These solutions use SUMO [6]
for the microscopic traffic simulation, whereas the discrete
event simulation of the networking part is delegated to ns-
2, ns-3, and OMNeT++, respectively [7]. The bidirectional
simulator coupling in Veins relies on the TraCI approach
described in [8]. Since these simulators don’t live up to
all of the requirements introduced in section I, e.g., due

[FIK+18] C. Frohn, P. Ilov, S. Kriebel, E. Kusmenko, B. Rumpe, A. Ryndin: 
Distributed Simulation of Cooperatively Interacting Vehicles. 
n: International Conference on Intelligent Transportation Systems (ITSC'18). IEEE, 2018. 
www.se-rwth.de/publications/ 



to the lack of realistic physical behavior, no means for
simulation distribution and vehicle extensibility, we present a
new software architecture for the simulation of cooperatively
interacting vehicles based on the simulation framework for
model-driven autonomous vehicle development introduced in
[1] and recapped in the following paragraph.

In [1], the main vehicle and environment simulator is
a discrete time simulator. After the initial setup of the
simulation model and the driving scenario, the simulation
is started and the ongoing physical processes of the virtual
environment are simulated in a simulation loop. This loop
acts as a time emitter and advances the simulation time
according to a predefined, possibly dynamically adapted
resolution. Thereby it governs the execution and synchro-
nization of all simulation modules while decoupling sim-
ulation time from real time. In this way we ensure that
no race conditions are possible and the simulation results
are by no means affected by the executing hardware or the
operating system. As demanded by (R5), simulated vehicles
are assembled of modular and exchangeable components
such as a communication system, virtual sensors, and most
important, a controller unit computing actuator commands
for acceleration, braking, and steering of the vehicle based
on the incoming sensor signals. The virtual environment is
created from OpenStreetMap data enabling the simulation of
real areas. The simulation of object movement and collision
detection in the environment is performed using the rigid
body model [9] by solving its differential equations in an
Euler loop. Alternative physics and vehicle models can be
integrated in order to achieve the desired detail level as
required by (R1). Particularly, the Euler loop can be replaced
by Modelica models implementing the functional mockup
interface and solving the system of differential equations
internally [10].

So, how can we reuse this existing solution as a blackbox
while extending it by all the functionality needed for vehicle
cooperation? In contrast to physics, communication networks
are best simulated using the discrete event simulation
paradigm. Instead of advancing the simulation time in small
steps possibly not containing any state changes, the idea
of discrete event simulation is to schedule and process
a sequence of events such as sending and receiving of
messages while no simulation is needed for the time intervals
in between. Information attached to an event defines how
the event needs to be processed, which usually creates
new events scheduled for a future cycle. Thereby, channel
properties such as bandwidth but also the message size
and protocol overhead are taken into account in order to
schedule the upcoming events realistically. We developed a
lightweight general purpose discrete event simulator, which
can later be reused for other discrete event co-simulators,
e.g. varying tire pressure values or weather effects. To
create a specialized variant of the general purpose discrete
event simulator exhibiting domain specific behavior such as
communication we rely on extensibility concepts provided
by object orientation, namely inheritance and delegation. As
described in requirement (R2), a high degree of flexibility

<<interface>>
DiscreteEvent

<<abstract>>
DiscreteEventSimulator

*
{ordered}

NetworkSimulator NetworkDiscreteEvent

<<abstract>>
NetworkSettings NetworkNode

<<abstract>>
NetworkChannelModel

NetworkMessage

<<abstract>>
NetworkTask

1
1

1 *

*

1

1

Fig. 1. Class diagram for the network simulator

and support for different network models are needed for
the simulation of cooperatively interacting vehicles. Different
entities in the network simulator are implemented to simu-
late various types of communication. Abstract classes and
interfaces are used to define the required basic functionality
of these entities. New network models can be introduced
by subclassing the provided interfaces. The principal class
hierarchy is illustrated as a UML class diagram in Fig. 1.
NetworkNodes represent devices equipped with the

ability to communicate. Each network node is capable of
handling a variety of networking tasks. The different tasks of
the simulated network stack are implemented as subclasses
of the abstract NetworkTask class. Each network node
forwards its NetworkDiscreteEvents to all its network
tasks which in turn decide individually if and how to han-
dle these events. This mechanism allows network tasks to
exchange messages without knowing each other, which is
inspired by the mediator design pattern [11]. Algorithms
for collision avoidance, priority handling at intersections,
and traffic optimization can be implemented in network tasks
with the help of data from vehicular communication.

