
62    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

contributed articles

I
M

A
G

E
 B

Y
 K

E
N

T
O

H

DEV ELOPING SOFTWARE AND software-intensive 
systems always requires the development of models. 
Some are formulated explicitly in some kind of 
modeling language. Others exist only as mental 
models and are finally represented implicitly by 
programs. In fact, application software realizes 
specific models that are available in the application 
domain and additionally includes specific technical 
implementation concepts in terms of hardware, 
operating systems, and further elements of the 
required software stack. In the end, application 
software appears to be a complex, entangled 
mixture of application models and implementation 
technology. Like programming languages, Modeling 
languages are defined by their syntax, which describes 
the form of the language constructs—textual or 

graphical—and by their semantics, 
which specifies their meaning. We claim 
that the choice of the underlying seman-
tic theories and definition techniques 
must closely follow the intended use 
cases for the modeling language. The 
choice of the syntax should be guided by 
the semantic domain and its underlying 
theories and not the other way around.

Modeling languages, such as UML, 
SysML, and various domain-specific 
modeling languages, have been sug-
gested to support the specification 
and construction of systems for spe-
cific domains. This leads to the follow-
ing key questions:

	˲ How should we model real-world 
entities of systems and how can we re-
late these entities to their models pre-
cisely?

	˲ How should we link up the syntactic 
representations of models in a model-
ing language with their semantics?

	˲ How can we represent, specify, and 
use semantics?

Two questions that arise here are 
how can a modeling language, a model-
ing method, and a modeling theory be 
used systematically, and which aspects 
and steps of system modeling and sys-
tem development do they support? In-
vestigations, for example on model-driv-
en engineering,24 SysML,25 or variability 

Development 
Use Cases for 
Semantics-Driven  
Modeling 
Languages 

DOI:10.1145/3569927

Choosing underlying semantic theories and 
definition techniques must closely follow 
intended use cases for the modeling language.

BY MANFRED BROY AND BERNHARD RUMPE

 key insights
	˽ Designing applications in software and 

software-intensive systems requires 
the creation, explicitly or implicitly, 
of models. The more explicitly and 
deliberately this is done the better.

	˽ Professional modeling requires explicit 
modeling languages—for example, UML, 
SysML, or domain-specific languages.

	˽ Semantics is needed to give meaning 
to syntactic constructs in these 
languages. For optimal utilization, the 
choice of underlying semantic theories 
and definition techniques must closely 
support the intended use cases for the 
modeling language.

	˽ The design of modeling languages must 
be guided by the semantic concepts and 
their underlying theories and not by pure 
syntactical considerations.

[BR23] M. Broy, B. Rumpe: 
Development Use Cases for Semantics-Driven Modeling Languages. 
In: Communications of the ACM, Volume 66(5), pp. 62-71, ACM, Mai 2023. 
www.se-rwth.de/publications/

https://dx.doi.org/10.1145/3569927
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3569927&domain=pdf&date_stamp=2023-04-21


MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     63

REASONING

ANALYSIS

DESIGN

EXPLORATION

AGREEMENT

MASTERING

IMPLEMENTATION

UNDERSTANDING

AUTOMATION



64    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

contributed articles

2.0.10 Too often, however, there are only 
vague, incomplete, or largely diverting 
visions of how a modeling language 
should be used. For SysML 2.0, at least, 
there is hope: Although there is cur-
rently no document available that ex-
plicitly describes the intended use cas-
es of SysML models, there seems to be 
some agreement among the standard-
ization stakeholders on the use cases at 
least in highly relevant areas. We hope 
that the emerging SysML 2.0 standard 
will be accompanied by an explicit list 
of use cases for the language and there-
fore definitions of purpose.

The Request for Proposal for SysML 
2.0, however, and especially its Section 
6, contains a lot of wishes with regard to 
the SysML 2.0 language syntax. These 
wishes are rather detailed. They can also 
be understood as a solution description, 
but they can no longer be understood as 
requirements that explain the need for 
the constructs and specific forms of use 
of the language. These requirements 
mainly describe what modeling con-
cepts the language should include. They 
describe neither what the language 
should be able to express (even though 
this can be imagined) nor the kind of 
techniques, such as model checking or 
logical verification, the language models 
should support. Such a list of applicable 
techniques is especially relevant be-
cause it enforces some restrictions in 
modeling power, as we know from for-
mal methods and corresponding se-
mantic theories, such as algebraic speci-
fications;11 system description calculi, 
such as Hoare’s Communicating Se-
quential Processes; the Focus approach 
for asynchronously communicating dis-
tributed components;4 and various oth-
er forms of logic calculi.

Clearly, one obvious purpose for 
modeling languages is to offer a formal-
ized syntax for creating tools that sup-
port model-driven systems engineering 
(MDSE). Then, not only do developers 
use models in the development pro-
cess, but the process is structured and 
guided based on models.23 However, a 
closer look indicates that there are radi-
cally different ways in which semantic 
theories, methodologies, and tools may 
support MDSE. Table 1 shows a rough 
classification of use cases for modeling 
during development.

The availability of fast compilers, so-
phisticated development environments, 

in modeling language semantics,6 par-
tially address these issues, although not 
generally from a usage point of view for 
models and modeling. Model analysis in 
various forms and code synthesis from 
models have already been investigated 
in early influential modeling languages, 
such as ROOM22 or Statecharts.12

Modeling in System Design: 
Use Cases for Modeling Languages
In the following, we consider modeling 
languages that are mainly used for 
modeling software-intensive systems, 
their structure, their interactions, and 
their behavior. We study the systematic 
use of modeling languages and their 
underlying theories, as for instance de-
manded in Harel and Rumpe,13 within 
the task of system development.

What modeling languages are good 
for and how they should be used may 
appear to be rhetorical questions. Of 
course, modeling languages are in-
tended for describing relevant aspects 
of systems. In fact, there are quite dif-
ferent use cases for models.

Currently, developing modeling lan-
guages involves quite a lot of effort. 
This is the case, for instance, with Sys-
ML in its significantly extended Version 

When we are 
modeling systems, 
one very significant 
decision is which 
aspects of systems 
are to be modeled 
and which  
modeling concepts 
are chosen.

A model is a reduced, respectively 
abstracted representation of an 
original in terms of size, detail, and/
or functionality and has a purpose 
with respect to this original. (Entity/
Relationship diagrams or Statecharts are 
examples of models).

A system modeling language can be 
understood by humans, processed by 
computers, and is used for modeling all 
relevant aspects of and about the systems 
under development or examination. 
(UML and SysML are examples of system 
modeling languages.)

A theory is an analytical tool for 
understanding, explaining, and making 
predictions about a given subject 
matter—for example, automata provide 
such a theory.

Semantics describes the meaning of a 
model. For example, Statechart models 
get semantics using automata theory. 
However, an alternative viewpoint is 
that automata theory is made practical 
through a concrete modeling language, 
namely the Statecharts.

A model is valid if its semantics correctly 
describes the original. 

Glossary



MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     65

contributed articles

Table 1. Classification of needs for semantic-driven models.

Needs for modeling during development of systems and software

M1. Specifying systems in requirements engineering M2. Formulating and evaluating design alternatives

M3. Describing system aspects or views for 
communication

M4. Designing system architectures

M5. Describing systems for validating desired system 
properties in simulations

M6. Collecting user feedback through visual 
simulations, prototypes, and mock-ups 

M7. Modeling variants in product lines M8. Defining reference models for the capture, 
design, or implementation of requirements

M9. Statically analyzing or verifying design decisions M10. Efficiently evolving designs

M11. Understanding semantic differences between 
versions

M12. Describing detailed system behavior for 
generating software parts

M13. Implementing/realizing/synthesizing systems 
in general

Needs for modeling during system operation

M14. Customizing systems M15. Monitoring running systems 

M16. Capturing deviations between desired or 
even optimal (modeled) properties and observable 
(realized) system functionalities

M17. Documenting systems 

M18. Capturing system execution traces and labeling 
them with model elements, thus linking system and 
traces reliably 

M19. Optimizing systems

Modeling (and programming) lan-
guages are defined by their syntax 
(“what we see”) and their semantics 
(“what it means”). Syntax shapes vi-
sual representation and semantics 
defines the meaning of the syntactic 
constructs. Useful semantic descrip-
tions of meanings contribute to the 
understanding and the use of lan-
guages. A semantic definition is em-
bedded in a helpful theory and a 
methodological framework that ide-
ally offers a rich set of insights which 
contribute to the understanding of 
what the language is modeling as 
well as techniques (tool-assisted) for 
deriving properties. This includes 
questions of specification and verifi-
cation, for making information and 
relations explicit or even for synthe-
sizing executables.

Modeling at Work
When we are modeling systems, one 
very significant decision is which as-
pects of systems are to be modeled and 
which modeling concepts are chosen. 
We actually need a deep understand-
ing of all aspects that are relevant for 
the systems to be represented in a 
model. This serves as a guide for de-
signing modeling languages.9,15

A classical approach to designing 
systems aims at the following aspects 
(disregarding pure physical aspects 
for now):

	˲ The context of a system, comprising:
	˴ Neighboring systems
	˴ Environmental facets and effects
	˴ �Users operating via the human- 
machine interfaces

	˲ The system boundary that deter-
mines the system interfaces

	˲ The system interfaces, including in-
terface signature (or interface types, 
the syntactic interface, consisting, for 
instance, of formal parameters or 
ports), and interface behavior

	˲ The system’s external and internal 
structure (also called external and in-
ternal system architecture), such as:

	˴ �The functional architecture, a 
structured model that describes 
the system’s functionality

	˴ �The subsystem structure that ad-
dresses the component architec-
ture, the structuring of a system 
into several layers of subsystems 
down to reusable and predefined 
components

	˴ �The interaction of composed 
subsystems to define the overall 
system

	˴ �The data structure (also known as 
the data architecture) of the sys-
tem that describes how to inter-
nally store and manage data.

In addition, we need the following:
	˲ A quality specification
	˲ A technical architecture. For infor-

mation-processing subsystems, this 
consists of hardware and software 

or frameworks to automatically execute 
tests introduced agile development 
methods as well as entirely new use cas-
es for models. The high degree of effi-
cient automation available enables effi-
cient and early feedback to the modelers. 
Agile development can be perfectly ap-
plied to various kinds of system model-
ing languages if the languages have pre-
cise semantics. Use cases for models 
may include assistance for sophisticated 
automatic checks, such as type check-
ing, flow analysis, or even model check-
ing on probabilistic models.16 It is only 
when using abstract, high-level model-
ing languages that the designs remain 
explicit and can be smartly analyzed. For 
example, a state machine can easily be 
analyzed for completeness. If it is encod-
ed as a state design pattern, a code ana-
lyzer cannot normally recognize the de-
veloper’s mental model anymore. To 
embrace evolution, refactoring8 can eas-
ily be applied to explicit structural and 
behavioral diagrams. Modeling enables 
refactoring and thus evolution19 or cal-
culation of semantic differences5,17 be-
tween the models. Continuous integra-
tion is a technique that fits particularly 
well with MBSE.