The NetworkChannelModel represents the physical
channel between communicating network nodes. For each
message sent over the network it decides if and when it
arrives at other nodes. The concrete implementation can be
exchanged by sub-classing to enable the application of differ-
ent channel models ranging from fixed delays and outages to
multi-path propagation and Doppler effect simulation. Model
specific network settings such as the modulation scheme,
code rate, and data rate are defined in subclasses of the
abstract NetworkSettings class. Tasks of the network
stack should not be forced to operate on the technical
level of raw bit sequences using up a large amount of
computational resources but seldom improving the accuracy
of simulation results. For many scenarios it is desirable to
pass application level data such as driving decisions through
the communication system directly. On the other hand,
a well designed simulator architecture should allow low
level processing, as well. We provide this flexibility by the
NetworkMessage class. Network messages serve as basic
entities for information exchange containing all relevant data

597



to be transmitted. Common header information for protocols
in the network stack, such as sender and receiver addresses,
port numbers, etc. can be specified directly in a network
message object. If the implementation of the network stack
is required to operate on bit sequences, the corresponding bit
level representation can be provided by this class.

The original vehicle simulator is completely ignorant of
the discussed networking framework and we want to attach
the new functionality as a black-box through an event-driven
co-simulator interface. We achieve this by introducing the
co-simulator observer design pattern. The general idea of
the observer pattern [11] is that an observed process can
notify a series of observing system components about occur-
ring events thereby granting access to relevant information
without an explicit relation between the observable and the
observers. An observable component needs to provide a
mechanism for the registration and management of observers,
whereas observers have to implement an interface to receive
the desired information. This design pattern enables unlim-
ited extensibility in a software system and plays a central
role for event driven communication architectures.

We enable a high degree of extensibility in our vehicle
simulator by a variant of this design pattern by introducing a
series of simulator related events. For example, the registered
observers are notified at the start and at the end of the
simulation as well as before and after every simulation cycle.
New co-simulators need to implement the co-simulator event
interface in order to receive information from the main
simulator. Therefore, every co-simulator should be registered
as an observer in the main simulator before a simulation run
begins. As each co-simulator needs to implement the co-
simulator interface, we provide it through our general pur-
pose discrete event simulator. Hence, our network simulator
simply inherits this functionality and can be integrated as
a simulator observer without the need for any glue code.
Once it is registered within the main simulator, the network
simulator receives access to all the objects residing in the
virtual world and creates network nodes for those which are
able to communicate. This information is acquired through
the role interface by requesting the communication role based
on the role object pattern [12].

Fig. 2 illustrates the interaction of the coupled simulators
for an exemplary simulation run. In this example, the discrete
time step for each update is set to 10 ms and a notification
is sent to the network simulator after each update step of the
main simulator. Based on the time information included in
this notification the network simulator advances its own time
and processes all scheduled events chronologically until it
reaches the current time of the main simulator. This simulator
coupling mechanism is repeated for all co-simulators as long
as the simulation is running. Note that a co-simulator might
need to simulate events with a higher time resolution than
its parent simulator. For instance, the event in the network
simulator at 9 ms might have to access sensor data of
a vehicle, but the main simulator has only simulated this
information at t = 0 and t = 10 ms and hence needs to
interpolate. We assume that interpolation inaccuracies are

n : NetworkSimulators : Simulator

register
Observer(n)

start
Simulation() simulationStarted(...)

execute
SimulationLoop()0 ms

10 ms
didExecuteLoop(...)

0 ms
advance

SimulationTime(...)

processEvent(...)
3 ms

processEvent(...)
9 ms

10 ms10 ms
execute

SimulationLoop()10 ms

20 ms
didExecuteLoop(...)

advance
SimulationTime(...)

processEvent(...)

10 ms

12 ms

Fig. 2. Exemplary sequence diagram for co-simulator communication

negligible for appropriately chosen time steps.

III. DISTRIBUTED SIMULATION

Most software simulators are based on monolithic ar-
chitectures and require all necessary resources, such as
environment data and software modules including sensors,
controllers, etc. to be bundled all together, similar to the sim-
ulator described in [13]. A downside of this approach is its
constrained extensibility and scalability due to tight coupling
of modules and their inability to be distributed over separate
machines. The top system design of the simulator proposed
in this work exhibits a distributed client/server architecture
[14] in combination with the Three-tier architecture [15] and
the Model-View-Controller pattern [11] as shown in Fig. 3.
These architectural styles leverage the decoupling of simula-
tor components and allow us to distribute them as bundles on
different machines, thus increasing the overall scalability of
the whole platform. Both, the three-tier architecture and the
MVC pattern introduce the separation of data (model), logic
(controller), and representation (view) into different layers
allowing us to keep the client application thin and decoupled
from the simulation logic making the simulator and its results
accessible remotely, even from mobile devices.