Table 1 also describes additional 
use cases for modeling during system 
operation, leveraging the close connec-
tion between digital twins and models 
as used in systems engineering and 
thus assisting DevOps approaches.

A further, highly relevant question 
concerns the aspects of systems that 
are modeled: system structure, behav-
ior, or both; interactions between sys-
tem and environment or internal inter-
actions; data structures; or even quality 
properties. In the end, a key question is 
how behavior is modeled. First, there 
are radically different mathematical 
models of system behavior at different 
levels of abstraction. Moreover, the de-
scription of behavior may be opera-
tional (defining a form of execution), or 
descriptive (capturing properties with 
usually many possible realizations).

Clearly, the use cases envisaged 
should largely determine the design of 
modeling languages. A language for ar-
chitecture design looks different than 
one for simulation or implementation, 
or one for property specification. 
Therefore, a careful analysis of use cas-
es is needed as a basis for designing a 
modeling language.



66    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

contributed articles

Table 2. Use cases for language semantics.

Use cases for the semantics for language design

UC1. Understanding the meaning of languages. UC2. Abstraction of the syntactic representation.

UC3. Standardization of meaning. UC4. Standardization and guideline for implementation.

UC5. System specification and verification.

Use cases for the semantics when modeling

UC6. Refactoring, that is, ensuring semantically 
equivalent transformation of models.

UC7. High-level analysis of models.

UC8. Proving properties of models and  
the systems they describe.

UC9. Correct synthesis of optimized realizations.

Figure 1. Four syntactic representations of a state machine: diagram, math, textual, and 
tabular.

resentations are possible. In all cases, 
additional rules are based on the ab-
stract syntax to define context condi-
tions for well-formedness.7 Well-formed 
syntactic representations are the basis 
for defining the semantics of a language.

Defining Semantics Formally
Semantics gives meaning to syntactic 
constructs of modeling languages so 
that they do not introduce meaningless 
or invalid models. The key motivation 
for giving meaning to formal languages 
is to provide a common understanding 
of what is expressed by the sentences—
that is, the syntactic expressions of a 
language. Over the last 60 years, a rich 
collection of different ways of defining 
the formal meaning of programming 
languages has been created. The tech-
niques for precisely describing the se-
mantics of modeling languages are mo-
tivated by their intended use cases, 
which we classify in Table 2.

As a relevant side effect, a standard-
ized meaning is a prerequisite for stan-
dardized tools. It reduces or even pre-
vents vendor lock-in and enables much 
better tool interoperability in tool 
chains, while semantics in and of itself 
is an enabler for a sophisticated tool-
ing infrastructure.

For a deeper understanding, the fol-
lowing is a list of the most important 
branches of the various semantics defi-
nition methods for the semantics of 
programming languages. The list also 
explains how the methods contribute 
to different ways of using a language:

	˲ Operational semantics. Mainly 
given in terms of an evaluation calcu-
lus, such as SOS by Plotkin,20 which de-
fines an idea of evaluation and a guide-
line for implementation, and if done 
properly, could even be used to gener-
ate an interpreter.

	˲ Denotational semantics. Here, 
some type of explicitly defined seman-
tic domain is used and the entities of 
the formal languages are mapped onto 
this domain, thus representing the 
meaning in a mathematically precise 
way. Domain theory was originally de-
veloped by Scott and Strachey.21

	˲ Algebraic and transformational se-
mantics. Algebraic semantics and 
transformational semantics are in-
spired by the way math transforms and 
solves equations. They introduce 
equivalences and congruencies be-

models, a software architecture 
mapped onto virtual and real CPUs, 
scheduling issues, and operating and 
bus systems. In addition, the techni-
cal architecture describes peripheral 
devices, such as sensors, actuators, 
and interfaces to neighboring systems 
as well as user interfaces.

Most of these aspects can be 
modeled in logically precise form. 
Moreover, probabilistic aspects or ap-
proximation techniques are often rele-
vant as well. In fact, it is essential that 
unknown or undecided properties can 
be treated in modeling by means of suf-
ficiently precise underspecification as a 
general form of abstraction.

When designing a modeling lan-
guage, we have to represent the above-
mentioned concepts with syntactic 
constructs. For instance, interfaces 
are described by syntactic modeling 
elements, such as ports or messages, 
and their types as parts of interface 
signatures.

Selecting Syntax
It is mandatory to define a concrete rep-
resentation for the concepts and aspects 
addressed by the language syntax as a 
set of language constructs and their use 
in the language structure. First, we intro-
duce several rules, called context condi-
tions, to define and describe a syntacti-
cally well-formed model. These ensure 
that, for instance, identifiers are intro-
duced before they are used and have no 
name clashes or inconsistencies. Typi-
cally, this includes an elaborated-type 
system and many other language-specif-
ic forms of consistency checks.

For programming and other textual 
languages, a context-free grammar is ap-
propriate. Grammars can also be used to 
construct an abstract syntax representa-
tion without any syntactic sugar. A simi-
lar approach applies for diagrammatic 
languages, where the core language is 
defined by “meta-models,” mechanisms 
similar to class diagrams. Figure 1 
shows, however, that more syntactic rep-



MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     67

contributed articles

even more complex, because modeling 
intrinsically relies on additional forms 
of abstractions. A powerful concept for 
abstraction is underspecification, al-
lowing sets of possible realizations to be 
described in one model. Underspecifi-
cation in systems (as well as software) 
modeling languages is a concept for 
tackling at least four important goals:

1.	 Underspecified models capture 
the aspects the developer is currently 
dealing with and abstract away from yet 
unknown technical details, implemen-
tation issues, irrelevant parts, and so on.

2.	 Flexible handling of design deci-
sions allows developers to avoid prema-
ture overspecification by not enforcing 
arbitrary choices. Here, techniques 
such as underspecification help to 
specify bandwidths for relevant system 
properties without fully determining 
the resulting system properties yet.

3.	 Self-adaptive, autonomous, and 
other smart systems exhibit behavior 
depending on internal states accumu-
lated over their history or prior train-
ing. Their specifications must de-
scribe the bandwidth of adaptable 
behavior requiring abstraction and 
underspecification as an intrinsic 
modeling technique.

4.	 In product lines, the common 
structure and behavior is by nature un-
derspecified. Explicit underspecifica-
tion techniques also allow us to cap-
ture common properties of alternative 
features and constrain future and yet 
unknown feature realizations.

Programming languages are typical-
ly deterministic, and their programs 
are thus specified in all details, while 
underspecification and thus not fully 
determined models are intrinsic in 
modeling. Both programming and 
modeling languages, however, share 
the fact that precisely defined seman-
tics allow for reasoning about the 
models and the properties they imply, 
even though during design, a model 
cannot and should not capture all tech-
nical details. We distinguish clearly be-
tween the precision of a model, that is, 
its degree of detail, and the precision of 
the semantics defined for the modeling 
language. Furthermore, if reasoning is 
to be done in a formal manner, then the 
semantic description must be embed-
ded into an appropriate logical calcu-
lus, allowing automated deductive 
analyses and constructive syntheses.

tween the elements of the formal lan-
guages such that syntactically different 
models that have the same meaning 
(see Broy et al.3) and can be replaced 
are explicitly defined. Using equiva-
lences as transformations allows us to 
rewrite, refactor, and restructure 
models into more adequate forms.

	˲ Logic-based semantics. Logic-based 
semantics either gives rules for translat-
ing syntactic terms of the language into 
logical formulas or adds rules of a logi-
cal calculus into the modeling language. 
This aims at specification, verification, 
and refinement formalisms using logic 
formulas and calculi. For instance, the 
Hoare Calculus14 can also be seen as a 
syntactic extension of a programming 
language by assertions. This approach 
shares characteristics of denotational 
semantics (mapping to logical denota-
tions) and algebraic semantics (defined 
by calculi of transformation rules).

A helpful semantic definition does 
not merely formalize what is expressed 
by a modeling language; it provides in-
sight and a methodological back-
ground and deduction rules. This can 
be achieved by embedding the lan-
guage into a logical calculus and user-
friendly visualizations of derived re-
sults. This is helpful for programming 
languages but even more so for sys-
tems modeling languages.

As for programming languages, mod-
ularity by encapsulation and information 
hiding is related to the idea of abstraction 
and reusability. Ideally, meaning is given, 
as in denotational semantics, not just for 
complete models, but also for their parts, 
such that the meaning of a composed 
model is derived from the meaning of its 
parts. This modularity is especially useful 
if the composition structure, as described 
by the architecture of the system, is con-
gruent to the composition structure of 
the defining models. Then, system inter-
faces correspond to model interfaces, 
and modular subsystems and compo-
nents correspond to encapsulated “sub-
models”, and so on. As a prerequisite, we 
need to know when sub-models are co-
herent and can be composed to describe 
the desired system.

Abstraction in Modeling Languages
We have seen that there is a large variety 
of approaches for defining the seman-
tics of programming languages. For 
modeling languages, the situation is 

The techniques  
for precisely 
describing the 
semantics of 
modeling languages 
are motivated  
by their intended 
use cases.



68    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

contributed articles

Figure 2. Mapping syntax to semantics to the real world.

From syntax to denotational semantics to the real world

Applied to a coffee machine example:

Concrete
syntax

Abstract
syntax

Semantic
domain

Real
Worldextraction of

syntactic essence
(for example, parsing)

semantic
mapping

(for example, using
mathematics)

(informal)
interpretation

operation 
modes of the 

coffee machine

mathematical
theory,

for example, 
statemachines

   for example, 
grammar

or meta-model
StateCharts

Table 3. Use cases for applying modeling languages in development and operations.

D1. Specify a system to agree in a team on a specific system behavior.

D2. Describe the interface of a system/component.

D3. Describe properties for a component without looking at its internal structure.

D4. Describe the interplay of components as composed in a modeled architecture.

D5. Given a model, refine it such that additional properties hold.

D6. Given an interface model and the behavioral description, find a decomposition that implements the 
behavioral description, so that the decomposition is actually a refinement.

D7. Given two models, check whether they are equivalent and if not, find the inhibiting model elements.

D8. Given two models, check whether one is a refinement of the other.

D9. Given a test (for instance, input/output sequences and a property specification), analyze, simulate, or execute 
the model in such a way that it results in a test verdict.

D10. Check whether a model guarantees specific properties.

During system operation there are more use cases for models, such as:

OP1. Use variability, underspecification, and parameterization in the models to optimize real system behavior.

OP2. Use models of a system as meta information for sensor data—for instance, describing the data source.

OP3. Measure deviation between modeled and observed behavior according to some appropriate metric models

tactic models ambiguous and less use-
ful.13 Developers have the additional 
burden of defining semantics, and tool 
interoperability gets lost.