However, this functional distribution is not enough if the
simulator has to deal with massive amounts of data, large
environments, and thousands of participants. To live up to

598



Client

Client

Client

Client

Client

Business 

Logic &

Web 

Services

World 

Builder

Path 

Finder

World 

Model

Business Logic
&

Web Services

Simulation 

Manager

Simulator
Specific 

Simulators

Simulation

Buffers

Controllers, Sensors, etc.

Zone

Room
DB

Data Tier
(Model)

Business Tier
(Controller)

Representation Tier
(View)

Instance of 
virtual world

Sectors of the 
virtual world

Internal messaging

Two-way communication 
connection

Fig. 3. Simulator overview

(R3), we employ concepts from the SmartFoxServer devel-
opment kit for distributed multi-user online games splitting
the simulator logic into zone and room modules [16]. This
allows us to distribute the simulator over a series of workers,
each responsible for a small spatial part of the simulation
as suggested in the SmartFoxServer architecture paper [17].
Thereby, a zone module represents an instance of the whole
virtual world. It is responsible for splitting the world into
spatial sectors of predefined size, which are later managed
by independent room modules. It is the first layer of the
web server providing an interface for clients. Therefore, zone
modules manage global data and events such as hand-overs,
process simulation requests, and scenario definitions. They
create rooms and keep track of load balancing and user
management.

A room module on the other hand manages a single spatial
sector as well as its dedicated sub-simulator. Each room
can serve multiple simulations requested by different clients
and provide simulation frame data. The latter captures state
changes of all objects in a simulation including vehicles,
pedestrians, etc. necessary for the presentation on client
machines and result analysis. Since each room handles only
its own sub-simulation, it requires just a small fraction of
resources a single simulator processing the whole virtual
world would allocate. We observed that this divide and
conquer approach increases the overall map size a single
machine can handle. Distributing the simulation over several
machines in a cluster as well as a large scale performance
study are subjects of ongoing work.

Both zone and room modules are parts of the business
tier in the overall platform architecture. Thus each of these
modules resides on a simulation server. This comes with the
advantage that a user does not have to provide computational
resources for distribution management. Whenever a vehicle
leaves a sector and hence needs to be transferred to another
room or the result of an action of one sector is required in

another one, internal messages are sent between user defined
room extensions. Internal messaging is a SmartFoxServer
feature allowing extensions loaded in separate class load-
ers and performing semantically different tasks such as
room management and in-room simulation management to
exchange messages. This mechanism allows developers to
define custom data flows and to handle simulator specific
events.

In order to split the virtual world into sectors, we make
use of a map splitting approach similar to the one used in
[18] where the world is subdivided into rectangular sectors
with common borders. Additionally, we let sectors overlap
to avoid unnecessary sector changes whenever a vehicle is
driving along a sector border. Furthermore, the overlapping
areas are of great importance for the synchronization pro-
cess: only the objects residing in those areas need to be
synchronized between adjacent sectors, thereby dramatically
reducing the synchronization overhead. In order to react
to changing traffic load, dynamic sector sizes need to be
investigated in the future. The simulation complexity can
be either estimated in advance to create appropriate static
sector sizes or measured on-line in order to adapt the sectors
according to changing requirements.

The building process of the distributed environment takes
place as follows: An OSM map file provided by the scenario
model is loaded and parsed from its original XML format
into a Java based graph representation. Then the world is
split into rectangular regions with regard to the desired sector
size and overlapping border area width. Thereby, the sector
size should be chosen carefully to ensure that computational
resources are exploited at the best. The overlapping border
areas have a direct influence on the simulation behavior: too
narrow overlapping areas result in numerous unnecessary
vehicle hand-overs introducing co-simulation inaccuracies.
Too wide overlapping areas however require a lot of in-
formation to be stored and processed redundantly thereby
wasting valuable simulation resources. For each overlapping
area in a sector, references to the sectors that share the same
overlapping area are assigned to achieve a two way binding
between the adjacent sectors. Note that an overlapping area
can be shared between no more than two sectors. Thus
adjacencies on the diagonals are not directly possible, but
rather achieved by lookups in overlapping areas of directly
adjacent sectors.