To some extent, this trend combines 
the semantics of the language in terms of 
meaning, for example defined in denota-
tional semantics, and a concrete execu-
tion of an implementation of a concrete 
model in a software stack. Only the latter 
is dependent on an underlying technol-
ogy and may need individual technical 
but not semantic adaptations.

Another interpretation of this trend 
would be that describing semantic ad-
aptations for model instances does not 
mean you are defining semantics for 
the language—it is merely an addition-
al syntactic description added using a 
language extension. This would be 
similar to Hoare logic assertions as 
part of a program or also stereotypes in 
UML and SysML. In these cases, the 
languages are extended syntactically, 
which also requires semantics.

There are approaches for using 
structural modeling techniques, such 
as an ontology, a class diagram, or even 
a SysML architecture (IBD/BDD) to 
model behavior and thus also time. En-
coding a state machine into a class 
structure is a perfect design pattern but 
it prevents sophisticated tooling for 
analyzing the models. It normally also 
leads to a loss of expressiveness, borne 
out in many of the UML semantics defi-
nitions that used mappings to semanti-
cally insufficiently expressive formal-
isms prominent around the year 2000. 
The semantic domain and the formal-
ism representing it must be carefully 
defined and should be free of expressiv-
ity shortcomings. Class diagrams are 
simply not well suited for describing 
the specific nature of time and behav-
ioral progress and the clear distinction 
between past, present, and future.

An ontology of the system domain 
is a good starting point for designing 
an appropriate modeling language for 
the domain. Concepts and their rela-
tionships, as defined in ontologies 
(see Mayr and Thalheim18 for a critical 
assessment) cannot, however, ade-
quately describe the behavior of sys-
tems, their interactions, dynamic 
changes, and so on, and thus cannot 
replace language semantics.

Furthermore, an ontology language 
is also a modeling language and not a 

For a scalable modeling technique, it 
is most important that composition is 
compatible with underspecification. 
That means the underlying theory must 
provide composition and refinement 
techniques in such a form that refined 
specifications of components by con-
struction lead to refinement of the com-
posite, such as in the Focus approach.4

Model-Specific  
Semantics Adaptation
A current trend is to define individual 
semantics for each given syntactic 
model instance instead of a generally 
defined and agreed-upon semantics for 
the modeling language holistically. At 
first glance, this looks like a linguistic 
faux pas. What does it mean to use some 
syntax without standardized seman-
tics? However, one way to accept such 
an approach would be to understand 
this as semantic adaptation for a given 
syntactic language—that is, as a syntac-
tic and semantic framework which al-
lows for adaptation on both sides. The 

more coherent and precise the seman-
tic framework is, the clearer its adapt-
ability options are, but also the easier it 
is to reuse and exchange models be-
tween different tool chains or projects. 
However, it does not seem to be a good 
idea to start with syntax only.

A common semantic framework al-
lows us, for example, to capture a shared 
understanding of agreed-upon syntactic 
concepts as well as understand the dif-
ferences between individual semantic 
interpretations for a syntactic formalism 
(as explored for Statecharts in Beeck,1 for 
instance), where the challenge is mainly 
to select the most appropriate interpre-
tation. Associations in class diagrams, 
actions in activity diagrams, and many 
other language constructs unfortunately 
share similar variances.

While semantic adaptations have 
the advantage that we could give each 
language model an individual mean-
ing, this also has severe drawbacks. 
Each syntactic model potentially has a 
different meaning, which makes syn-



MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     69

contributed articles

To a large extent, linking relation-
ships between models and the real world 
is determined by the concepts that have 
been identified for and provided by the 
modeling language and for the entities 
of the real world to be studied. Given 
models based on appropriate semantic 
theories, which operate on the semantic 
domain, we can run analyses or perform 
well-chosen experiments leading to dis-
tinguished observations related to prop-
erties, as represented by property 
models. Note that the notion of property 
is available as a semantic concept as a 
“property of a system,” and it is also avail-
able as a syntactic concept as a “property 
model” described in a property-model-
ing language. A useful modeling lan-
guage must therefore include such a 
property-modeling language so that we 
can define properties and determine 
whether the properties implied by the 
model also hold for the real system as 
justified by observations of this system.

Choosing the syntax of the modeling 
language appropriately and the care-
fully basing the semantics on suitable 
modeling theories allows a direct com-
parison of deduced properties of the 
model to the properties observed for 
real systems. This is a major goal of 
modeling—models are useful when 
they allow us to reason about the real 
world. Semantics, therefore, must sup-
port the derivation of properties from 
system models. Therefore, semantics 
must be chosen carefully to ensure that 
derived properties from a correct model 
also hold for real systems.

What properties can be captured and 
derived depends on the expressive pow-
er of the modeling language and a cal-
culus to derive propositions. Models 
need expressive power to describe rele-

vant system properties, and there must 
be a clear definition and understanding 
of how the model captures properties 
related to the real system.

Semantics Targeting  
Use Cases for Modeling
As explained, the intended use cases for 
modeling languages guide how the se-
mantics of the language is chosen. To-
day, it still too often seems to be the 
other way around: Syntax is defined 
first and then various discussions about 
semantics ensue. At the end, there is no 
clear idea of how the modeling ap-
proach should be used, which system 
elements (components, events, pro-
cesses, and so on) it shall specify, and 
what the syntax formally expresses.

We see understanding, reasoning, 
analyzing, justifying, agreeing, de-
signing, exploring, mastering com-
plexity, implementing, and automa-
tion during development as general 
goals when using a modeling ap-
proach in development.

These main goals are not without mu-
tual conflicts. We are also tempted to add 
explainability and rationale definitions 
as additional goals, meaning that a run-
ning autonomic and self-adaptive sys-
tem can explain its concrete operative 
decisions with respect to the original de-
velopment models. Consequently, a 
modeling approach must be evaluated 
according to the key properties shown in 
Figure 3 to support reflection and com-
munication among developers.

Ultimately, the construction of 
models has two main purposes that ad-
dress separate issues. On one hand, 
prescriptive models denote a starting 
point or a step in the design of systems 
where they help to capture properties of 

semantics definition per se. However, 
modeling languages such as SysML 
have a broader set of language con-
structs and use cases. Consequently, a 
useful approach is to embed an ontol-
ogy of the system domain in an ordi-
nary system modeling language—for 
example, as reusable modeling ele-
ments defined in a library.

Use Cases for Applying 
Modeling Languages
To create a useful modeling language 
and to evaluate whether it serves spe-
cific purposes, use cases or even illus-
trative user stories are indispensable. 
This is like the creation of requirements 
in software design and indicates that 
the development of a modeling lan-
guage shares similarities with the de-
velopment of software. However, the 
“user stories” could alternatively be 
called “modeler stories” or “developer 
stories” that address the methodologi-
cal steps in development.

Developer stories describe how the 
modeling approach should be used in 
terms of system development steps 
and which aspects of system develop-
ment the approach is intended to sup-
port. This is then also related to tooling 
concepts for that modeling language.

We do not give comprehensive de-
scriptions of the idea of developer sto-
ries but in Table 3, we refine the initial 
list of needs of Table 1 into a list of ex-
amples of how modeling languages 
may be used during system develop-
ment and operation.

Developer stories and use cases help 
us to understand the intended use of a 
model-based system development ap-
proach. They show which models and 
sub-models are required, which model-
ing aspects are aimed at, and which 
concepts offer support in certain model-
ing steps. Developer stories for model-
ing approaches are very helpful because 
modeling languages and sophisticated 
tooling are usually complex.

Relating Models to the Real World
Having formulated models in a model-
ing language with a given semantics, a 
key question is how these models relate 
to real-world entities that they should 
model—that is, in the case of system 
modeling, to real systems. This com-
pletes the mapping from language syn-
tax to the systems, as shown in Figure 2.

Figure 3. Key aspects of a modeling approach and their relationships.

Expressiveness

Abstraction
support

Underspecification
support

Reasoning
support

Automation
tool support

relies on

Analyzability Methodological
support

Executability
of models

Formality Understandability Intuitiveness

Development
process structure



70    COMMUNICATIONS OF THE ACM   |   MAY 2023  |   VOL.  66  |   NO.  5

contributed articles

Conclusion
As argued, the design of modeling lan-
guages should start with the design of 
the semantics followed by the appro-
priate syntax. The following key ques-
tions should be considered first:

	˲ How should modeling and model-
ing languages be used and applied in 
software and systems engineering?

	˲ How well and to what level of detail 
must the modeling language address 
and support the representation of spe-
cific relevant aspects and concepts?

	˲ How is this realized, represented, 
and implemented by the syntactic con-
structs?

	˲ Does the semantics address these 
constructs and concepts in an appro-
priate way?

	˲ How do all these aspects support 
the idea of using such a modeling ap-
proach according to the modeling use 
cases addressed?

	˲ What is the appropriate tooling 
needed to support the use cases, and 
what expressivity restrictions then 
emerge?

Such questions must be understood 
as requirements engineering for lan-
guage design and must therefore be 
answered before starting a detailed de-
sign of syntax and semantics.

In the end, it is more appropriate to 
speak not just about modeling lan-
guages for software and system devel-
opment but also about the use cases of 
such languages and thus classify a lan-
guage more precisely as a model-based 
specification, design, verification, test, 
simulation, prototyping, program-
ming, system implementation, config-
uration, or even documentation lan-
guage. If, in the future, we can design 
concise and integrated languages, it 
may also be possible for one language 
to serve several use cases and, vice ver-
sa, for several sub-languages to con-
tribute to the same purpose.

It will be interesting to find out how 
far one language, such as SysML, can 
and cover all these use cases. In other 
words, how many distinct languages 
or at least language variants based on 
a common core language are needed 
for effective and reliable systems de-
velopment? In fact, it would be help-
ful for a standard, such as SysML, to 
state clearly what the purpose of the 
modeling language is and what is out 
of its scope. This can also be made ex-

the systems under construction as a 
guideline for design and a goal for cor-
rectness. On the other hand, descrip-
tive models are used to describe real 
systems at appropriate levels of abstrac-
tion. They can then be used to study 
properties of these systems, perhaps 
also to simulate them, to obtain a basis 
for analysis and observation validation.

These two different forms of support 
are of course connected. On one hand, 
when using models for design, we hope-
fully end up with the creation of a real 
system. We may then ask whether the 
model sufficiently describes the real sys-
tem that is ultimately constructed. On 
the other hand, we can analyze whether 
the system constructed is correct for the 
properties expressed by the model.

Ultimately, there are two areas of use 
for modeling: expressing ideas about 
systems to be constructed and collect-
ing properties of systems that are to be 
analyzed. Both are related; however, 
different modeling techniques may be 
more appropriate to address one aspect 
or the other aspect because, at the very 
least, tooling for both is quite different.