Although the map splitting approach allows for server
load distribution over multiple workers serving different
sectors, it does not come without cost: distributed path
finding is intricate and not always leads to optimal results,
since conventional path finding algorithms only work for
complete graphs [19]. As each sector can only see the part
of the world it is responsible for (which also implies a
limited view on the world map), a distributed path finder is
required, introducing algorithmic overhead. Our solution to
this problem is to release the navigation from the vehicle
and to provide it as a simulator service available for all
objects such as vehicles residing in a simulation. After
resolving the sectors containing the start and the destination

599



node, a heuristic is used to estimate the best sequence of
sectors to traverse - in most cases and provided that the
sector size is sufficiently large, it does not make sense to
search sectors to the east when the destination is situated to
the west of the vehicle. The first sector starts a standard
Dijkstra route search. Whenever it finds a border to the
heuristically determined sector to go through next, it can ask
it via external messaging to find a path to the subsequent,
third sector. As a result the first sector obtains a list of
shortest distances between the given border node and the
border nodes leading to the third sector found by the second
sector. Thereby border nodes not having a direct access to the
subsequent sector are pruned in order to reduce the search
tree. Using this information, the first sector extends its map
graph without the need to care about intermediate nodes
inside the other sectors. The extended graph is now used
to continue the Dijkstra search by requesting routes from
further sectors until the destination node is found in the
target sector. Of course, this algorithm does not guarantee
optimality of the solution found. But provided the sectors
are reasonably large, it mostly provides excellent results
while keeping the complexity low. To facilitate the work
with the proposed simulation framework as required by
(R6) we designed a simple interface accessible through a
web browser to maintain platform independence and high
availability. It allows a user to define new scenario models
using a simulation definition language, request simulations,
and visualize or access simulation results. Upon selection of
a scenario all involved vehicles are registered in the sub-
simulator serving the sector in which these vehicles are
initially spawned. A simulation frame buffer is created to
which simulation frames of this scenario are written. Once
the simulation is finished, the frames can be fetched by the
client, thus enabling a smooth visualization independent of
the actual simulation time. This is another application of
the mediator pattern decoupling the delivery of simulator
results from the presentation and enabling simulation replays
without having to re-simulate the scenario.

IV. VEHICLE MODEL INTEGRATION

The purpose of a simulator for automated cooperative
driving is of course the evaluation and testing of cooperative
driving systems and parameters. Often control systems are
integrated into a simulator using a middleware such as
ROS using asynchronous non-blocking calls, e.g. in Gazebo
[2]. Although this approach ensures low coupling and is
easy to integrate, it suffers from synchronization issues.
If the simulator needs less time for one simulation cycle
than the controller application, the latter will not be able
to serve actuator values on time. Consequently, simulation
results highly depend on the executing hardware and software
setup and may not be reproducible as required by (R6). In
Gazebo the problem can be worked around using plug-ins
inserting time delays. With the concept of model proxies
we introduce a more controllable model integration strategy
as required by (R4). A model proxy exhibits a standard
controller interface. For the simulator it appears to be a

controller integrated directly into the vehicle which can be
used by standard function calls. However, instead of actually
computing actuator commands, the proxy forwards the sensor
inputs to a remote controller application which in turn has
to implement the corresponding adapter to be able to talk
to the model proxy. What looks similar to the Gazebo/ROS
approach at first sight has the advantage that the model proxy
ensures synchronization by halting the simulator loop while
waiting for the controller application to deliver a reaction
for the actual simulation cycle. As proof of concept we
provide an RMI based model proxy to allow for remotely
executed controllers. This solution involves an RMI server,
which contains all the implemented model adapters and a
manager, which is responsible for the creation and deletion
of adapter instances on demand as well as providing access
to these instances to the RMI client. Whenever an external
controller model is required by a model proxy, the RMI client
requests an adapter for this model to be created on the RMI
server. In contrast to ROS there is no need to run a separate
controller process for each vehicle manually. Once the model
adapter is accessible, the RMI client is allowed to use it
via the general model adapter interface, allowing adapters,
respectively the models they are wrapping, to be executed as
functional blocks. The calls are blocking and synchronous
ensuring full control over the execution cycle. As the simu-
lator itself does not need to care about the protocol behind
the communication, any middleware can be supported by
adding further model proxies. The desired integration scheme
can then be set in the simulator configuration. An example
integrating our simulator into a model driven development
methodology for vehicle controllers is EmbeddedMontiArc
Studio [20]