In practice, a model typically offers 
many different use cases for different 
stakeholders in the development pro-
cess. Some developers constructively 
design systems in term of models, oth-
ers make performance optimizations, 
and others are concerned with security 
assessments or safety aspects. These 
different use cases lead to trade-offs in 
the required detail of models, levels of 
abstraction, degree of underspecifica-
tion, precision, and so on, which must 
be handled by appropriate language 
constructs and methodology. While 
the definition of “model” states that 
there is a purpose with respect to the 
system, in practice, a model has many 
purposes and different use cases for 
different stakeholders, so the corre-
sponding modeling language serves 
many purposes as well.

As previously mentioned, there are 

many different approaches for describ-
ing the semantics of programming lan-
guages and modeling languages. The 
approach can be denotational, opera-
tional, axiomatic, transformational, or 
logic-based depending on how the se-
mantics are intended to support spe-
cific use cases.

Semantic Modeling Theories
A fundamental step in the semantic 
treatment of programming languages 
in the late 1960s was the elaboration of 
semantic theories that helped us to un-
derstand programming paradigms or, 
in the case of modeling languages, 
modeling paradigms—not at a syntac-
tic level but at a semantic level.

One example is assertion logic for 
procedural programs with its concept of 
an invariant. Based on an assertion cal-
culus according to contributions from 
Hoare and Floyd, invariants are used to 
define verification rules for loops. The 
concept of an invariant is part of a se-
mantic theory that can be studied inde-
pendently of a particular syntactic con-
struct just by studying the idea of 
predicate transformers for state transi-
tion systems according to Dijkstra. 
These examples demonstrate that the 
concept of an invariant is closely related 
to fixpoint definitions for iteration and 
show that providing semantics for a 
programming or modeling language in 
a particular semantic style also triggers 
the use of particular semantic theories 
and paradigms and thus also tools.

However, we may view this idea from 
a different angle: given sufficient under-
standing of semantic theories with po-
tential to provide modeling constructs, 
the design of a modeling language 
should start not just from syntactic con-
structs but from appropriate semantic 
theories. The second step is to find syn-
tactic representations for the semantic 
theories needed as shown in Figure 1. 
This is the future of language design, 
which is different to what we see today.

Figure 4. Main activities of a language design process.

Main activities of a language design process

Use cases
for the models

Semantics
domain

Syntactic
constructs

Semantics
adaptation

Tools for
analysis

Tools for
synthesis

Simulators



MAY 2023  |   VOL.  66  |   NO.  5 |   COMMUNICATIONS OF THE ACM     71

contributed articles

UML or SysML, it is most important to 
be semantically consistent and coher-
ent. Semantic coherence means that 
the different language and modeling 
constructs can be understood and used 
together, and consistency means that 
they fit together without contradictions. 
Checking consistency and coherence 
between models requires a clear under-
standing of how the different modeling 
concepts fit together—in particular, on 
the semantic level, such that semanti-
cally correct, comprehensive models 
can be worked out. Only coherent and 
consistent models can be composed.

Semantics first. Many modeling lan-
guages are designed by initially think-
ing about syntax, but should it not be 
exactly the other way around? First, 
concepts and modeling theories should 
be considered. Such concepts may be 
reflected by several different semantic 
descriptions and represented by a rich 
number of syntactic constructs. How-
ever, thinking about the purpose of 
modeling languages, the most relevant 
question is, what are the modeling con-
cepts to be integrated and the neces-
sary analysis techniques to be assisted 
by tools? Only then should we start to 
think about the syntax.

As pointed out in Figure 4, for exam-
ple, it seems to be crucial to start with 
modeling theories based on semantic 
concepts before moving on to choose 
the syntax. This is a lesson learned from 
UML (see Broy and Cengarle2). For UML, 
a number of interesting concepts, in-
cluding object orientation, Statecharts, 
message sequence charts, Petri nets, 
process descriptions, are mixed togeth-
er on a syntactic level. Describing the 
semantics of the result is then very 
complicated. The reason is obvious: 
When many of the semantic concepts 
and theories behind the syntactic ideas 
do not fit together, the result is not a co-
herent modeling approach. Semantic 
coherence will hardly be achieved and 
defining semantics becomes an impos-
sible challenge. Furthermore, the use 
cases for such languages are not met.

Acknowledgments
We thank Conrad Bock, Sanford Frie-
denthal, David Harel, Klaus Have-
lund, the Communications reviewers, 
and especially Bran Selic for their 
helpful comments on earlier versions 
of this article.	

References
1.	 von der Beeck., M. A comparison of statecharts 

variants. In Formal Techniques in Real-Time and 
Fault-Tolerant Systems: Lecture Notes in Comp. 
Science 863, H. Langmaack, W.-P. de Roever, and J. 
Vytopil (eds), Springer (2014), 128–148.

2.	 Broy, M. and Cengarle, M.V. UML formal semantics: 
Lessons learned. Software and Systems Modeling 10, 
4, Springer (2011), 441–446.

3.	 Broy, M., Pepper, P., and Wirsing, M. On the algebraic 
definition of programming languages. ACM 
Transactions on Programming Language Systems 9, 1 
(1987), 54–99.

4.	 Broy, M. and Stoelen, K. Specification and 
Development of Interactive Systems, Springer (2001).

5.	 Butting, A. et al. Semantic differencing for message-
driven component and connector architectures. In 
2017 IEEE Intern. Conf. on Software Architecture, 
145–154.

6.	 Cengarle, M.V., Grönniger, H., and Rumpe, B. Variability 
within modeling language definitions. In Proceedings 
of MODELS 2009: Model Driven Engineering 
Languages and Systems, Springer, 670–684.

7.	 Evans, A. et al. Meta-modeling semantics of UML. In 
Behavioral Specifications of Businesses and Systems, 
Kluver Academic Publishers (1999).

8.	 Fowler, M. Refactoring: Improving the Design of 
Existing Code, Addison–Wesley (1999).

9.	 Frank, U. Domain-specific modeling languages: 
Requirements analysis and design guidelines. Domain 
Engineering, I. Reinhartz-Berger, A. Sturm, T. Clark, 
and S. Cohen (eds), May 2013, 133–157.

10.	 Friedenthal, S. and Seidewitz, E. A look ahead at 
SysML v2. SysML v2 Submission Team (SST), Wasatch 
INCOSE Chapter (June 2020).

11.	 Guttag, J. Abstract data types and the development 
of data structures. Communications of the ACM 20, 6 
(1977), 396–404.

12.	 Harel, D. Statecharts: A visual formalism for complex 
systems. Science of Computer Programming 8, 3 (1987).

13.	 Harel, D. and Rumpe, B. Meaningful modeling: What’s 
the semantics of “semantics”? IEEE Computer 37, 10 
(2004), 64–72.

14.	 Hoare, C.A.R. An axiomatic basis for computer 
programming. Communications of the ACM 12, 10 
(October 1969), 576–583.

15.	 Karsai, G. et al. Design guidelines for domain specific 
languages. In Proceedings of the 9th OOPSLA 
Workshop on Domain-Specific Modeling. Helsinki 
School of Economics (2009).

16.	 J.-P. Katoen. The probabilistic model checking 
landscape. In Proceedings of the 31st Annual ACM/
IEEE Symp. on Logic in Computer Science (2016).

17.	 Maoz, S., Ringert, J.O., and Rumpe, B. Summarizing 
semantic model differences. In Models and 
Evolution (2011).

18.	 Mayr, H. and Thalheim, B. The triptych of conceptual 
modeling. A framework for a better understanding of 
conceptual modeling. Software and Systems Modeling 
20, Springer (2021), 7–24.

19.	 Philipps, J. and Rumpe, B. Refactoring of programs 
and specifications. Practical Foundations of Business 
and System Specifications. H. Kilov and K. Baclawski 
(eds.), Kluwer Academic Publishers (2003).

20.	 Plotkin, G. The origins of structural operational semantics. 
The Journal of Logic and Algebraic Programming 60-61 
(2004), 3–15.

21.	 Scott, D. Outline of a mathematical theory of 
computation. Programming Research Group, Oxford 
University (1970).

22.	 Selic, B., Gullekson, G., and Ward, P. Real-Time Object-
Oriented Modeling, John Wiley & Sons (1994).

23.	 Weilkiens, T. SYSMOD—The Systems Modeling 
Toolbox: Pragmatic MBSE with SysML (3rd ed.) 2020.

24.	 Whittle, J., Hutchinson, J., and Rouncefield, M. The 
state of practice in model-driven engineering. IEEE 
Software 31, 3 (2014), 79-85.

25.	 Wolny, S. et al. Thirteen years of SysML: A systematic 
mapping study. Software and Systems Modeling 19, 
Springer (2020), 111–169.

Manfred Broy is a retired professor in the Informatics 
department at the Technical University of Munich, Germany.

Bernhard Rumpe (rumpe@se-rwth.de) is a professor in 
the Software Engineering department at RWTH Aachen 
University, Germany.

Copyright is held by the owner/author(s).  
Publication rights licensed to ACM.

plicit for individual sub-languages of 
the SysML standard.

On the definition of languages. De-
fining a modeling language requires a 
good knowledge of the syntactic and se-
mantic options and possibilities. This 
gives us an idea of a semantic theory ad-
equate for the real-world phenomena 
that we want to describe. Only then can 
we think about good syntactic ways to 
represent the respective phenomena. As 
described in Figure 4, we thus strongly 
suggest: semantics first, syntax second.

However, this does not mean that 
syntax is not important. It is very im-
portant to choose a syntax that is easy 
to deal with, comprehend, and that 
represents semantic properties as di-
rectly and explicitly as possible.

In some sense, this is a kind of a 
metaverse of modeling with a close re-
lationship between syntax and seman-
tics, a theory of their interaction, and 
ways to relate both to typical modeling 
tasks and use cases.

A modeling language must be de-
signed in such a way that it does not fall 
into a trap that is well known in some 
programming languages. There are pro-
gramming languages, such as PL1, 
which proved to be monsters, trying to 
comprise everything and to fulfill all po-
tential requirements. Instead, the result 
was a language that was way too compli-
cated and heavyweight for any purpose. 
This trap should be avoided for model-
ing languages. It may be better to have 
several slim modeling languages that 
are semantically coherent and match 
the use cases identified.

Semantics as a basis for modeling 
languages. There are many ways to de-
scribe the semantics of programming 
constructs. However, when designing a 
modeling or programming language, it 
might not be as important to start with 
how the syntax should look or which se-
mantic techniques should be used to 
describe the meaning of those con-
structs. The question is, what are the 
intended use cases for the language? 
This is closely related to the choice of 
the semantic basis. Should it be possi-
ble to do proofs about the model, simu-
lations, to generate code, and so on?

Syntactic and semantic consistency 
and coherence. For modeling languag-
es, and specifically for a set of different 
modeling concepts as they are also of-
fered by modeling languages such as 