V. EXPERIMENTS

The presented simulator platform can be employed for
various simulation scenarios in the domain of cooperative
driving. To illustrate potential applications we evaluated
a situation with four vehicles approaching an intersection
with the priority to the right rule. The complete example
is captured in https://youtu.be/kN-hS6lgqOk. All vehicles
have the same velocity and start with the same distance
to the intersection. Although sensors are able to detect this
situation, a deadlock is likely to occur without any kind of
cooperative interaction by vehicular communication. Since
successful cooperation should avoid collisions by handling
the priority rules at the intersection correctly, vehicle colli-
sions are measured to evaluate the properties of the simulated
vehicular communication and algorithms. This is the reason
why we disabled collision avoidance features based on sensor
data for this scenario. Additionally, we measure average
latencies and average message counts on different layers
of the simulated network stack. Thereby, we compare three
channel models in this evaluation. The simple channel model
represents direct vehicular communication with latencies and
different data rates, but without any kind of message loss and
outages. The direct channel model and the cellular channel
model include computations for an outage probability and

600



failed message transmissions. The cellular model simulates
a cellular network topology with base stations controlling
the communication. In this example, the simulation loop
frequency is set to 30 Hz and the three available channel
models are used with various settings for data rate, modula-
tion, and code rate indicated by the channel model indices 0,
4, and 7. Thereby, index 0 operates with a low data rate but
a robust modulation scheme (e.g. BPSK@3 MBit/s), index 4
is intermediate (e.g. 16QAM@12 MBit/s) and 7 is fast but
more error-prone (e.g. 64QAM@27 MBit/s). Due to channel
randomness we employ a MonteCarlo simulation for each
setting. Fig. 4 depicts the average message latencies in the
left plot, i.e. the expected delay it takes a message to arrive at
the intended receiver. Obviously, message latencies decrease
with an increased data rate due to a reduced transmission
time. The plot on the right shows how reliable the com-
munication schemes in our scenario are. Thereby collision
simulations denotes the total number of simulations featuring
at least one collision. Collision objects is the number of
vehicles involved in a crash due to failed communication.
Fig. 5 depicts the number of messages sent through the
network on average using direct and cellular communica-
tion, respectively. Note that messages are counted hop-wise.
A message forwarded by the base station in the cellular
communication case counts as a new message. This leads
to approximately twice the number of messages when using
cellular communication compared to direct communication.

0

2

4

6

8

10

12

14

16

18

Simple Model Direct Model Cellular Model

Av
er

ag
e 

la
te

nc
y 

in
 m

s

Index 0
Index 4
Index 7

0

50

100

150

200

250

300

350

400

Simple Model Direct Model Cellular Model

0 0 0 0 0 0 0 0 0 0

To
ta

l a
m

ou
nt

Index 0: Collision simulations
Index 0: Collision objects
Index 4: Collision simulations
Index 4: Collision objects
Index 7: Collision simulations
Index 7: Collision objects

0

50

100

150

200

250

300

350

400

Simple Model Direct Model Cellular Model

Fig. 4. Scenario evaluation for latencies and collisions

0

500

1000

1500

2000

2500

Index 0 Index 4 Index 7

D
ire

ct
: 

A
ve

ra
ge

 m
es

sa
ge

 c
ou

nt

Sent Application
Sent Physical
Received Link

Received Application

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Index 0 Index 4 Index 7

C
el

lu
la

r:
 A

ve
ra

ge
 m

es
sa

ge
 c

ou
nt

Sent Application
Sent Physical
Received Link

Received Application

Fig. 5. Scenario evaluation for message amounts on network stack layers

VI. CONCLUSIONS

In this work we have presented a versatile simulator archi-
tecture fulfilling a given core set of requirements for coopera-
tive vehicle simulation. The employed design patterns includ-
ing co-simulation observers, mediators, zoning, and others
can be re-used to build generic and customizable simulator
frameworks not restricted to the cooperative driving domain.
We discussed how complex simulation tasks can be tackled
successfully by the zoning approach and how extensions

can be added using our co-simulation infrastructure, e.g. for
network simulation. Investigations on dynamic sector sizes
depending on the load distribution in the simulated areas and
a scalability study are subject of future work.

REFERENCES

[1] Filippo Grazioli, Evgeny Kusmenko, Alexander Roth, Bernhard
Rumpe, and Michael von Wenckstern. Simulation Framework for Ex-
ecuting Component and Connector Models of Self-Driving Vehicles.
In EXE at MODELS, 2017.

[2] Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y Ng. ROS: an Open-Source
Robot Operating System. In ICRA workshop on open source software,
volume 3, page 5. Kobe, Japan, 2009.

[3] M. Piórkowski, M. Raya, A. Lezama Lugo, P. Papadimitratos,
M. Grossglauser, and J.-P. Hubaux. TraNS: Realistic Joint Traffic
and Network Simulator for VANETs. SIGMOBILE Mob. Comput.
Commun. Rev., 12(1):31–33, January 2008.

[4] Michele Rondinone, Julen Maneros, Daniel Krajzewicz, Ramon
Bauza, Pasquale Cataldi, Fatma Hrizi, Javier Gozalvez, Vineet Kumar,
Matthias Röckl, Lan Lin, et al. iTETRIS: a modular simulation
platform for the large scale evaluation of cooperative ITS applications.
Simulation Modelling Practice and Theory, 34:99–125, 2013.

[5] Christoph Sommer, Reinhard German, and Falko Dressler. Bidirec-
tionally Coupled Network and Road Traffic Simulation for Improved
IVC Analysis. IEEE Transactions on Mobile Computing, 10(1):3–15,
January 2011.

[6] Daniel Krajzewicz, Jakob Erdmann, Michael Behrisch, and Laura
Bieker. Recent development and applications of SUMO - Simulation
of Urban MObility. International Journal On Advances in Systems
and Measurements, 5(3&4):128–138, December 2012.

[7] Saba Siraj, A Gupta, and Rinku Badgujar. Network simulation tools
survey. International Journal of Advanced Research in Computer and
Communication Engineering, 1(4):199–206, 2012.

[8] Axel Wegener, Michał Piórkowski, Maxim Raya, Horst Hellbrück,
Stefan Fischer, and Jean-Pierre Hubaux. TraCI: An Interface for
Coupling Road Traffic and Network Simulators. In Proceedings of the
11th Communications and Networking Simulation Symposium, CNS
’08, pages 155–163, New York, NY, USA, 2008. ACM.

[9] Roy Featherstone. Rigid body dynamics algorithms. Springer, 2014.
[10] Hilding Elmqvist, Sven Erik Mattsson, and Martin Otter. Modelica-a

language for physical system modeling, visualization and interaction.
In CAV, 1999.

[11] Erich Gamma. Design patterns : elements of reusable object-oriented
software. Addison-Wesley, Reading, Mass, 1995.

[12] Dirk Bäumer, Dirk Riehle, Wolf Siberski, and Martina Wulf. The role
object pattern. In Washington University Dept. of Computer Science.
Citeseer, 1998.

[13] Miha Ambroz, S. Krasna, and Ivan Prebil. 3d road traffic situation
simulation system. Advances in Engineering Software, 36(2):77–86,
2005.

[14] Andrew S. Tanenbaum and David Wetherall. Computer networks, 5th
Edition. Pearson, 2011.

[15] Richard N. Taylor, Nenad Medvidovic, and Eric M. Dashofy. Software
Architecture: Foundations, Theory and Practice. Addison-Wesley,
2007.

[16] gotoAndPlay(). SmartFoxServer 2X. Available at http://docs2x.
smartfoxserver.com/.

[17] Marco Lapi. Smartfoxserver 2x server architecture white
paper, 2012. Available at http://www.smartfoxserver.
com/downloads/sfs2x/documents/SFS2X_WP_
ServerArchitecture.pdf.

[18] Marios Assiotis and Velin Tzanov. A distributed architecture for
MMORPG. In Adrian David Cheok and Yutaka Ishibashi, editors,
Proceedings of the 5th Workshop on Network and System Support for
Games, NETGAMES 2006, Singapore, October 30-31, 2006, page 4.
ACM, 2006.

[19] George T. Heineman, Gary Pollice, and Stanley M. Selkow. Algorithms
in a nutshell - a desktop quick reference. O’Reilly, 2009.

[20] Evgeny Kusmenko, Jean-Marc Ronck, Bernhard Rumpe, and Michael
von Wenckstern. EmbeddedMontiArc: Textual modeling alternative to
Simulink. In EXE at MODELS, 2018.

601




